organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl 2-(pyridine-4-carboxamido)-4,5,6,7-tetra­hydro-1-benzo­thio­phene-3-carboxyl­ate

aInstitute of Chemistry, University of the Punjab, Lahore, Pakistan, bUniversity of Sargodha, Department of Physics, Sargodha, Pakistan, cDepartment of Chemistry, Islamia University, Bahawalpur, Pakistan, and dApplied Chemistry Research Center, PCSIR Laboratories Complex, Lahore 54600, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com

(Received 3 June 2012; accepted 3 June 2012; online 13 June 2012)

In the title compound, C17H18N2O3S, the dihedral angles between the thio­phene ring and the ethyl ester group and the pyridine-4-carboxamide unit are 7.1 (2) and 9.47 (11)°, respectively. An intra­molecular N—H⋯O hydrogen bond generates an S(6) ring. In the crystal, inversion dimers linked by pairs of C—H⋯O hydrogen bonds between the tetra­hydro-1-benzothio­phene and the pyridine-4-carboxamide residues generate R22(16) loops. There exists positional disorder in three methelene groups of the cyclo­hexane ring and the terminal C atom of the ethyl ester side chain in a 0.691 (14):0.309 (14) occupancy ratio.

Related literature

For related structures, see: Mukhtar et al. (2010a[Mukhtar, A., Tahir, M. N., Khan, M. A. & Khan, M. N. (2010a). Acta Cryst. E66, o2652.],b[Mukhtar, A., Tahir, M. N., Khan, M. A. & Khan, M. N. (2010b). Acta Cryst. E66, o3171.]).

[Scheme 1]

Experimental

Crystal data
  • C17H18N2O3S

  • Mr = 330.39

  • Triclinic, [P \overline 1]

  • a = 8.5604 (6) Å

  • b = 9.3481 (7) Å

  • c = 11.7443 (10) Å

  • α = 105.121 (3)°

  • β = 99.748 (2)°

  • γ = 110.806 (3)°

  • V = 811.59 (11) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.22 mm−1

  • T = 296 K

  • 0.24 × 0.18 × 0.15 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.953, Tmax = 0.958

  • 12176 measured reflections

  • 2914 independent reflections

  • 1842 reflections with I > 2σ(I)

  • Rint = 0.039

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.116

  • S = 1.00

  • 2914 reflections

  • 243 parameters

  • 10 restraints

  • H-atom parameters constrained

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2 0.86 1.99 2.650 (3) 132
C7A—H7A⋯O3i 0.97 2.56 3.323 (12) 136
Symmetry code: (i) -x+1, -y, -z+1.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

We reported the crystal structures of ethyl 2-benzamido-4,5,6,7-tetrahydro-1- benzothiophene-3-carboxylate (Mukhtar et al., 2010a) and diethyl 5-acetamido-3-methylthiophene-2,4-dicarboxylate (Mukhtar et al., 2010b) which are related to the tile compound (I), (Fig. 1).

In (I), the thiophene ring A (S1/C8/C3/C2/C9), ethyl ester group B (O1/C1/O2/C16/C17A) and pyridine-4-carboxamide moiety C (C10—C15/N1/N2/O3) are planar with r. m. s. deviation of 0.0010, 0.0906 and 0.0520 Å, respectively. The dihedral angle between A/B, A/C and B/C is 7.07 (21), 9.47 (11) and 3.30 (20)°, respectively. In the title compound an S(6) ring motif is formed due to intramolecular H-bonding of N—H···O type (Table 1, Fig. 1). The molecules are linked in the form of dimers with R22(16) ring motif due to C—H···O type of H-bonding (Table 1, Fig. 2). Three methelene groups of cyclohexane ring and terminal C-atom of ethyl ester are disordered over two set of sites with occupancy ratio of 0.691 (14):0.309 (14).

Related literature top

For related structures, see: Mukhtar et al. (2010a,b).

Experimental top

A mixture of (0.4 g, 3 mmol) of pyridine-4-carboxylic acid and 0.5 ml of thionyl chloride was heated for 5 minutes. Ethyl 2-pyridyl-4-amido-4,5,6,7- tetrahydro-1-benzothiophene-3-carboxylate (0.7 g, 3 mmol) was dissolved in 30 ml chloroform separately and then added to the former mixture. The whole reaction mixture was refluxed for 45 minutes. The solvent was removed and residue was recrystallized in acetone to give colorless prisms of (I). M.p.: 431 K, yield: 0.92 g, 80%.

Refinement top

In the cyclohexane ring three methelene groups and terminal C-atom of ethyl ester are disordered over two set of sites with occupancy ratio of 0.691 (14):0.309 (14).

The H-atoms were positioned geometrically (N—H = 0.86, C–H = 0.93–0.97 Å) and refined as riding with Uiso(H) = xUeq(C, N), where x = 1.5 for methyl and x = 1.2 for other H-atoms.

Structure description top

We reported the crystal structures of ethyl 2-benzamido-4,5,6,7-tetrahydro-1- benzothiophene-3-carboxylate (Mukhtar et al., 2010a) and diethyl 5-acetamido-3-methylthiophene-2,4-dicarboxylate (Mukhtar et al., 2010b) which are related to the tile compound (I), (Fig. 1).

In (I), the thiophene ring A (S1/C8/C3/C2/C9), ethyl ester group B (O1/C1/O2/C16/C17A) and pyridine-4-carboxamide moiety C (C10—C15/N1/N2/O3) are planar with r. m. s. deviation of 0.0010, 0.0906 and 0.0520 Å, respectively. The dihedral angle between A/B, A/C and B/C is 7.07 (21), 9.47 (11) and 3.30 (20)°, respectively. In the title compound an S(6) ring motif is formed due to intramolecular H-bonding of N—H···O type (Table 1, Fig. 1). The molecules are linked in the form of dimers with R22(16) ring motif due to C—H···O type of H-bonding (Table 1, Fig. 2). Three methelene groups of cyclohexane ring and terminal C-atom of ethyl ester are disordered over two set of sites with occupancy ratio of 0.691 (14):0.309 (14).

For related structures, see: Mukhtar et al. (2010a,b).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the title compound with displacement ellipsoids drawn at the 50% probability level. The dotted line show intramolecular H-bonding.
[Figure 2] Fig. 2. The partial packing, which shows that molecules form dimers with R22(16) ring.
Ethyl 2-(pyridine-4-carboxamido)-4,5,6,7-tetrahydro-1-benzothiophene- 3-carboxylate top
Crystal data top
C17H18N2O3SZ = 2
Mr = 330.39F(000) = 384
Triclinic, P1Dx = 1.352 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.5604 (6) ÅCell parameters from 1842 reflections
b = 9.3481 (7) Åθ = 2.5–25.3°
c = 11.7443 (10) ŵ = 0.22 mm1
α = 105.121 (3)°T = 296 K
β = 99.748 (2)°Prism, colorless
γ = 110.806 (3)°0.24 × 0.18 × 0.15 mm
V = 811.59 (11) Å3
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2914 independent reflections
Radiation source: fine-focus sealed tube1842 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
Detector resolution: 8.10 pixels mm-1θmax = 25.3°, θmin = 2.5°
ω scansh = 108
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 1111
Tmin = 0.953, Tmax = 0.958l = 1414
12176 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.116H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.049P)2 + 0.1304P]
where P = (Fo2 + 2Fc2)/3
2914 reflections(Δ/σ)max < 0.001
243 parametersΔρmax = 0.15 e Å3
10 restraintsΔρmin = 0.18 e Å3
Crystal data top
C17H18N2O3Sγ = 110.806 (3)°
Mr = 330.39V = 811.59 (11) Å3
Triclinic, P1Z = 2
a = 8.5604 (6) ÅMo Kα radiation
b = 9.3481 (7) ŵ = 0.22 mm1
c = 11.7443 (10) ÅT = 296 K
α = 105.121 (3)°0.24 × 0.18 × 0.15 mm
β = 99.748 (2)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2914 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
1842 reflections with I > 2σ(I)
Tmin = 0.953, Tmax = 0.958Rint = 0.039
12176 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04510 restraints
wR(F2) = 0.116H-atom parameters constrained
S = 1.00Δρmax = 0.15 e Å3
2914 reflectionsΔρmin = 0.18 e Å3
243 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.57947 (9)0.19759 (8)0.46283 (7)0.0767 (3)
O10.6976 (2)0.68634 (18)0.35270 (15)0.0742 (6)
O20.8949 (2)0.73080 (19)0.52291 (15)0.0730 (6)
O30.8381 (3)0.2881 (3)0.68270 (19)0.1003 (8)
N10.8635 (2)0.4829 (2)0.60071 (17)0.0615 (7)
N21.3610 (3)0.7692 (4)0.9953 (2)0.0968 (11)
C10.7620 (3)0.6392 (3)0.4390 (2)0.0580 (8)
C20.6600 (3)0.4677 (3)0.42082 (19)0.0517 (8)
C30.5015 (3)0.3510 (3)0.3252 (2)0.0568 (8)
C40.4040 (3)0.3808 (3)0.2210 (2)0.0684 (9)
C5A0.2613 (14)0.2210 (11)0.1232 (9)0.084 (3)0.691 (14)
C6A0.1643 (9)0.1068 (9)0.1818 (7)0.090 (2)0.691 (14)
C7A0.2885 (14)0.0544 (12)0.2537 (10)0.093 (5)0.691 (14)
C80.4453 (3)0.2032 (3)0.3374 (2)0.0647 (9)
C90.7149 (3)0.3990 (3)0.5005 (2)0.0571 (8)
C100.9163 (3)0.4265 (3)0.6877 (2)0.0681 (10)
C111.0748 (3)0.5483 (3)0.7916 (2)0.0624 (9)
C121.1234 (4)0.5047 (4)0.8909 (3)0.0915 (12)
C131.2663 (5)0.6197 (5)0.9893 (3)0.1068 (16)
C141.3131 (4)0.8068 (4)0.8988 (3)0.0810 (11)
C151.1737 (3)0.7024 (3)0.7966 (2)0.0690 (10)
C160.7948 (4)0.8546 (3)0.3616 (3)0.0935 (11)
C17A0.7281 (10)0.8628 (10)0.2439 (6)0.113 (3)0.691 (14)
C5B0.221 (2)0.242 (2)0.159 (3)0.083 (7)0.310 (14)
C6B0.225 (2)0.0756 (16)0.1323 (18)0.091 (6)0.310 (14)
C7B0.275 (3)0.054 (2)0.2566 (18)0.074 (8)0.310 (14)
C17B0.687 (2)0.894 (2)0.2657 (6)0.103 (5)0.310 (14)
H4A0.485970.436200.182250.0821*
H4B0.350580.451800.253920.0821*
H10.928880.581060.608210.0738*
H7A0.230010.005980.301310.1119*0.691 (14)
H7B0.323100.015790.196820.1119*0.691 (14)
H121.061830.400890.891900.1100*
H131.297630.589021.055780.1283*
H141.377770.910970.899720.0972*
H151.146810.736600.731250.0828*
H16A0.776540.929820.426630.1120*
H16B0.918780.881770.378950.1120*
H17A0.603040.820380.222830.1699*0.691 (14)
H17B0.761160.799100.182350.1699*0.691 (14)
H17C0.775380.974280.247830.1699*0.691 (14)
H5A0.179770.246070.072810.1004*0.691 (14)
H5B0.314590.168090.069850.1004*0.691 (14)
H6A0.069790.011170.118590.1079*0.691 (14)
H6B0.113970.160520.237330.1079*0.691 (14)
H5C0.147110.252010.211930.0997*0.310 (14)
H5D0.170390.251500.082170.0997*0.310 (14)
H6C0.310230.069380.088480.1103*0.310 (14)
H6D0.111470.009650.081800.1103*0.310 (14)
H7C0.292320.045360.244410.0886*0.310 (14)
H7D0.183070.047010.295890.0886*0.310 (14)
H17D0.569950.863790.272760.1534*0.310 (14)
H17E0.682530.834760.184370.1534*0.310 (14)
H17F0.739521.009310.280190.1534*0.310 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0865 (5)0.0500 (4)0.0840 (5)0.0152 (3)0.0208 (4)0.0297 (3)
O10.0827 (12)0.0456 (10)0.0725 (11)0.0125 (9)0.0016 (9)0.0224 (8)
O20.0732 (11)0.0510 (10)0.0704 (11)0.0079 (9)0.0004 (10)0.0225 (9)
O30.1113 (16)0.0709 (13)0.1059 (15)0.0190 (12)0.0106 (12)0.0512 (12)
N10.0666 (13)0.0511 (12)0.0605 (12)0.0171 (10)0.0133 (10)0.0238 (10)
N20.0930 (19)0.110 (2)0.0823 (17)0.0380 (17)0.0115 (14)0.0410 (16)
C10.0664 (16)0.0493 (14)0.0562 (14)0.0225 (13)0.0151 (13)0.0193 (12)
C20.0573 (14)0.0414 (13)0.0528 (13)0.0167 (11)0.0177 (11)0.0152 (10)
C30.0581 (14)0.0496 (14)0.0562 (14)0.0177 (12)0.0194 (12)0.0133 (11)
C40.0658 (16)0.0581 (15)0.0681 (16)0.0203 (13)0.0112 (13)0.0147 (12)
C5A0.074 (4)0.073 (5)0.076 (6)0.019 (3)0.003 (3)0.012 (3)
C6A0.067 (4)0.072 (4)0.085 (4)0.000 (3)0.003 (3)0.008 (3)
C7A0.090 (9)0.074 (8)0.098 (9)0.010 (6)0.028 (7)0.037 (6)
C80.0640 (16)0.0470 (15)0.0688 (16)0.0117 (13)0.0176 (13)0.0156 (12)
C90.0635 (15)0.0458 (13)0.0590 (14)0.0177 (12)0.0229 (13)0.0178 (12)
C100.0803 (18)0.0627 (17)0.0696 (17)0.0299 (15)0.0245 (14)0.0343 (14)
C110.0681 (16)0.0712 (18)0.0609 (15)0.0365 (14)0.0223 (13)0.0306 (13)
C120.096 (2)0.098 (2)0.086 (2)0.0341 (19)0.0211 (19)0.0535 (19)
C130.108 (3)0.134 (3)0.083 (2)0.048 (2)0.010 (2)0.060 (2)
C140.0760 (19)0.084 (2)0.0749 (19)0.0317 (16)0.0091 (16)0.0260 (16)
C150.0719 (17)0.0702 (17)0.0687 (17)0.0327 (15)0.0147 (14)0.0295 (14)
C160.108 (2)0.0462 (16)0.097 (2)0.0126 (15)0.0073 (17)0.0308 (15)
C17A0.155 (6)0.062 (5)0.118 (5)0.040 (4)0.010 (4)0.050 (4)
C5B0.071 (11)0.066 (9)0.081 (14)0.023 (8)0.005 (7)0.001 (8)
C6B0.073 (9)0.074 (9)0.098 (12)0.025 (6)0.004 (7)0.006 (7)
C7B0.060 (13)0.027 (10)0.083 (18)0.002 (9)0.000 (11)0.019 (10)
C17B0.151 (12)0.052 (7)0.076 (8)0.055 (8)0.032 (7)0.002 (5)
Geometric parameters (Å, º) top
S1—C81.733 (3)C16—C17A1.436 (8)
S1—C91.711 (3)C16—C17B1.537 (14)
O1—C11.320 (3)C4—H4A0.9700
O1—C161.460 (3)C4—H4B0.9700
O2—C11.219 (3)C5A—H5A0.9700
O3—C101.207 (4)C5A—H5B0.9700
N1—C91.386 (3)C5B—H5D0.9700
N1—C101.349 (3)C5B—H5C0.9700
N2—C131.319 (6)C6A—H6B0.9700
N2—C141.315 (4)C6A—H6A0.9700
N1—H10.8600C6B—H6D0.9700
C1—C21.464 (4)C6B—H6C0.9700
C2—C31.444 (3)C7A—H7B0.9700
C2—C91.374 (4)C7A—H7A0.9700
C3—C41.506 (3)C7B—H7D0.9700
C3—C81.347 (4)C7B—H7C0.9700
C4—C5B1.53 (2)C12—H120.9300
C4—C5A1.542 (11)C13—H130.9300
C5A—C6A1.500 (13)C14—H140.9300
C5B—C6B1.52 (3)C15—H150.9300
C6A—C7A1.538 (14)C16—H16A0.9700
C6B—C7B1.54 (3)C16—H16B0.9700
C7A—C81.489 (12)C17A—H17C0.9600
C7B—C81.54 (2)C17A—H17A0.9600
C10—C111.498 (3)C17A—H17B0.9600
C11—C121.380 (4)C17B—H17D0.9600
C11—C151.367 (4)C17B—H17E0.9600
C12—C131.388 (5)C17B—H17F0.9600
C14—C151.376 (4)
C8—S1—C990.88 (13)H5A—C5A—H5B108.00
C1—O1—C16116.6 (2)C4—C5B—H5C109.00
C9—N1—C10126.8 (2)C4—C5B—H5D109.00
C13—N2—C14115.6 (3)C6B—C5B—H5C109.00
C10—N1—H1117.00C6B—C5B—H5D109.00
C9—N1—H1117.00H5C—C5B—H5D108.00
O1—C1—C2113.0 (2)H6A—C6A—H6B108.00
O2—C1—C2124.7 (2)C5A—C6A—H6A110.00
O1—C1—O2122.3 (2)C5A—C6A—H6B110.00
C3—C2—C9111.7 (2)C7A—C6A—H6A110.00
C1—C2—C3128.5 (2)C7A—C6A—H6B110.00
C1—C2—C9119.8 (2)C7B—C6B—H6C110.00
C4—C3—C8121.2 (2)C7B—C6B—H6D110.00
C2—C3—C8111.9 (2)C5B—C6B—H6D110.00
C2—C3—C4126.9 (2)C5B—C6B—H6C110.00
C3—C4—C5B110.8 (10)H6C—C6B—H6D108.00
C3—C4—C5A112.2 (4)C6A—C7A—H7A110.00
C4—C5A—C6A111.4 (7)C6A—C7A—H7B110.00
C4—C5B—C6B111.8 (14)H7A—C7A—H7B108.00
C5A—C6A—C7A110.2 (8)C8—C7A—H7B110.00
C5B—C6B—C7B107.5 (18)C8—C7A—H7A110.00
C6A—C7A—C8108.7 (8)C6B—C7B—H7C110.00
C6B—C7B—C8107.5 (13)C8—C7B—H7D110.00
C3—C8—C7B125.6 (8)C8—C7B—H7C110.00
C3—C8—C7A126.1 (5)C6B—C7B—H7D110.00
S1—C8—C3112.96 (19)H7C—C7B—H7D109.00
S1—C8—C7A121.0 (5)C11—C12—H12121.00
S1—C8—C7B121.3 (8)C13—C12—H12121.00
S1—C9—N1123.36 (19)C12—C13—H13118.00
S1—C9—C2112.64 (19)N2—C13—H13118.00
N1—C9—C2124.0 (2)C15—C14—H14118.00
N1—C10—C11115.4 (2)N2—C14—H14118.00
O3—C10—C11122.7 (2)C11—C15—H15120.00
O3—C10—N1121.8 (2)C14—C15—H15120.00
C10—C11—C15124.5 (2)O1—C16—H16A111.00
C10—C11—C12118.4 (3)O1—C16—H16B111.00
C12—C11—C15117.1 (2)C17A—C16—H16A111.00
C11—C12—C13118.4 (3)C17A—C16—H16B111.00
N2—C13—C12124.8 (3)H16A—C16—H16B109.00
N2—C14—C15124.4 (3)C17B—C16—H16A89.00
C11—C15—C14119.7 (3)C17B—C16—H16B126.00
O1—C16—C17B108.9 (7)C16—C17A—H17A109.00
O1—C16—C17A105.7 (4)C16—C17A—H17B109.00
C3—C4—H4A109.00C16—C17A—H17C109.00
C3—C4—H4B109.00H17A—C17A—H17B109.00
C5A—C4—H4A109.00H17A—C17A—H17C109.00
C5A—C4—H4B109.00H17B—C17A—H17C110.00
H4A—C4—H4B108.00C16—C17B—H17D110.00
C5B—C4—H4A128.00C16—C17B—H17E110.00
C5B—C4—H4B89.00C16—C17B—H17F110.00
C4—C5A—H5A109.00H17D—C17B—H17E109.00
C4—C5A—H5B109.00H17D—C17B—H17F109.00
C6A—C5A—H5A109.00H17E—C17B—H17F109.00
C6A—C5A—H5B109.00
C9—S1—C8—C30.1 (2)C3—C2—C9—S10.2 (3)
C9—S1—C8—C7A178.7 (6)C3—C2—C9—N1179.9 (2)
C8—S1—C9—N1180.0 (2)C2—C3—C4—C5A169.0 (5)
C8—S1—C9—C20.1 (2)C8—C3—C4—C5A10.4 (6)
C16—O1—C1—O20.6 (4)C2—C3—C8—S10.2 (3)
C16—O1—C1—C2178.1 (2)C2—C3—C8—C7A178.7 (6)
C1—O1—C16—C17A165.1 (4)C4—C3—C8—S1179.3 (2)
C10—N1—C9—S15.8 (4)C4—C3—C8—C7A0.8 (7)
C10—N1—C9—C2174.1 (2)C3—C4—C5A—C6A41.5 (9)
C9—N1—C10—O33.3 (4)C4—C5A—C6A—C7A63.6 (10)
C9—N1—C10—C11175.2 (2)C5A—C6A—C7A—C851.1 (10)
C14—N2—C13—C120.6 (6)C6A—C7A—C8—S1160.6 (5)
C13—N2—C14—C150.6 (5)C6A—C7A—C8—C321.0 (10)
O1—C1—C2—C31.7 (4)O3—C10—C11—C126.1 (4)
O1—C1—C2—C9177.4 (2)O3—C10—C11—C15175.4 (3)
O2—C1—C2—C3179.6 (3)N1—C10—C11—C12172.3 (3)
O2—C1—C2—C91.3 (4)N1—C10—C11—C156.2 (4)
C1—C2—C3—C40.1 (4)C10—C11—C12—C13177.6 (3)
C1—C2—C3—C8179.4 (3)C15—C11—C12—C131.0 (5)
C9—C2—C3—C4179.3 (2)C10—C11—C15—C14177.5 (3)
C9—C2—C3—C80.2 (3)C12—C11—C15—C141.0 (4)
C1—C2—C9—S1179.41 (19)C11—C12—C13—N20.3 (6)
C1—C2—C9—N10.6 (4)N2—C14—C15—C110.2 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O20.861.992.650 (3)132
C7A—H7A···O3i0.972.563.323 (12)136
Symmetry code: (i) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC17H18N2O3S
Mr330.39
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)8.5604 (6), 9.3481 (7), 11.7443 (10)
α, β, γ (°)105.121 (3), 99.748 (2), 110.806 (3)
V3)811.59 (11)
Z2
Radiation typeMo Kα
µ (mm1)0.22
Crystal size (mm)0.24 × 0.18 × 0.15
Data collection
DiffractometerBruker Kappa APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.953, 0.958
No. of measured, independent and
observed [I > 2σ(I)] reflections
12176, 2914, 1842
Rint0.039
(sin θ/λ)max1)0.600
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.116, 1.00
No. of reflections2914
No. of parameters243
No. of restraints10
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.15, 0.18

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O20.861.992.650 (3)132
C7A—H7A···O3i0.972.563.323 (12)136
Symmetry code: (i) x+1, y, z+1.
 

Acknowledgements

The authors acknowledge the provision of funds for the purchase of a diffractometer and encouragement by Dr Muhammad Akram Chaudhary, Vice Chancellor, University of Sargodha, Pakistan.

References

First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationMukhtar, A., Tahir, M. N., Khan, M. A. & Khan, M. N. (2010a). Acta Cryst. E66, o2652.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMukhtar, A., Tahir, M. N., Khan, M. A. & Khan, M. N. (2010b). Acta Cryst. E66, o3171.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds