organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Fluoro-5-(4-fluoro­phen­yl)pyridine

aDepartment of Chemistry, Gomal University, Dera Ismail Khan, K.P.K, Pakistan, bUniversity of Sargodha, Department of Physics, Sargodha, Pakistan, and cUniversität Rostock, Institut für Chemie, Abteilung für Organische Chemie, Albert-Einstein-Strasse 3a, 18059 Rostock Department of Chemistry, Germany
*Correspondence e-mail: dmntahir_uos@yahoo.com

(Received 31 May 2012; accepted 2 June 2012; online 13 June 2012)

In the title compound, C11H7F2N, the fluoro­benzene and the 2-fluoro­pyridine rings are oriented at a dihedral angle of 37.93 (5)°. In the crystal, only van der Waals inter­actions occur.

Related literature

For a related structure, see: Siddle et al. (2010[Siddle, J. S., Batsanov, A. S., Caldwell, S. T., Cooke, G. & Bryce, M. R. (2010). Tetrahedron, 66, 6138-6149.]).

[Scheme 1]

Experimental

Crystal data
  • C11H7F2N

  • Mr = 191.18

  • Orthorhombic, P c a 21

  • a = 20.365 (2) Å

  • b = 3.8303 (3) Å

  • c = 11.4835 (14) Å

  • V = 895.74 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 296 K

  • 0.26 × 0.20 × 0.18 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.932, Tmax = 0.950

  • 3601 measured reflections

  • 1489 independent reflections

  • 1162 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.072

  • S = 1.03

  • 1489 reflections

  • 128 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.11 e Å−3

  • Δρmin = −0.09 e Å−3

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

The title compound (I), (Fig. 1) is prepared as a precursor and for the study of biological activities.

The crystal structure of 6-fluoro-3-(4-methoxyphenyl)pyridin-2-ol (Siddle et al., 2010) has been published which is related to (I).

In (I) the fluorophenyl A (C1–C6/F1) and the 2-fluoropyridine B (C7—C11/N1/F2) are almost planar with r. m. s. deviations of 0.0025 Å and 0.0071 Å, rspectively. The dihedral angle between A/B is 37.93 (5)°. There does not exist any kind of π-interactions and the molecules must interact due to van Der Waals forces.

Related literature top

For a related structure, see: Siddle et al. (2010).

Experimental top

To a 6 ml solution of 5-bromo-2-fluoropyridine (0.2 g, 1.136 mmol), 4-fluorophenylboronic acid (0.190 g, 1.36 mmol) in Dioxane and K3PO4 (0.361 g, 1.5 mmol, in 1 ml H2O) was added Pd(PPh3)4 (1.5 mole %) at 373 K under N2 atmosphere. The reaction mixture was refluxed for 8 h. Then 20 ml of distilled water was added. The aqueous layer was extracted three times with EtOAc (3×15 ml). The organic layer was evaporated in vacuo and title compound was obtained as a colourless solid. Yield: 0.185 g, 85%. M.p. 350–352 K. Crystallization from a saturated CHCl3 /CH3OH solution gave colorless rods of (I).

Refinement top

The H-atoms were positioned geometrically (C–H = 0.93 Å) and refined as riding with Uiso(H) = xUeq(C), where x = 1.2 for all H-atoms. The absolute structure of the crystal used in this experiment was indeterminate.

Structure description top

The title compound (I), (Fig. 1) is prepared as a precursor and for the study of biological activities.

The crystal structure of 6-fluoro-3-(4-methoxyphenyl)pyridin-2-ol (Siddle et al., 2010) has been published which is related to (I).

In (I) the fluorophenyl A (C1–C6/F1) and the 2-fluoropyridine B (C7—C11/N1/F2) are almost planar with r. m. s. deviations of 0.0025 Å and 0.0071 Å, rspectively. The dihedral angle between A/B is 37.93 (5)°. There does not exist any kind of π-interactions and the molecules must interact due to van Der Waals forces.

For a related structure, see: Siddle et al. (2010).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the title compound with displacement ellipsoids are drawn at the 50% probability level.
2-Fluoro-5-(4-fluorophenyl)pyridine top
Crystal data top
C11H7F2NF(000) = 392
Mr = 191.18Dx = 1.418 Mg m3
Orthorhombic, Pca21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2acCell parameters from 1162 reflections
a = 20.365 (2) Åθ = 2.0–25.3°
b = 3.8303 (3) ŵ = 0.11 mm1
c = 11.4835 (14) ÅT = 296 K
V = 895.74 (16) Å3Rod, colorless
Z = 40.26 × 0.20 × 0.18 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
1489 independent reflections
Radiation source: fine-focus sealed tube1162 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
Detector resolution: 8.10 pixels mm-1θmax = 25.5°, θmin = 2.0°
ω scansh = 2124
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 24
Tmin = 0.932, Tmax = 0.950l = 1313
3601 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.072H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0344P)2]
where P = (Fo2 + 2Fc2)/3
1489 reflections(Δ/σ)max < 0.001
128 parametersΔρmax = 0.11 e Å3
1 restraintΔρmin = 0.09 e Å3
Crystal data top
C11H7F2NV = 895.74 (16) Å3
Mr = 191.18Z = 4
Orthorhombic, Pca21Mo Kα radiation
a = 20.365 (2) ŵ = 0.11 mm1
b = 3.8303 (3) ÅT = 296 K
c = 11.4835 (14) Å0.26 × 0.20 × 0.18 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
1489 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
1162 reflections with I > 2σ(I)
Tmin = 0.932, Tmax = 0.950Rint = 0.020
3601 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0301 restraint
wR(F2) = 0.072H-atom parameters constrained
S = 1.03Δρmax = 0.11 e Å3
1489 reflectionsΔρmin = 0.09 e Å3
128 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.16885 (7)0.0787 (5)0.32200 (16)0.1219 (8)
F20.60621 (6)0.4445 (4)0.58901 (13)0.0984 (6)
N10.50519 (9)0.2455 (5)0.62465 (14)0.0695 (7)
C10.35628 (9)0.1391 (5)0.43374 (16)0.0497 (7)
C20.30232 (10)0.2088 (6)0.50519 (18)0.0635 (9)
C30.23904 (11)0.1346 (7)0.4674 (2)0.0767 (10)
C40.23116 (11)0.0048 (7)0.3597 (2)0.0785 (11)
C50.28211 (11)0.0803 (6)0.28686 (19)0.0713 (9)
C60.34494 (10)0.0045 (5)0.32527 (18)0.0586 (8)
C70.42374 (9)0.2219 (5)0.47208 (15)0.0468 (7)
C80.47047 (9)0.3501 (6)0.39465 (17)0.0560 (8)
C90.53273 (10)0.4268 (5)0.43285 (19)0.0609 (8)
C100.54517 (11)0.3685 (6)0.54736 (19)0.0636 (9)
C110.44444 (10)0.1735 (5)0.58562 (18)0.0603 (8)
H20.308810.305450.578580.0761*
H30.202970.179430.514710.0918*
H50.274900.179110.214000.0855*
H60.380440.051440.276780.0703*
H80.459500.383840.316840.0672*
H90.564700.514060.382890.0731*
H110.414230.084970.638680.0723*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0663 (9)0.1613 (16)0.1380 (14)0.0246 (9)0.0268 (10)0.0455 (14)
F20.0764 (9)0.1291 (14)0.0898 (10)0.0286 (8)0.0211 (9)0.0164 (9)
N10.0759 (13)0.0821 (15)0.0506 (10)0.0147 (10)0.0079 (10)0.0035 (9)
C10.0565 (12)0.0413 (12)0.0512 (11)0.0046 (9)0.0032 (9)0.0085 (9)
C20.0662 (15)0.0613 (17)0.0629 (13)0.0067 (11)0.0106 (11)0.0089 (10)
C30.0576 (15)0.086 (2)0.0864 (18)0.0097 (12)0.0101 (13)0.0230 (16)
C40.0586 (16)0.082 (2)0.095 (2)0.0085 (11)0.0191 (14)0.0332 (15)
C50.0751 (16)0.0737 (18)0.0650 (14)0.0054 (12)0.0149 (12)0.0147 (12)
C60.0617 (13)0.0589 (15)0.0551 (12)0.0015 (10)0.0007 (10)0.0079 (10)
C70.0552 (12)0.0393 (12)0.0459 (10)0.0062 (8)0.0027 (9)0.0011 (8)
C80.0600 (14)0.0609 (14)0.0471 (11)0.0077 (10)0.0020 (10)0.0078 (9)
C90.0595 (14)0.0634 (16)0.0599 (14)0.0003 (10)0.0094 (10)0.0089 (10)
C100.0596 (15)0.0635 (16)0.0678 (14)0.0058 (10)0.0088 (11)0.0024 (12)
C110.0667 (14)0.0627 (15)0.0514 (12)0.0080 (10)0.0065 (10)0.0050 (10)
Geometric parameters (Å, º) top
F1—C41.370 (3)C7—C81.392 (3)
F2—C101.363 (3)C7—C111.383 (3)
N1—C101.293 (3)C8—C91.374 (3)
N1—C111.344 (3)C9—C101.358 (3)
C1—C21.397 (3)C2—H20.9300
C1—C61.381 (3)C3—H30.9300
C1—C71.477 (3)C5—H50.9300
C2—C31.389 (3)C6—H60.9300
C3—C41.357 (3)C8—H80.9300
C4—C51.364 (3)C9—H90.9300
C5—C61.384 (3)C11—H110.9300
C10—N1—C11115.17 (18)F2—C10—C9118.35 (19)
C2—C1—C6118.31 (18)N1—C10—C9127.4 (2)
C2—C1—C7121.03 (17)N1—C11—C7124.57 (18)
C6—C1—C7120.66 (17)C1—C2—H2120.00
C1—C2—C3120.47 (19)C3—C2—H2120.00
C2—C3—C4118.4 (2)C2—C3—H3121.00
F1—C4—C3118.6 (2)C4—C3—H3121.00
F1—C4—C5117.8 (2)C4—C5—H5121.00
C3—C4—C5123.6 (2)C6—C5—H5121.00
C4—C5—C6117.6 (2)C1—C6—H6119.00
C1—C6—C5121.70 (19)C5—C6—H6119.00
C1—C7—C8121.42 (16)C7—C8—H8120.00
C1—C7—C11122.40 (17)C9—C8—H8120.00
C8—C7—C11116.18 (17)C8—C9—H9122.00
C7—C8—C9120.17 (18)C10—C9—H9122.00
C8—C9—C10116.52 (19)N1—C11—H11118.00
F2—C10—N1114.27 (19)C7—C11—H11118.00
C11—N1—C10—F2179.11 (18)C2—C3—C4—F1180.0 (2)
C11—N1—C10—C91.0 (3)C2—C3—C4—C50.8 (4)
C10—N1—C11—C70.1 (3)F1—C4—C5—C6179.9 (2)
C6—C1—C2—C30.0 (3)C3—C4—C5—C61.0 (4)
C7—C1—C2—C3179.0 (2)C4—C5—C6—C10.7 (3)
C2—C1—C6—C50.2 (3)C1—C7—C8—C9179.62 (19)
C7—C1—C6—C5179.19 (19)C11—C7—C8—C91.1 (3)
C2—C1—C7—C8142.1 (2)C1—C7—C11—N1179.87 (18)
C2—C1—C7—C1138.7 (3)C8—C7—C11—N10.9 (3)
C6—C1—C7—C836.9 (3)C7—C8—C9—C100.4 (3)
C6—C1—C7—C11142.3 (2)C8—C9—C10—F2179.37 (19)
C1—C2—C3—C40.3 (4)C8—C9—C10—N10.7 (3)

Experimental details

Crystal data
Chemical formulaC11H7F2N
Mr191.18
Crystal system, space groupOrthorhombic, Pca21
Temperature (K)296
a, b, c (Å)20.365 (2), 3.8303 (3), 11.4835 (14)
V3)895.74 (16)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.26 × 0.20 × 0.18
Data collection
DiffractometerBruker Kappa APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.932, 0.950
No. of measured, independent and
observed [I > 2σ(I)] reflections
3601, 1489, 1162
Rint0.020
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.072, 1.03
No. of reflections1489
No. of parameters128
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.11, 0.09

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

 

Acknowledgements

The authors acknowledge the provision of funds for the purchase of a diffractometer and encouragement by Dr Muhammad Akram Chaudhary, Vice Chancellor, University of Sargodha, Pakistan. MA also acknowledges financial support from the World University Service, Germany, for an equipment grant and the Higher Education Commission, Pakistan, for a resource grant.

References

First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiddle, J. S., Batsanov, A. S., Caldwell, S. T., Cooke, G. & Bryce, M. R. (2010). Tetrahedron, 66, 6138–6149.  Web of Science CSD CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds