metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[[di­aqua­[3-(pyridin-4-yl)benzoato-κ2O,O′]gadolinium(III)]-bis­­[μ-3-(pyridin-4-yl)benzoato-κ2O:O′]] monohydrate]

aDepartment of Environmental and Municipal Engineering, North China University of Water Conservancy and Electric Power, Zhengzhou 450011, People's Republic of China
*Correspondence e-mail: lidongying@ncwu.edu.cn

(Received 3 June 2012; accepted 9 June 2012; online 16 June 2012)

In the title coordination polymer, {[Gd(C12H8NO2)3(H2O)2]·H2O}n, the GdIII ion is ligated by one bidentate carboxyl­ate group, four monodentate bridging carboxyl­ate O atoms and two water mol­ecules. The resulting GdO8 polyhedron approximates to a square anti­prism. The bridging ligands link the metal ions into a [100] chain, with each pair of adjacent metal ions being bridged by two ligands. Inter-chain O—H⋯O and O—H⋯N hydrogen bonds help to establish the packing.

Related literature

For metal-organic frameworks containing aromatic carb­oxy­lic ligands, see: Li et al. (2010)[Li, X., Wu, B., Wang, R., Zhang, H., Niu, C., Niu, Y. & Hou, H. (2010). Inorg. Chem. 49, 2600-2613.]. For lanthanide metal-organic frameworks based on aromatic carb­oxy­lic ligands, see: Zhang et al. (2010[Zhang, L. J., Xu, D. H., Zhou, Y. S. & Jiang, F. (2010). New J. Chem. 34, 2470-2478.]). For transition metal coordination complexes of 3-pyridin-4-yl­benzo­ate, see: Wu et al. (2011[Wu, B. L., Wang, R. Y., Zhang, H. Y. & Hou, H. W. (2011). Inorg. Chim. Acta, 375, 2-10.]).

[Scheme 1]

Experimental

Crystal data
  • [Gd(C12H8NO2)3(H2O)2]·H2O

  • Mr = 805.88

  • Triclinic, [P \overline 1]

  • a = 9.7252 (5) Å

  • b = 13.9535 (6) Å

  • c = 14.0829 (8) Å

  • α = 118.019 (5)°

  • β = 104.240 (5)°

  • γ = 90.089 (4)°

  • V = 1619.84 (14) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.11 mm−1

  • T = 293 K

  • 0.35 × 0.21 × 0.18 mm

Data collection
  • Siemens SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.970, Tmax = 1.000

  • 12338 measured reflections

  • 5702 independent reflections

  • 4844 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.025

  • wR(F2) = 0.061

  • S = 1.05

  • 5702 reflections

  • 460 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.85 e Å−3

  • Δρmin = −0.66 e Å−3

Table 1
Selected bond lengths (Å)

Gd1—O5i 2.290 (2)
Gd1—O4ii 2.295 (2)
Gd1—O3 2.395 (2)
Gd1—O6 2.405 (2)
Gd1—O8 2.443 (2)
Gd1—O7 2.447 (2)
Gd1—O2 2.468 (2)
Gd1—O1 2.532 (2)
Symmetry codes: (i) -x, -y, -z; (ii) -x+1, -y, -z.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O7—H7A⋯O1i 0.71 (3) 2.12 (3) 2.826 (3) 173 (4)
O7—H7B⋯N1iii 0.89 (4) 1.89 (4) 2.772 (4) 173 (3)
O8—H8B⋯O2ii 0.75 (3) 2.05 (3) 2.793 (3) 173 (4)
O8—H8A⋯N3iv 0.84 (4) 1.95 (4) 2.789 (4) 175 (3)
Symmetry codes: (i) -x, -y, -z; (ii) -x+1, -y, -z; (iii) x, y-1, z-1; (iv) x, y-1, z.

Data collection: SMART (Siemens, 1996[Siemens (1996). SAINT and SMART. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SAINT and SMART. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Aromatic carboxylic ligands have been widely used to construct metal-organic frameworks (MOFs) with novel structures and unique properties (Li et al., 2010). Especially, lanthanide MOFs of aromatic carboxylic ligands have largely drawn current attention (Zhang, et al., 2010) owing to their potential applications in medical imaging, sensors and electro-optical devices. 3-Pyridin-4-ylbenzoic acid (HL) which possess a pyridyl group and a benzoic acid group is a typical unsymmetrical spacer, and up to now only a serial of its transition metal coordination complexes was synthesized and characterized (Wu, et al., 2011). Herein we report the synthesis and structure of a gadolinium(III) complex of deprotonated 3-pyridin-4-ylbenzoic acid (HL), namely, [Gd(L)3(H2O)2]n (1).n(H2O).

In (1), the Gd atom is in an eight-coordinate environment of O8 ligated by six carboxylato O atoms from five ligands L and two O atoms from water molecules (Fig. 1). The Gd—O bonds fall in the normal range from 2.290 (2) to 2.532 (2) Å. In (1), deprotonated ligands L act as bidentate ligands, and display two coordinating modes, namely, chelating and bridging coordination models of carboxyl groups without the nitrogen atoms of the pyridyl groups taking part in the coordination. Complex (1) is a two-stranded polymeric chain builted from two L simultaneously bridging adjacent two Gd side by side and two L chelating them up and down with the separations of the adjacent metal Gd ions bridged by the carboxylato O3 and O4 of one L, and by the carboxylato O5 and O6 of the other L being 4.833 and 4.895 Å, respectively (Fig. 2). Apart from intrachain O—H···O hydrogen bonds, the chains of complex (1) are connected by interchain O—H···N hydrogen bonds between the coordinated water molecules (as donors) and the uncoordinated pyridyl groups of L (as acceptors), leading to the formation of a three-dimensional network structure with uncoordinated water molecules residing in the accessible void.

Related literature top

For metal-organic frameworks containing aromatic carboxylic ligands, see: Li et al. (2010). For lanthanide metal-organic frameworks based on aromatic carboxylic ligands, see: Zhang et al. (2010). For transition metal coordination complexes of 3-pyridin-4-ylbenzoicate, see: Wu et al. (2011).

Experimental top

A mixture of Gd(NO3)3 (0.045 g, 0.1 mmol), HL (0.060 g, 0.3 mmol), NaOH (0.012 0.3 mmol) and deionized water (10 ml) was sealed into a 25 ml Teflon-lined stainless autoclave. The autoclave was heated at 180 °C for four days. As cooled to room temperature gradually, colourless block crystals of (I) were obtained in 37% yield (based on Gd). Selected IR (cm-1, KBr pellet): 3440(s), 1611(m), 1545(m), 1436(s), 1396(s), 1384(s), 1282(w), 1173(s), 1131(s), 766(m), 719(m), 655(m).

Refinement top

The H atoms of water were located from difference Fourier maps and included in the final refinement by using geometrical restrains, while the other hydrogen atom positions were generated geometrically and these H atoms were allowed to ride on their parent atoms.

Structure description top

Aromatic carboxylic ligands have been widely used to construct metal-organic frameworks (MOFs) with novel structures and unique properties (Li et al., 2010). Especially, lanthanide MOFs of aromatic carboxylic ligands have largely drawn current attention (Zhang, et al., 2010) owing to their potential applications in medical imaging, sensors and electro-optical devices. 3-Pyridin-4-ylbenzoic acid (HL) which possess a pyridyl group and a benzoic acid group is a typical unsymmetrical spacer, and up to now only a serial of its transition metal coordination complexes was synthesized and characterized (Wu, et al., 2011). Herein we report the synthesis and structure of a gadolinium(III) complex of deprotonated 3-pyridin-4-ylbenzoic acid (HL), namely, [Gd(L)3(H2O)2]n (1).n(H2O).

In (1), the Gd atom is in an eight-coordinate environment of O8 ligated by six carboxylato O atoms from five ligands L and two O atoms from water molecules (Fig. 1). The Gd—O bonds fall in the normal range from 2.290 (2) to 2.532 (2) Å. In (1), deprotonated ligands L act as bidentate ligands, and display two coordinating modes, namely, chelating and bridging coordination models of carboxyl groups without the nitrogen atoms of the pyridyl groups taking part in the coordination. Complex (1) is a two-stranded polymeric chain builted from two L simultaneously bridging adjacent two Gd side by side and two L chelating them up and down with the separations of the adjacent metal Gd ions bridged by the carboxylato O3 and O4 of one L, and by the carboxylato O5 and O6 of the other L being 4.833 and 4.895 Å, respectively (Fig. 2). Apart from intrachain O—H···O hydrogen bonds, the chains of complex (1) are connected by interchain O—H···N hydrogen bonds between the coordinated water molecules (as donors) and the uncoordinated pyridyl groups of L (as acceptors), leading to the formation of a three-dimensional network structure with uncoordinated water molecules residing in the accessible void.

For metal-organic frameworks containing aromatic carboxylic ligands, see: Li et al. (2010). For lanthanide metal-organic frameworks based on aromatic carboxylic ligands, see: Zhang et al. (2010). For transition metal coordination complexes of 3-pyridin-4-ylbenzoicate, see: Wu et al. (2011).

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Coordination environment of the Gd atom in (1). Displacement ellipsoids are drawn at the 30% probability level. Symmetry code: (i) -x, -y, -z; (ii) -x + 1, -y, -z.
[Figure 2] Fig. 2. View of infinite two-stranded chain bridged by L in (1). Symmetry code: (i) -x, -y, -z; (ii) -x + 1, -y, -z.
catena-Poly[[[diaqua[3-(pyridin-4-yl)benzoato- κ2O,O']gadolinium(III)]-bis[µ-3-(pyridin-4-yl)benzoato- κ2O:O']] monohydrate] top
Crystal data top
[Gd(C12H8NO2)3(H2O)2]·H2OZ = 2
Mr = 805.88F(000) = 806
Triclinic, P1Dx = 1.652 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.7252 (5) ÅCell parameters from 8413 reflections
b = 13.9535 (6) Åθ = 2.9–26.3°
c = 14.0829 (8) ŵ = 2.11 mm1
α = 118.019 (5)°T = 293 K
β = 104.240 (5)°Block, colourless
γ = 90.089 (4)°0.35 × 0.21 × 0.18 mm
V = 1619.84 (14) Å3
Data collection top
Siemens SMART CCD
diffractometer
5702 independent reflections
Radiation source: fine-focus sealed tube4844 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
ω scanθmax = 25.0°, θmin = 2.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1111
Tmin = 0.970, Tmax = 1.000k = 1616
12338 measured reflectionsl = 1615
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.061H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0298P)2 + 0.5641P]
where P = (Fo2 + 2Fc2)/3
5702 reflections(Δ/σ)max = 0.001
460 parametersΔρmax = 0.85 e Å3
2 restraintsΔρmin = 0.66 e Å3
Crystal data top
[Gd(C12H8NO2)3(H2O)2]·H2Oγ = 90.089 (4)°
Mr = 805.88V = 1619.84 (14) Å3
Triclinic, P1Z = 2
a = 9.7252 (5) ÅMo Kα radiation
b = 13.9535 (6) ŵ = 2.11 mm1
c = 14.0829 (8) ÅT = 293 K
α = 118.019 (5)°0.35 × 0.21 × 0.18 mm
β = 104.240 (5)°
Data collection top
Siemens SMART CCD
diffractometer
5702 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4844 reflections with I > 2σ(I)
Tmin = 0.970, Tmax = 1.000Rint = 0.023
12338 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0252 restraints
wR(F2) = 0.061H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.85 e Å3
5702 reflectionsΔρmin = 0.66 e Å3
460 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Gd10.252518 (15)0.002199 (12)0.002647 (12)0.01875 (6)
O10.2075 (2)0.17870 (18)0.15035 (19)0.0298 (5)
O20.3835 (2)0.18197 (17)0.07980 (19)0.0290 (5)
O30.4213 (2)0.03112 (19)0.17419 (19)0.0307 (5)
O40.6183 (2)0.02697 (19)0.12145 (18)0.0284 (5)
O50.0958 (2)0.04584 (19)0.0786 (2)0.0310 (5)
O60.1155 (2)0.08726 (18)0.0915 (2)0.0295 (5)
O70.0774 (2)0.1512 (2)0.1568 (2)0.0312 (6)
O80.3516 (3)0.17299 (19)0.0343 (2)0.0333 (6)
O90.3749 (6)0.2281 (5)0.1164 (5)0.1291 (19)
N10.1269 (4)0.6874 (3)0.6483 (3)0.0487 (9)
N21.3290 (4)0.2014 (3)0.5396 (4)0.0674 (11)
N30.2287 (4)0.6204 (3)0.0892 (3)0.0560 (10)
C10.3436 (3)0.3525 (3)0.2204 (3)0.0268 (7)
C20.2774 (3)0.4068 (3)0.3048 (3)0.0285 (7)
H20.20380.36740.31140.034*
C30.3178 (4)0.5181 (3)0.3797 (3)0.0320 (8)
C40.4266 (4)0.5753 (3)0.3694 (3)0.0384 (9)
H40.45780.65070.42170.046*
C50.4884 (4)0.5218 (3)0.2832 (3)0.0441 (10)
H50.55970.56130.27460.053*
C60.4478 (4)0.4114 (3)0.2092 (3)0.0349 (8)
H60.49140.37550.15030.042*
C70.2509 (4)0.5773 (3)0.4722 (3)0.0343 (8)
C80.3328 (5)0.6354 (3)0.5820 (3)0.0514 (11)
H80.43410.63930.59980.062*
C90.2673 (5)0.6879 (4)0.6658 (4)0.0609 (13)
H90.32630.72680.74080.073*
C100.0485 (5)0.6331 (3)0.5419 (4)0.0509 (11)
H100.05220.63320.52670.061*
C110.1031 (4)0.5768 (3)0.4523 (3)0.0444 (10)
H110.04130.53840.37820.053*
C120.3088 (3)0.2315 (3)0.1464 (3)0.0246 (7)
C130.6422 (3)0.0531 (3)0.3047 (3)0.0264 (7)
C140.7906 (3)0.0751 (3)0.3354 (3)0.0276 (7)
H140.83630.07310.28230.033*
C150.8737 (3)0.0999 (3)0.4416 (3)0.0299 (8)
C160.8041 (4)0.0999 (4)0.5168 (3)0.0477 (11)
H160.85840.11690.59010.057*
C170.6570 (4)0.0754 (4)0.4861 (3)0.0563 (12)
H170.61130.07350.53770.068*
C180.5758 (4)0.0535 (3)0.3811 (3)0.0404 (9)
H180.47440.03870.36140.048*
C191.0316 (4)0.1321 (3)0.4756 (3)0.0341 (8)
C201.1051 (4)0.1240 (3)0.3992 (4)0.0446 (10)
H201.05520.09310.32200.053*
C211.2497 (4)0.1605 (4)0.4350 (4)0.0548 (11)
H211.29520.15590.38080.066*
C221.2615 (5)0.2065 (4)0.6113 (4)0.0720 (15)
H221.31620.23430.68710.086*
C231.1152 (4)0.1742 (4)0.5848 (4)0.0566 (12)
H231.07330.18120.64160.068*
C240.5544 (3)0.0352 (3)0.1922 (3)0.0236 (7)
C250.0766 (3)0.1751 (3)0.1399 (3)0.0234 (7)
C260.0122 (3)0.2600 (3)0.1274 (3)0.0268 (7)
H260.11280.26490.09930.032*
C270.0424 (4)0.3386 (3)0.1553 (3)0.0314 (8)
C280.1895 (4)0.3258 (3)0.2000 (4)0.0465 (10)
H280.22960.37740.22090.056*
C290.2787 (4)0.2405 (3)0.2148 (4)0.0463 (10)
H290.37890.23320.24660.056*
C300.2230 (4)0.1656 (3)0.1837 (3)0.0316 (8)
H300.28480.10770.19220.038*
C310.0522 (4)0.4346 (3)0.1337 (3)0.0349 (8)
C320.0024 (5)0.5242 (3)0.1383 (3)0.0491 (11)
H320.10300.52460.15650.059*
C330.0871 (6)0.6126 (3)0.1170 (4)0.0559 (12)
H330.04480.67180.12240.067*
C340.2818 (5)0.5352 (4)0.0836 (5)0.0685 (14)
H340.38300.53850.06280.082*
C350.2005 (5)0.4419 (3)0.1060 (4)0.0586 (13)
H350.24590.38300.10240.070*
C360.0144 (3)0.0968 (2)0.1011 (2)0.0203 (7)
H7A0.004 (4)0.156 (3)0.158 (3)0.030*
H8A0.318 (4)0.235 (3)0.047 (3)0.030*
H7B0.088 (3)0.207 (3)0.219 (3)0.030*
H8B0.422 (4)0.181 (3)0.048 (3)0.030*
H9B0.450 (3)0.198 (3)0.132 (3)0.030*
H9A0.359 (4)0.189 (3)0.087 (3)0.030*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Gd10.01859 (9)0.01705 (9)0.02183 (9)0.00224 (6)0.00914 (6)0.00871 (7)
O10.0271 (12)0.0209 (12)0.0364 (14)0.0000 (10)0.0167 (11)0.0063 (11)
O20.0239 (12)0.0224 (12)0.0353 (14)0.0021 (10)0.0154 (11)0.0065 (11)
O30.0215 (12)0.0426 (15)0.0293 (13)0.0027 (10)0.0080 (10)0.0181 (12)
O40.0270 (12)0.0393 (14)0.0239 (12)0.0062 (10)0.0126 (10)0.0164 (11)
O50.0294 (13)0.0361 (14)0.0416 (15)0.0049 (11)0.0149 (11)0.0274 (13)
O60.0198 (12)0.0311 (14)0.0434 (15)0.0055 (10)0.0073 (11)0.0234 (12)
O70.0210 (13)0.0284 (14)0.0306 (14)0.0001 (11)0.0099 (12)0.0023 (11)
O80.0273 (14)0.0206 (13)0.0557 (17)0.0068 (11)0.0211 (13)0.0170 (13)
O90.155 (5)0.143 (5)0.166 (5)0.077 (4)0.082 (4)0.117 (4)
N10.067 (3)0.035 (2)0.044 (2)0.0145 (18)0.029 (2)0.0121 (17)
N20.037 (2)0.074 (3)0.074 (3)0.008 (2)0.010 (2)0.025 (2)
N30.078 (3)0.032 (2)0.068 (3)0.0022 (19)0.033 (2)0.0253 (19)
C10.0235 (17)0.0210 (18)0.0311 (19)0.0030 (14)0.0040 (15)0.0107 (15)
C20.0273 (18)0.0241 (18)0.0302 (19)0.0036 (14)0.0093 (15)0.0096 (16)
C30.0324 (19)0.0254 (19)0.032 (2)0.0078 (15)0.0069 (16)0.0101 (16)
C40.046 (2)0.0195 (19)0.037 (2)0.0030 (16)0.0090 (18)0.0049 (17)
C50.047 (2)0.028 (2)0.055 (3)0.0019 (17)0.022 (2)0.014 (2)
C60.037 (2)0.0244 (19)0.042 (2)0.0016 (16)0.0195 (18)0.0117 (17)
C70.043 (2)0.0203 (18)0.033 (2)0.0084 (16)0.0128 (17)0.0071 (16)
C80.052 (3)0.050 (3)0.036 (2)0.022 (2)0.012 (2)0.008 (2)
C90.081 (4)0.050 (3)0.035 (2)0.022 (3)0.013 (2)0.009 (2)
C100.053 (3)0.036 (2)0.058 (3)0.009 (2)0.029 (2)0.012 (2)
C110.045 (2)0.034 (2)0.039 (2)0.0008 (18)0.0153 (19)0.0045 (18)
C120.0183 (16)0.0211 (17)0.0310 (19)0.0031 (13)0.0070 (14)0.0098 (15)
C130.0256 (18)0.0285 (19)0.0255 (18)0.0029 (14)0.0093 (15)0.0124 (15)
C140.0267 (18)0.0315 (19)0.0283 (19)0.0052 (15)0.0116 (15)0.0156 (16)
C150.0251 (18)0.033 (2)0.0283 (19)0.0023 (15)0.0048 (15)0.0136 (16)
C160.040 (2)0.077 (3)0.032 (2)0.002 (2)0.0036 (18)0.033 (2)
C170.039 (2)0.103 (4)0.037 (2)0.003 (2)0.0124 (19)0.041 (3)
C180.0252 (19)0.067 (3)0.032 (2)0.0013 (18)0.0079 (16)0.026 (2)
C190.0296 (19)0.033 (2)0.036 (2)0.0032 (16)0.0070 (17)0.0143 (17)
C200.027 (2)0.055 (3)0.050 (3)0.0052 (18)0.0067 (18)0.026 (2)
C210.034 (2)0.067 (3)0.066 (3)0.006 (2)0.016 (2)0.034 (3)
C220.040 (3)0.086 (4)0.051 (3)0.009 (3)0.011 (2)0.014 (3)
C230.037 (2)0.079 (3)0.037 (2)0.004 (2)0.0046 (19)0.017 (2)
C240.0217 (17)0.0223 (17)0.0269 (18)0.0034 (13)0.0084 (14)0.0112 (15)
C250.0238 (17)0.0247 (18)0.0242 (17)0.0043 (14)0.0076 (14)0.0134 (15)
C260.0243 (17)0.0266 (18)0.0304 (19)0.0049 (14)0.0065 (15)0.0151 (16)
C270.038 (2)0.0240 (19)0.036 (2)0.0067 (15)0.0121 (17)0.0170 (17)
C280.043 (2)0.045 (3)0.064 (3)0.0128 (19)0.008 (2)0.039 (2)
C290.025 (2)0.053 (3)0.069 (3)0.0071 (18)0.0040 (19)0.041 (2)
C300.0281 (19)0.032 (2)0.037 (2)0.0001 (15)0.0078 (16)0.0185 (17)
C310.050 (2)0.028 (2)0.035 (2)0.0037 (17)0.0189 (18)0.0182 (17)
C320.060 (3)0.037 (2)0.057 (3)0.003 (2)0.010 (2)0.031 (2)
C330.095 (4)0.031 (2)0.051 (3)0.007 (2)0.021 (3)0.027 (2)
C340.059 (3)0.048 (3)0.112 (4)0.001 (2)0.036 (3)0.044 (3)
C350.055 (3)0.041 (3)0.101 (4)0.010 (2)0.033 (3)0.046 (3)
C360.0264 (18)0.0155 (16)0.0164 (16)0.0001 (13)0.0068 (13)0.0054 (13)
Geometric parameters (Å, º) top
Gd1—O5i2.290 (2)C9—H90.9500
Gd1—O4ii2.295 (2)C10—C111.375 (5)
Gd1—O32.395 (2)C10—H100.9500
Gd1—O62.405 (2)C11—H110.9500
Gd1—O82.443 (2)C13—C181.382 (4)
Gd1—O72.447 (2)C13—C141.389 (4)
Gd1—O22.468 (2)C13—C241.505 (4)
Gd1—O12.532 (2)C14—C151.388 (4)
O1—C121.257 (4)C14—H140.9500
O2—C121.270 (4)C15—C161.390 (5)
O3—C241.252 (3)C15—C191.491 (5)
O4—C241.261 (3)C16—C171.381 (5)
O4—Gd1ii2.295 (2)C16—H160.9500
O5—C361.252 (3)C17—C181.379 (5)
O5—Gd1i2.290 (2)C17—H170.9500
O6—C361.251 (3)C18—H180.9500
O7—H7A0.71 (3)C19—C231.380 (5)
O7—H7B0.89 (4)C19—C201.395 (5)
O8—H8A0.84 (4)C20—C211.378 (5)
O8—H8B0.75 (3)C20—H200.9500
O9—H9B0.872 (10)C21—H210.9500
O9—H9A0.868 (10)C22—C231.394 (6)
N1—C91.325 (5)C22—H220.9500
N1—C101.331 (5)C23—H230.9500
N2—C221.310 (6)C25—C261.381 (4)
N2—C211.320 (6)C25—C301.384 (4)
N3—C331.325 (6)C25—C361.502 (4)
N3—C341.325 (5)C26—C271.394 (4)
C1—C61.387 (4)C26—H260.9500
C1—C21.390 (4)C27—C281.387 (5)
C1—C121.490 (4)C27—C311.486 (5)
C2—C31.391 (5)C28—C291.373 (5)
C2—H20.9500C28—H280.9500
C3—C41.398 (5)C29—C301.376 (5)
C3—C71.488 (5)C29—H290.9500
C4—C51.380 (5)C30—H300.9500
C4—H40.9500C31—C321.382 (5)
C5—C61.379 (5)C31—C351.389 (5)
C5—H50.9500C32—C331.374 (6)
C6—H60.9500C32—H320.9500
C7—C81.377 (5)C33—H330.9500
C7—C111.394 (5)C34—C351.381 (5)
C8—C91.376 (5)C34—H340.9500
C8—H80.9500C35—H350.9500
O5i—Gd1—O4ii158.30 (9)O1—C12—C1120.5 (3)
O5i—Gd1—O382.32 (8)O2—C12—C1119.3 (3)
O4ii—Gd1—O3106.79 (7)O1—C12—Gd161.50 (16)
O5i—Gd1—O6103.62 (7)O2—C12—Gd158.66 (16)
O4ii—Gd1—O681.10 (7)C1—C12—Gd1177.8 (2)
O3—Gd1—O6143.19 (8)C18—C13—C14119.1 (3)
O5i—Gd1—O889.77 (8)C18—C13—C24120.3 (3)
O4ii—Gd1—O874.67 (8)C14—C13—C24120.5 (3)
O3—Gd1—O873.33 (9)C15—C14—C13121.8 (3)
O6—Gd1—O8141.74 (9)C15—C14—H14119.1
O5i—Gd1—O774.87 (9)C13—C14—H14119.1
O4ii—Gd1—O785.95 (8)C14—C15—C16117.9 (3)
O3—Gd1—O7138.81 (8)C14—C15—C19120.8 (3)
O6—Gd1—O776.44 (8)C16—C15—C19121.2 (3)
O8—Gd1—O772.76 (9)C17—C16—C15120.7 (3)
O5i—Gd1—O2125.02 (8)C17—C16—H16119.6
O4ii—Gd1—O276.66 (8)C15—C16—H16119.6
O3—Gd1—O274.77 (8)C18—C17—C16120.5 (4)
O6—Gd1—O272.28 (8)C18—C17—H17119.7
O8—Gd1—O2127.98 (8)C16—C17—H17119.7
O7—Gd1—O2146.07 (9)C17—C18—C13119.9 (3)
O5i—Gd1—O174.17 (8)C17—C18—H18120.1
O4ii—Gd1—O1126.86 (7)C13—C18—H18120.1
O3—Gd1—O174.94 (8)C23—C19—C20115.1 (3)
O6—Gd1—O172.06 (8)C23—C19—C15122.8 (3)
O8—Gd1—O1146.02 (9)C20—C19—C15122.1 (3)
O7—Gd1—O1128.36 (7)C21—C20—C19120.4 (4)
O2—Gd1—O151.95 (7)C21—C20—H20119.8
C12—O1—Gd192.62 (18)C19—C20—H20119.8
C12—O2—Gd195.27 (18)N2—C21—C20124.2 (4)
C24—O3—Gd1126.2 (2)N2—C21—H21117.9
C24—O4—Gd1ii174.8 (2)C20—C21—H21117.9
C36—O5—Gd1i163.6 (2)N2—C22—C23124.8 (4)
C36—O6—Gd1125.31 (18)N2—C22—H22117.6
Gd1—O7—H7A121 (3)C23—C22—H22117.6
Gd1—O7—H7B131 (2)C19—C23—C22119.7 (4)
H7A—O7—H7B108 (4)C19—C23—H23120.2
Gd1—O8—H8A134 (2)C22—C23—H23120.2
Gd1—O8—H8B120 (3)O3—C24—O4123.2 (3)
H8A—O8—H8B105 (3)O3—C24—C13118.2 (3)
H9B—O9—H9A93 (3)O4—C24—C13118.5 (3)
C9—N1—C10115.9 (4)C26—C25—C30119.6 (3)
C22—N2—C21115.7 (4)C26—C25—C36119.8 (3)
C33—N3—C34115.4 (4)C30—C25—C36120.5 (3)
C6—C1—C2119.2 (3)C25—C26—C27121.5 (3)
C6—C1—C12120.2 (3)C25—C26—H26119.3
C2—C1—C12120.6 (3)C27—C26—H26119.3
C1—C2—C3120.7 (3)C28—C27—C26117.2 (3)
C1—C2—H2119.6C28—C27—C31121.4 (3)
C3—C2—H2119.6C26—C27—C31121.4 (3)
C2—C3—C4119.2 (3)C29—C28—C27121.9 (3)
C2—C3—C7121.6 (3)C29—C28—H28119.1
C4—C3—C7119.2 (3)C27—C28—H28119.1
C5—C4—C3119.8 (3)C28—C29—C30120.0 (3)
C5—C4—H4120.1C28—C29—H29120.0
C3—C4—H4120.1C30—C29—H29120.0
C6—C5—C4120.7 (3)C29—C30—C25119.8 (3)
C6—C5—H5119.7C29—C30—H30120.1
C4—C5—H5119.7C25—C30—H30120.1
C5—C6—C1120.4 (3)C32—C31—C35115.2 (3)
C5—C6—H6119.8C32—C31—C27121.8 (3)
C1—C6—H6119.8C35—C31—C27123.0 (3)
C8—C7—C11116.9 (3)C33—C32—C31120.9 (4)
C8—C7—C3121.2 (3)C33—C32—H32119.5
C11—C7—C3121.8 (3)C31—C32—H32119.5
C9—C8—C7119.7 (4)N3—C33—C32124.0 (4)
C9—C8—H8120.1N3—C33—H33118.0
C7—C8—H8120.1C32—C33—H33118.0
N1—C9—C8124.1 (4)N3—C34—C35124.7 (4)
N1—C9—H9118.0N3—C34—H34117.7
C8—C9—H9118.0C35—C34—H34117.7
N1—C10—C11124.5 (4)C34—C35—C31119.7 (4)
N1—C10—H10117.7C34—C35—H35120.1
C11—C10—H10117.7C31—C35—H35120.1
C10—C11—C7118.8 (4)O6—C36—O5123.6 (3)
C10—C11—H11120.6O6—C36—C25118.6 (3)
C7—C11—H11120.6O5—C36—C25117.8 (3)
O1—C12—O2120.2 (3)
Symmetry codes: (i) x, y, z; (ii) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H7A···O1i0.71 (3)2.12 (3)2.826 (3)173 (4)
O7—H7B···N1iii0.89 (4)1.89 (4)2.772 (4)173 (3)
O8—H8B···O2ii0.75 (3)2.05 (3)2.793 (3)173 (4)
O8—H8A···N3iv0.84 (4)1.95 (4)2.789 (4)175 (3)
Symmetry codes: (i) x, y, z; (ii) x+1, y, z; (iii) x, y1, z1; (iv) x, y1, z.

Experimental details

Crystal data
Chemical formula[Gd(C12H8NO2)3(H2O)2]·H2O
Mr805.88
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)9.7252 (5), 13.9535 (6), 14.0829 (8)
α, β, γ (°)118.019 (5), 104.240 (5), 90.089 (4)
V3)1619.84 (14)
Z2
Radiation typeMo Kα
µ (mm1)2.11
Crystal size (mm)0.35 × 0.21 × 0.18
Data collection
DiffractometerSiemens SMART CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.970, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
12338, 5702, 4844
Rint0.023
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.061, 1.05
No. of reflections5702
No. of parameters460
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.85, 0.66

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Gd1—O5i2.290 (2)Gd1—O82.443 (2)
Gd1—O4ii2.295 (2)Gd1—O72.447 (2)
Gd1—O32.395 (2)Gd1—O22.468 (2)
Gd1—O62.405 (2)Gd1—O12.532 (2)
Symmetry codes: (i) x, y, z; (ii) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H7A···O1i0.71 (3)2.12 (3)2.826 (3)173 (4)
O7—H7B···N1iii0.89 (4)1.89 (4)2.772 (4)173 (3)
O8—H8B···O2ii0.75 (3)2.05 (3)2.793 (3)173 (4)
O8—H8A···N3iv0.84 (4)1.95 (4)2.789 (4)175 (3)
Symmetry codes: (i) x, y, z; (ii) x+1, y, z; (iii) x, y1, z1; (iv) x, y1, z.
 

Acknowledgements

This work was supported by the Natural Science Foundation of China.

References

First citationLi, X., Wu, B., Wang, R., Zhang, H., Niu, C., Niu, Y. & Hou, H. (2010). Inorg. Chem. 49, 2600–2613.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). SAINT and SMART. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationWu, B. L., Wang, R. Y., Zhang, H. Y. & Hou, H. W. (2011). Inorg. Chim. Acta, 375, 2–10.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhang, L. J., Xu, D. H., Zhou, Y. S. & Jiang, F. (2010). New J. Chem. 34, 2470–2478.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds