organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(4Z)-4-[(2E)-1-Hy­dr­oxy-3-(3-nitro­phen­yl)prop-2-en-1-yl­­idene]-3-methyl-1-(4-methyl­phen­yl)-1H-pyrazol-5(4H)-one

aInstitute of Chemistry, University of the Punjab, Lahore, Pakistan, bUniversity of Sargodha, Department of Physics, Sargodha, Pakistan, cDepartment of Chemistry, Islamia University, Bahawalpur, Pakistan, and dApplied Chemistry Research Center, PCSIR Laboratories Complex, Lahore 54600, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com

(Received 3 June 2012; accepted 3 June 2012; online 13 June 2012)

In the title compound, C20H17N3O4, the dihedral angles between the heterocyclic ring and the toluene and nitro­benzene rings are 4.21 (15) and 11.43 (14)°, respectively. The whole mol­ecule is close to planar (r.m.s. deviation for the 27 non-H atoms = 0.171 Å). Two S(6) rings are formed due to intra­molecular C—H⋯O and O—H⋯O hydrogen bonds. In the crystal, inversion dimers linked by pairs of C—H⋯O bonds generate R22(10) loops and further C—H⋯O bonds link the dimers along the b-axis direction. There exist ππ inter­actions between the heterocyclic rings at a centroid–centroid distance of 3.7126 (10) Å and between the centroids of the benzene rings at a distance of 3.8710 (16) Å.

Related literature

For background and a related structure, see: Mukhtar et al. (2010[Mukhtar, A., Tahir, M. N., Khan, M. A. & Khan, M. N. (2010). Acta Cryst. E66, o2652.]). For other related structures, see: Udaya Lakshmi et al. (2005[Udaya Lakshmi, K., Thamotharan, S., Srinivasan, M., Ramamurthi, K. & Varghese, B. (2005). Acta Cryst. E61, o3636-o3638.]); Jadeja & Shah (2007[Jadeja, R. N. & Shah, J. R. (2007). Polyhedron, 26, 1677-1685.]).

[Scheme 1]

Experimental

Crystal data
  • C20H17N3O4

  • Mr = 363.37

  • Monoclinic, C 2/c

  • a = 19.8712 (16) Å

  • b = 12.1917 (10) Å

  • c = 16.733 (2) Å

  • β = 121.188 (4)°

  • V = 3467.9 (6) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 296 K

  • 0.35 × 0.18 × 0.17 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.972, Tmax = 0.983

  • 12231 measured reflections

  • 3328 independent reflections

  • 1823 reflections with I > 2σ(I)

  • Rint = 0.039

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.143

  • S = 1.02

  • 3328 reflections

  • 247 parameters

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2A⋯O1 0.82 1.82 2.571 (3) 152
C6—H6⋯O1 0.93 2.33 2.958 (3) 125
C18—H18⋯O4i 0.93 2.57 3.496 (3) 171
C20—H20⋯O3ii 0.93 2.43 3.172 (3) 136
Symmetry codes: (i) -x+1, -y, -z+2; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

We have reported the synthesis and crystal structure of (II) i.e., Ethyl 2-benzamido-4,5,6,7-tetrahydro-1-benzothiophene-3-carboxylate (Mukhtar et al., 2010). The title compound (I, Fig. 1) is being reported here in continuation to synthesize various thiophene derivatives.

The crystal structure of 3-nitrocinnamic acid (Udaya Lakshmi et al., 2005) and 5-methyl-4-(phenyl(phenylamino)methylene)-2-p-tolyl-2,4-dihydropyrazol-3-one (Jadeja & Shah, 2007) have been published which contain the fragments of the title compound.

In (I), the toluene group A (C1—C7) and the part of 5-methyl-2,4-dihydro- 3H-pyrazol-3-one B (C8—C11/N1/N2/O1) are planar with r.m.s. deviation of 0.0052 and 0.0171 Å, respectively. The dihedral angle between A/B is 4.42 (10)°. The part of 3-nitrocinnamic acid C (C12—C20/N3/O2/O3/O4) has r. m. s. deviation of 0.1229 Å from the plane in which O3 atom deviate to 0.2632 (17) Å. The dihedral angle between A/C abd B/C is 7.93 (6) and 12.26 (7)°, respectively. In the title compound two S(6) ring motifs are formed due to intramolecular H-bondings of C—H···O and O—H···O types (Table 1, Fig. 1). The molecules are dimerized from nitrobenzene due to C—H···O type of H-bondings and form R22(10) ring motifs (Table 1, Fig. 2). The dimers are again interlinked from nitrobenzene due to C—H···O type of H-bondings. There exist π···π interaction between Cg1···Cg1i [i = - x, y, 1/2 - z] at a distance of 3.7126 (10) Å, where Cg1 is the centroid of heterocyclic five membered ring (N1/N2/C8/C10/C11). Similarly, there also exist π···π interaction between Cg2···Cg3ii [ii = - x, - y, 1 - z] and Cg3···Cg2ii at a distance of 3.8710 (16) Å, where Cg2 and Cg3 are the centroids of benzene rings (C1—C6) and (C15—C20).

Related literature top

For background and a related structure, see: Mukhtar et al. (2010). For other related structures, see: Udaya Lakshmi et al. (2005); Jadeja & Shah (2007).

Experimental top

1-(5-Hydroxy-3-methyl-1-p-tolyl-1H-pyrazol-4-yl)ethanone (1 g, 4.34 mmol), m-nitrobenzaldehyde (0.65 g; 4.34 mmol), with one drop of piperidine in ethanol (30 ml) was heated on boiling water bath for half an hour and crude product was obtained on cooling. The product was recrystallized by ethanol to get orange needles of the title compound.

Refinement top

The H-atoms were positioned geometrically (O—H = 0.82, C–H = 0.93–0.96 Å) and refined as riding with Uiso(H) = xUeq(C, O), where x = 1.5 for methyl and x = 1.2 for all other H-atoms.

Structure description top

We have reported the synthesis and crystal structure of (II) i.e., Ethyl 2-benzamido-4,5,6,7-tetrahydro-1-benzothiophene-3-carboxylate (Mukhtar et al., 2010). The title compound (I, Fig. 1) is being reported here in continuation to synthesize various thiophene derivatives.

The crystal structure of 3-nitrocinnamic acid (Udaya Lakshmi et al., 2005) and 5-methyl-4-(phenyl(phenylamino)methylene)-2-p-tolyl-2,4-dihydropyrazol-3-one (Jadeja & Shah, 2007) have been published which contain the fragments of the title compound.

In (I), the toluene group A (C1—C7) and the part of 5-methyl-2,4-dihydro- 3H-pyrazol-3-one B (C8—C11/N1/N2/O1) are planar with r.m.s. deviation of 0.0052 and 0.0171 Å, respectively. The dihedral angle between A/B is 4.42 (10)°. The part of 3-nitrocinnamic acid C (C12—C20/N3/O2/O3/O4) has r. m. s. deviation of 0.1229 Å from the plane in which O3 atom deviate to 0.2632 (17) Å. The dihedral angle between A/C abd B/C is 7.93 (6) and 12.26 (7)°, respectively. In the title compound two S(6) ring motifs are formed due to intramolecular H-bondings of C—H···O and O—H···O types (Table 1, Fig. 1). The molecules are dimerized from nitrobenzene due to C—H···O type of H-bondings and form R22(10) ring motifs (Table 1, Fig. 2). The dimers are again interlinked from nitrobenzene due to C—H···O type of H-bondings. There exist π···π interaction between Cg1···Cg1i [i = - x, y, 1/2 - z] at a distance of 3.7126 (10) Å, where Cg1 is the centroid of heterocyclic five membered ring (N1/N2/C8/C10/C11). Similarly, there also exist π···π interaction between Cg2···Cg3ii [ii = - x, - y, 1 - z] and Cg3···Cg2ii at a distance of 3.8710 (16) Å, where Cg2 and Cg3 are the centroids of benzene rings (C1—C6) and (C15—C20).

For background and a related structure, see: Mukhtar et al. (2010). For other related structures, see: Udaya Lakshmi et al. (2005); Jadeja & Shah (2007).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the title compound with displacement ellipsoids drawn at the 50% probability level. The dotted lines represents the intramolecular H-bondings.
[Figure 2] Fig. 2. The partial packing, which shows that molecules form dimers.
(4Z)-4-[(2E)-1-Hydroxy-3-(3-nitrophenyl)prop-2-en-1-ylidene]- 3-methyl-1-(4-methylphenyl)-1H-pyrazol-5(4H)-one top
Crystal data top
C20H17N3O4F(000) = 1520
Mr = 363.37Dx = 1.390 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 1823 reflections
a = 19.8712 (16) Åθ = 2.1–26.0°
b = 12.1917 (10) ŵ = 0.10 mm1
c = 16.733 (2) ÅT = 296 K
β = 121.188 (4)°Rod, orange
V = 3467.9 (6) Å30.35 × 0.18 × 0.17 mm
Z = 8
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3328 independent reflections
Radiation source: fine-focus sealed tube1823 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
Detector resolution: 8.00 pixels mm-1θmax = 26.0°, θmin = 2.1°
ω scansh = 2224
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 1515
Tmin = 0.972, Tmax = 0.983l = 2013
12231 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.143H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0688P)2]
where P = (Fo2 + 2Fc2)/3
3328 reflections(Δ/σ)max < 0.001
247 parametersΔρmax = 0.16 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C20H17N3O4V = 3467.9 (6) Å3
Mr = 363.37Z = 8
Monoclinic, C2/cMo Kα radiation
a = 19.8712 (16) ŵ = 0.10 mm1
b = 12.1917 (10) ÅT = 296 K
c = 16.733 (2) Å0.35 × 0.18 × 0.17 mm
β = 121.188 (4)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3328 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
1823 reflections with I > 2σ(I)
Tmin = 0.972, Tmax = 0.983Rint = 0.039
12231 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.143H-atom parameters constrained
S = 1.02Δρmax = 0.16 e Å3
3328 reflectionsΔρmin = 0.22 e Å3
247 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.08035 (9)0.17748 (13)0.26833 (13)0.0730 (6)
O20.04784 (9)0.17674 (14)0.42872 (13)0.0821 (7)
O30.36766 (10)0.22769 (14)0.89614 (12)0.0776 (7)
O40.45928 (10)0.10845 (15)0.95844 (14)0.0945 (8)
N10.12499 (10)0.00138 (14)0.21735 (13)0.0471 (6)
N20.09808 (10)0.10774 (14)0.24985 (14)0.0569 (7)
N30.39439 (11)0.13844 (17)0.89657 (14)0.0581 (8)
C10.19601 (12)0.01116 (18)0.12989 (15)0.0455 (8)
C20.23410 (13)0.0800 (2)0.07708 (16)0.0553 (8)
C30.30350 (13)0.0687 (2)0.00721 (17)0.0605 (9)
C40.33702 (12)0.0320 (2)0.04231 (17)0.0580 (9)
C50.29776 (13)0.1220 (2)0.01114 (18)0.0625 (9)
C60.22799 (13)0.11356 (19)0.09640 (17)0.0570 (9)
C70.41344 (14)0.0434 (3)0.13425 (18)0.0807 (10)
C80.03201 (13)0.09808 (19)0.32890 (17)0.0529 (8)
C90.01174 (15)0.19835 (19)0.3795 (2)0.0829 (10)
C100.01225 (12)0.01440 (18)0.35383 (16)0.0470 (7)
C110.07411 (12)0.07485 (18)0.27784 (16)0.0498 (8)
C120.04790 (12)0.06930 (19)0.42923 (16)0.0529 (8)
C130.11229 (12)0.01857 (19)0.51147 (15)0.0524 (8)
C140.16670 (12)0.07441 (19)0.58368 (16)0.0558 (8)
C150.23504 (12)0.03180 (18)0.66822 (15)0.0468 (8)
C160.28189 (12)0.10222 (17)0.74142 (16)0.0484 (7)
C170.34695 (11)0.06209 (17)0.82033 (15)0.0462 (7)
C180.36860 (12)0.04585 (19)0.83085 (17)0.0533 (8)
C190.32218 (13)0.11635 (19)0.75823 (18)0.0594 (9)
C200.25664 (13)0.07833 (19)0.67876 (17)0.0558 (8)
H20.212900.149410.098410.0664*
H2A0.008430.198920.381310.0985*
H30.328570.131280.041580.0726*
H50.318860.191290.010790.0749*
H60.202950.176210.130740.0684*
H7A0.415850.011040.177130.1210*
H7B0.416470.115150.159510.1210*
H7C0.456670.033260.124670.1210*
H9A0.013850.203000.437990.1245*
H9B0.064230.195040.390720.1245*
H9C0.014570.261840.342370.1245*
H130.115520.057580.513570.0629*
H140.160740.150240.580250.0669*
H160.269300.176310.737100.0581*
H180.413020.070880.885010.0640*
H190.335410.190240.763160.0712*
H200.225940.127290.630830.0669*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0611 (11)0.0537 (9)0.0678 (13)0.0053 (8)0.0077 (10)0.0014 (9)
O20.0631 (12)0.0662 (11)0.0690 (15)0.0031 (8)0.0003 (10)0.0037 (10)
O30.0780 (12)0.0638 (11)0.0603 (13)0.0089 (9)0.0141 (10)0.0164 (10)
O40.0616 (12)0.0917 (13)0.0686 (14)0.0114 (10)0.0097 (11)0.0236 (11)
N10.0395 (10)0.0538 (10)0.0368 (11)0.0017 (8)0.0119 (9)0.0074 (9)
N20.0505 (11)0.0524 (11)0.0455 (13)0.0008 (9)0.0091 (11)0.0111 (10)
N30.0515 (12)0.0620 (13)0.0438 (14)0.0006 (10)0.0127 (11)0.0069 (11)
C10.0357 (11)0.0600 (14)0.0367 (14)0.0024 (10)0.0158 (11)0.0056 (12)
C20.0492 (13)0.0615 (14)0.0434 (15)0.0006 (11)0.0156 (13)0.0049 (13)
C30.0494 (14)0.0755 (17)0.0424 (16)0.0071 (12)0.0138 (13)0.0026 (14)
C40.0393 (12)0.0889 (18)0.0383 (14)0.0042 (13)0.0147 (12)0.0052 (15)
C50.0512 (14)0.0725 (17)0.0488 (17)0.0145 (12)0.0154 (14)0.0123 (14)
C60.0497 (14)0.0627 (15)0.0462 (16)0.0065 (11)0.0161 (13)0.0020 (12)
C70.0519 (14)0.118 (2)0.0482 (17)0.0107 (15)0.0090 (14)0.0060 (17)
C80.0438 (13)0.0600 (14)0.0410 (15)0.0024 (10)0.0121 (12)0.0089 (12)
C90.0701 (17)0.0590 (15)0.071 (2)0.0015 (13)0.0023 (16)0.0208 (15)
C100.0364 (11)0.0599 (14)0.0382 (13)0.0017 (10)0.0148 (11)0.0039 (12)
C110.0426 (13)0.0560 (14)0.0432 (15)0.0002 (11)0.0169 (12)0.0001 (12)
C120.0452 (13)0.0583 (14)0.0481 (16)0.0013 (11)0.0192 (13)0.0009 (13)
C130.0395 (12)0.0648 (14)0.0394 (15)0.0024 (11)0.0108 (12)0.0002 (13)
C140.0469 (13)0.0640 (14)0.0457 (16)0.0008 (11)0.0164 (13)0.0018 (13)
C150.0394 (12)0.0590 (14)0.0367 (13)0.0045 (10)0.0160 (11)0.0026 (12)
C160.0458 (12)0.0510 (12)0.0426 (14)0.0001 (10)0.0187 (12)0.0044 (12)
C170.0406 (12)0.0556 (13)0.0352 (13)0.0061 (10)0.0146 (12)0.0081 (12)
C180.0424 (12)0.0589 (14)0.0462 (15)0.0034 (11)0.0141 (12)0.0009 (13)
C190.0539 (14)0.0516 (13)0.0542 (17)0.0058 (11)0.0150 (14)0.0048 (13)
C200.0475 (13)0.0571 (14)0.0496 (16)0.0116 (11)0.0159 (13)0.0092 (13)
Geometric parameters (Å, º) top
O1—C111.259 (3)C14—C151.458 (3)
O2—C121.310 (3)C15—C201.393 (3)
O3—N31.209 (3)C15—C161.387 (3)
O4—N31.219 (3)C16—C171.373 (3)
O2—H2A0.8200C17—C181.367 (3)
N1—C11.421 (3)C18—C191.380 (3)
N1—C111.360 (3)C19—C201.373 (4)
N1—N21.401 (2)C2—H20.9300
N2—C81.300 (3)C3—H30.9300
N3—C171.462 (3)C5—H50.9300
C1—C21.377 (3)C6—H60.9300
C1—C61.381 (3)C7—H7A0.9600
C2—C31.377 (4)C7—H7B0.9600
C3—C41.375 (3)C7—H7C0.9600
C4—C51.375 (4)C9—H9A0.9600
C4—C71.508 (4)C9—H9B0.9600
C5—C61.386 (4)C9—H9C0.9600
C8—C101.428 (3)C13—H130.9300
C8—C91.485 (4)C14—H140.9300
C10—C111.433 (3)C16—H160.9300
C10—C121.381 (3)C18—H180.9300
C12—C131.446 (3)C19—H190.9300
C13—C141.319 (3)C20—H200.9300
C12—O2—H2A109.00C16—C17—C18122.9 (2)
N2—N1—C11110.88 (18)N3—C17—C16118.21 (19)
C1—N1—C11130.70 (18)C17—C18—C19117.6 (2)
N2—N1—C1118.39 (17)C18—C19—C20120.6 (2)
N1—N2—C8107.02 (18)C15—C20—C19121.6 (2)
O3—N3—C17119.0 (2)C1—C2—H2120.00
O4—N3—C17118.1 (2)C3—C2—H2120.00
O3—N3—O4122.9 (2)C2—C3—H3119.00
N1—C1—C6121.2 (2)C4—C3—H3119.00
C2—C1—C6119.0 (2)C4—C5—H5119.00
N1—C1—C2119.8 (2)C6—C5—H5119.00
C1—C2—C3120.2 (2)C1—C6—H6120.00
C2—C3—C4122.3 (2)C5—C6—H6120.00
C3—C4—C7121.8 (2)C4—C7—H7A109.00
C5—C4—C7121.5 (2)C4—C7—H7B109.00
C3—C4—C5116.7 (2)C4—C7—H7C109.00
C4—C5—C6122.6 (2)H7A—C7—H7B109.00
C1—C6—C5119.3 (2)H7A—C7—H7C109.00
N2—C8—C9119.4 (2)H7B—C7—H7C109.00
N2—C8—C10111.4 (2)C8—C9—H9A109.00
C9—C8—C10129.3 (2)C8—C9—H9B109.00
C8—C10—C12135.2 (2)C8—C9—H9C109.00
C11—C10—C12120.0 (2)H9A—C9—H9B110.00
C8—C10—C11104.8 (2)H9A—C9—H9C110.00
O1—C11—C10127.3 (2)H9B—C9—H9C109.00
N1—C11—C10105.93 (19)C12—C13—H13118.00
O1—C11—N1126.7 (2)C14—C13—H13118.00
O2—C12—C13115.6 (2)C13—C14—H14116.00
C10—C12—C13125.7 (2)C15—C14—H14116.00
O2—C12—C10118.8 (2)C15—C16—H16120.00
C12—C13—C14123.6 (2)C17—C16—H16120.00
C13—C14—C15127.9 (2)C17—C18—H18121.00
C14—C15—C20122.5 (2)C19—C18—H18121.00
C16—C15—C20117.6 (2)C18—C19—H19120.00
C14—C15—C16119.9 (2)C20—C19—H19120.00
C15—C16—C17119.7 (2)C15—C20—H20119.00
N3—C17—C18118.9 (2)C19—C20—H20119.00
C1—N1—N2—C8178.4 (2)N2—C8—C10—C12177.5 (3)
C11—N1—N2—C80.1 (3)C9—C8—C10—C11178.0 (3)
N2—N1—C1—C23.6 (4)C9—C8—C10—C122.8 (5)
N2—N1—C1—C6176.3 (2)C8—C10—C11—O1178.1 (3)
C11—N1—C1—C2174.2 (3)C8—C10—C11—N11.7 (3)
C11—N1—C1—C65.8 (4)C12—C10—C11—O12.6 (4)
N2—N1—C11—O1178.6 (3)C12—C10—C11—N1177.7 (2)
N2—N1—C11—C101.2 (3)C8—C10—C12—O2179.6 (3)
C1—N1—C11—O10.6 (5)C8—C10—C12—C131.2 (5)
C1—N1—C11—C10179.1 (3)C11—C10—C12—O21.3 (4)
N1—N2—C8—C9178.7 (2)C11—C10—C12—C13177.9 (3)
N1—N2—C8—C101.0 (3)O2—C12—C13—C142.3 (4)
O3—N3—C17—C1614.1 (4)C10—C12—C13—C14177.0 (3)
O3—N3—C17—C18165.3 (2)C12—C13—C14—C15177.9 (3)
O4—N3—C17—C16166.5 (2)C13—C14—C15—C16173.4 (3)
O4—N3—C17—C1814.1 (4)C13—C14—C15—C207.5 (5)
N1—C1—C2—C3179.2 (2)C14—C15—C16—C17178.9 (2)
C6—C1—C2—C30.8 (4)C20—C15—C16—C170.2 (4)
N1—C1—C6—C5179.4 (3)C14—C15—C20—C19178.6 (3)
C2—C1—C6—C50.6 (4)C16—C15—C20—C190.5 (4)
C1—C2—C3—C40.6 (4)C15—C16—C17—N3179.2 (2)
C2—C3—C4—C50.1 (4)C15—C16—C17—C180.1 (4)
C2—C3—C4—C7179.4 (3)N3—C17—C18—C19179.2 (2)
C3—C4—C5—C60.2 (4)C16—C17—C18—C190.1 (4)
C7—C4—C5—C6179.2 (3)C17—C18—C19—C200.2 (4)
C4—C5—C6—C10.1 (4)C18—C19—C20—C150.5 (4)
N2—C8—C10—C111.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···O10.821.822.571 (3)152
C6—H6···O10.932.332.958 (3)125
C18—H18···O4i0.932.573.496 (3)171
C20—H20···O3ii0.932.433.172 (3)136
Symmetry codes: (i) x+1, y, z+2; (ii) x+1/2, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC20H17N3O4
Mr363.37
Crystal system, space groupMonoclinic, C2/c
Temperature (K)296
a, b, c (Å)19.8712 (16), 12.1917 (10), 16.733 (2)
β (°) 121.188 (4)
V3)3467.9 (6)
Z8
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.35 × 0.18 × 0.17
Data collection
DiffractometerBruker Kappa APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.972, 0.983
No. of measured, independent and
observed [I > 2σ(I)] reflections
12231, 3328, 1823
Rint0.039
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.143, 1.02
No. of reflections3328
No. of parameters247
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.16, 0.22

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···O10.821.822.571 (3)152
C6—H6···O10.932.332.958 (3)125
C18—H18···O4i0.932.573.496 (3)171
C20—H20···O3ii0.932.433.172 (3)136
Symmetry codes: (i) x+1, y, z+2; (ii) x+1/2, y1/2, z+3/2.
 

Acknowledgements

The authors acknowledge the provision of funds for the purchase of a diffractometer and encouragement by Dr Muhammad Akram Chaudhary, Vice Chancellor, University of Sargodha, Pakistan.

References

First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationJadeja, R. N. & Shah, J. R. (2007). Polyhedron, 26, 1677-1685.  Web of Science CSD CrossRef CAS Google Scholar
First citationMukhtar, A., Tahir, M. N., Khan, M. A. & Khan, M. N. (2010). Acta Cryst. E66, o2652.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationUdaya Lakshmi, K., Thamotharan, S., Srinivasan, M., Ramamurthi, K. & Varghese, B. (2005). Acta Cryst. E61, o3636–o3638.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds