metal-organic compounds
(Acetato-κO)(acetato-κ2O,O′)[2-(3,5-dimethyl-1H-pyrazol-1-yl-κN2)quinoline-κN]zinc(II)
aFaculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link BE 1410, Negara Brunei Darussalam, bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and cChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: Edward.Tiekink@gmail.com
The ZnII atom in the title compound, [Zn(C2H3O2)2(C14H13N3)], is coordinated by an N2O3 donor set defined by the quinolinyl- and pyrazolyl-N atoms of the chelating heterocyclic ligand, and three carboxylate-O atoms derived from the monodentate and bidentate carboxylate ligands. Distortions from the ideal square-pyramidal coordination geometry relate to the restricted bite angle of the chelating ligands, i.e. O—Zn—O = 59.65 (5) and N—Zn—N = 76.50 (6)°, and the close approach of the non-coordinating carbonyl atom [Zn⋯O = 2.858 (2) Å]. In the crystal, molecules are consolidated into a three-dimensional architecture by C—H⋯O interactions
Related literature
For background to luminescent coordination complexes, see: Bai et al. (2011, 2012); Chou et al. (2011); Wang (2001). For the synthesis, see: Savel'eva et al. (2009); Scott et al. (1952). For the structure of the dichlorido analogue, see: Najib et al. (2012). For additional geometric analysis, see: Addison et al. (1984).
Experimental
Crystal data
|
Refinement
|
|
Data collection: CrysAlis PRO (Agilent, 2012); cell CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).
Supporting information
https://doi.org/10.1107/S1600536812025664/hb6839sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536812025664/hb6839Isup2.hkl
The title compound was prepared by modification of a literature procedure (Savel'eva et al., 2009) and as previously described for the corresponding dichloride (Najib et al., 2012). 3,5-Dimethyl-1-(2'-quinolyl)pyrazole (0.0908 g), prepared as in the literature (Scott et al., 1952), in a mixture of EtOH (4 ml) and CH2Cl2 (2 ml) was added to a suspension of Zn(OAc)2 (0.0764 g) in EtOH (8 ml). The solution was heated to dissolve the Zn(OAc)2. Light-brown prisms formed over a period of 16 h and were collected by filtration, washed with EtOH and recrystallized from CH2Cl2/hexane. Yield 0.0733 g (44%). M.pt: 474 K. IR v/cm-1: 2925, 2864, 2365, 2323, 1604, 1507, 1424, 1388.
Carbon-bound H-atoms were placed in calculated positions [C—H = 0.95–0.98 Å, Uiso(H) = 1.2–1.5Ueq(C)] and were included in the
in the riding model approximation.Many ZnII complexes of nitrogen-containing ligands exhibit intense emission at room temperature (Wang, 2001; Chou et al., 2011; Bai et al., 2011; Bai et al., 2012). The title compound was prepared as part of a series of potentially luminescent coordination complexes for use in organic light emitting diode (OLED) materials. We have previously reported the solid-state structure of dichlorido[2-(3,5-dimethyl-1H-pyrazol-1-yl-2)quinoline]zinc(II) (Najib et al., 2012), i.e. the dichlorido analogue of the title compound, (I).
The ZnII atom in (I), Fig. 1, is chelated by quinolinyl- and pyrazolyl-N atoms of the heterocyclic ligand, and three carboxylate-O atoms derived from the monodentate and bidentate carboxylates, Table 1. The resulting N2O3 donor set defines an approximate square pyramid with the Zn atom lying 0.8591 (8) Å out of the plane defined by the O1, O2, N1 and N3 atoms [r.m.s. deviation = 0.1122 Å] in the direction of the O3 atom. The assignment of coordination geometry is quantified by the value of τ = 0.06 which compares to the τ values of 0.0 and 1.0 for ideal square pyramidal and trigonal bipyramidal geometries, respectively (Addison et al., 1984). Significant distortions in the coordination geometry are apparent owing the restricted bite angles of the chelating ligands, i.e. O1—Zn—O2 = 59.65 (5)° and N1—Zn—N3 = 76.50 (6)°. Further distortions are related to the relatively close approach of the O4 atom to Zn, the Zn···O4 separation is 2.858 (2) Å. The five-membered chelate ring is approximately planar with a r.m.s. deviation = 0.088 Å and with maximum deviations of 0.074 (2) and -0.057 (1) Å for the N1 and Zn atoms, respectively. The bidentate ligand is planar with the dihedral angle between the quinolinyl and pyrazolyl rings being 2.14 (6)°.
Molecules are consolidated into a three-dimensional architecture by C—H···O interactions, Fig. 2 and Table 2.
For background to luminescent coordination complexes, see: Bai et al. (2011, 2012); Chou et al. (2011); Wang (2001). For the synthesis, see: Savel'eva et al. (2009); Scott et al. (1952). For the structure of the dichlorido analogue, see: Najib et al. (2012). For additional geometric analysis, see: Addison et al. (1984).
Data collection: CrysAlis PRO (Agilent, 2012); cell
CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).Fig. 1. The molecular structure of (I) showing displacement ellipsoids at the 50% probability level. | |
Fig. 2. A view of the unit-cell contents of (I) in projection down the c axis. The C—H···O interactions are shown as orange dashed lines. |
[Zn(C2H3O2)2(C14H13N3)] | Z = 2 |
Mr = 406.73 | F(000) = 420 |
Triclinic, P1 | Dx = 1.589 Mg m−3 |
Hall symbol: -P 1 | Cu Kα radiation, λ = 1.54184 Å |
a = 7.6586 (4) Å | Cell parameters from 3775 reflections |
b = 10.7334 (6) Å | θ = 4.6–76.3° |
c = 11.5772 (4) Å | µ = 2.27 mm−1 |
α = 69.437 (4)° | T = 100 K |
β = 81.546 (3)° | Prism, light-brown |
γ = 72.736 (4)° | 0.25 × 0.15 × 0.05 mm |
V = 849.93 (7) Å3 |
Agilent SuperNova Dual diffractometer with Atlas detector | 3498 independent reflections |
Radiation source: SuperNova (Cu) X-ray Source | 3322 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.021 |
Detector resolution: 10.4041 pixels mm-1 | θmax = 76.5°, θmin = 4.6° |
ω scan | h = −9→9 |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012) | k = −12→13 |
Tmin = 0.617, Tmax = 1.000 | l = −11→14 |
6205 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.030 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.081 | H-atom parameters constrained |
S = 1.03 | w = 1/[σ2(Fo2) + (0.0448P)2 + 0.5376P] where P = (Fo2 + 2Fc2)/3 |
3498 reflections | (Δ/σ)max = 0.001 |
239 parameters | Δρmax = 0.67 e Å−3 |
0 restraints | Δρmin = −0.45 e Å−3 |
[Zn(C2H3O2)2(C14H13N3)] | γ = 72.736 (4)° |
Mr = 406.73 | V = 849.93 (7) Å3 |
Triclinic, P1 | Z = 2 |
a = 7.6586 (4) Å | Cu Kα radiation |
b = 10.7334 (6) Å | µ = 2.27 mm−1 |
c = 11.5772 (4) Å | T = 100 K |
α = 69.437 (4)° | 0.25 × 0.15 × 0.05 mm |
β = 81.546 (3)° |
Agilent SuperNova Dual diffractometer with Atlas detector | 3498 independent reflections |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012) | 3322 reflections with I > 2σ(I) |
Tmin = 0.617, Tmax = 1.000 | Rint = 0.021 |
6205 measured reflections |
R[F2 > 2σ(F2)] = 0.030 | 0 restraints |
wR(F2) = 0.081 | H-atom parameters constrained |
S = 1.03 | Δρmax = 0.67 e Å−3 |
3498 reflections | Δρmin = −0.45 e Å−3 |
239 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Zn | 0.81157 (3) | 0.72065 (2) | 0.729830 (19) | 0.01539 (9) | |
O1 | 0.54802 (18) | 0.81205 (15) | 0.67857 (12) | 0.0237 (3) | |
O2 | 0.7235 (2) | 0.72283 (17) | 0.54526 (14) | 0.0333 (3) | |
O3 | 0.97606 (19) | 0.83912 (14) | 0.66803 (13) | 0.0251 (3) | |
O4 | 0.8163 (2) | 0.95459 (18) | 0.79237 (13) | 0.0346 (4) | |
N1 | 0.9903 (2) | 0.53183 (15) | 0.73964 (13) | 0.0157 (3) | |
N2 | 0.9663 (2) | 0.42401 (15) | 0.84284 (13) | 0.0148 (3) | |
N3 | 0.76154 (19) | 0.59226 (15) | 0.91411 (13) | 0.0147 (3) | |
C1 | 0.5715 (3) | 0.78835 (18) | 0.57607 (17) | 0.0191 (3) | |
C2 | 0.4136 (3) | 0.8434 (2) | 0.49227 (18) | 0.0247 (4) | |
H2A | 0.4333 | 0.7891 | 0.4366 | 0.037* | |
H2B | 0.4053 | 0.9401 | 0.4436 | 0.037* | |
H2C | 0.2996 | 0.8367 | 0.5421 | 0.037* | |
C3 | 0.9376 (3) | 0.93922 (19) | 0.71118 (16) | 0.0203 (4) | |
C4 | 1.0519 (3) | 1.0407 (2) | 0.65732 (18) | 0.0238 (4) | |
H4A | 1.0008 | 1.1202 | 0.6865 | 0.036* | |
H4B | 1.0515 | 1.0719 | 0.5670 | 0.036* | |
H4C | 1.1778 | 0.9961 | 0.6834 | 0.036* | |
C5 | 1.1702 (3) | 0.56456 (19) | 0.54237 (16) | 0.0216 (4) | |
H5A | 1.1823 | 0.5196 | 0.4800 | 0.032* | |
H5B | 1.2888 | 0.5773 | 0.5503 | 0.032* | |
H5C | 1.0801 | 0.6546 | 0.5171 | 0.032* | |
C6 | 1.1083 (2) | 0.47655 (18) | 0.66347 (16) | 0.0169 (3) | |
C7 | 1.1602 (2) | 0.33201 (18) | 0.71639 (16) | 0.0172 (3) | |
H7 | 1.2427 | 0.2686 | 0.6804 | 0.021* | |
C8 | 1.0696 (2) | 0.29988 (18) | 0.82920 (16) | 0.0162 (3) | |
C9 | 1.0774 (3) | 0.15864 (18) | 0.91825 (16) | 0.0197 (3) | |
H9A | 1.1598 | 0.0897 | 0.8838 | 0.029* | |
H9B | 0.9545 | 0.1441 | 0.9330 | 0.029* | |
H9C | 1.1231 | 0.1494 | 0.9964 | 0.029* | |
C10 | 0.8445 (2) | 0.45914 (18) | 0.93770 (15) | 0.0146 (3) | |
C11 | 0.8173 (2) | 0.35645 (18) | 1.04951 (16) | 0.0175 (3) | |
H11 | 0.8819 | 0.2624 | 1.0634 | 0.021* | |
C12 | 0.6956 (2) | 0.39558 (19) | 1.13728 (16) | 0.0186 (3) | |
H12 | 0.6735 | 0.3279 | 1.2127 | 0.022* | |
C13 | 0.6026 (2) | 0.53597 (18) | 1.11662 (16) | 0.0165 (3) | |
C14 | 0.4758 (2) | 0.5825 (2) | 1.20508 (16) | 0.0197 (4) | |
H14 | 0.4464 | 0.5176 | 1.2803 | 0.024* | |
C15 | 0.3960 (2) | 0.7202 (2) | 1.18233 (17) | 0.0212 (4) | |
H15 | 0.3129 | 0.7509 | 1.2423 | 0.025* | |
C16 | 0.4366 (2) | 0.81699 (19) | 1.06979 (17) | 0.0204 (4) | |
H16 | 0.3813 | 0.9126 | 1.0554 | 0.025* | |
C17 | 0.5549 (2) | 0.77526 (18) | 0.98073 (16) | 0.0183 (3) | |
H17 | 0.5788 | 0.8414 | 0.9047 | 0.022* | |
C18 | 0.6406 (2) | 0.63361 (18) | 1.00311 (15) | 0.0157 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Zn | 0.01744 (13) | 0.01236 (13) | 0.01501 (13) | −0.00462 (9) | −0.00080 (9) | −0.00227 (9) |
O1 | 0.0225 (7) | 0.0315 (7) | 0.0164 (6) | −0.0077 (6) | −0.0021 (5) | −0.0058 (5) |
O2 | 0.0279 (8) | 0.0360 (8) | 0.0346 (8) | 0.0037 (6) | −0.0070 (6) | −0.0178 (7) |
O3 | 0.0254 (7) | 0.0173 (6) | 0.0335 (7) | −0.0087 (5) | −0.0018 (6) | −0.0067 (5) |
O4 | 0.0350 (8) | 0.0474 (9) | 0.0219 (7) | −0.0177 (7) | 0.0070 (6) | −0.0096 (6) |
N1 | 0.0193 (7) | 0.0134 (7) | 0.0132 (6) | −0.0059 (6) | −0.0005 (5) | −0.0015 (5) |
N2 | 0.0172 (7) | 0.0121 (6) | 0.0133 (6) | −0.0044 (5) | −0.0012 (5) | −0.0012 (5) |
N3 | 0.0159 (7) | 0.0141 (7) | 0.0139 (6) | −0.0045 (5) | −0.0019 (5) | −0.0034 (5) |
C1 | 0.0218 (9) | 0.0131 (8) | 0.0210 (8) | −0.0073 (7) | −0.0013 (7) | −0.0013 (6) |
C2 | 0.0265 (10) | 0.0261 (10) | 0.0220 (9) | −0.0074 (8) | −0.0060 (7) | −0.0062 (7) |
C3 | 0.0231 (9) | 0.0210 (9) | 0.0125 (7) | −0.0048 (7) | −0.0062 (6) | 0.0009 (6) |
C4 | 0.0294 (10) | 0.0212 (9) | 0.0253 (9) | −0.0116 (8) | 0.0022 (7) | −0.0103 (7) |
C5 | 0.0258 (9) | 0.0205 (9) | 0.0179 (8) | −0.0085 (7) | 0.0030 (7) | −0.0053 (7) |
C6 | 0.0178 (8) | 0.0186 (8) | 0.0159 (8) | −0.0062 (7) | −0.0010 (6) | −0.0063 (7) |
C7 | 0.0180 (8) | 0.0163 (8) | 0.0188 (8) | −0.0048 (6) | −0.0019 (6) | −0.0070 (7) |
C8 | 0.0173 (8) | 0.0139 (8) | 0.0184 (8) | −0.0037 (6) | −0.0040 (6) | −0.0055 (6) |
C9 | 0.0232 (9) | 0.0134 (8) | 0.0201 (8) | −0.0032 (7) | −0.0030 (7) | −0.0034 (7) |
C10 | 0.0153 (8) | 0.0150 (8) | 0.0139 (7) | −0.0056 (6) | −0.0022 (6) | −0.0031 (6) |
C11 | 0.0204 (8) | 0.0145 (8) | 0.0167 (8) | −0.0056 (6) | −0.0020 (6) | −0.0026 (6) |
C12 | 0.0205 (8) | 0.0183 (8) | 0.0148 (8) | −0.0075 (7) | −0.0015 (6) | −0.0007 (6) |
C13 | 0.0151 (8) | 0.0196 (8) | 0.0161 (8) | −0.0071 (7) | −0.0018 (6) | −0.0049 (7) |
C14 | 0.0187 (8) | 0.0255 (9) | 0.0152 (8) | −0.0078 (7) | 0.0001 (6) | −0.0058 (7) |
C15 | 0.0166 (8) | 0.0288 (10) | 0.0206 (8) | −0.0053 (7) | 0.0002 (6) | −0.0118 (7) |
C16 | 0.0171 (8) | 0.0205 (9) | 0.0246 (9) | −0.0034 (7) | −0.0029 (7) | −0.0089 (7) |
C17 | 0.0177 (8) | 0.0168 (8) | 0.0203 (8) | −0.0049 (7) | −0.0027 (6) | −0.0049 (7) |
C18 | 0.0151 (8) | 0.0178 (8) | 0.0150 (8) | −0.0059 (6) | −0.0024 (6) | −0.0041 (6) |
Zn—O1 | 2.0388 (14) | C5—H5B | 0.9800 |
Zn—O2 | 2.3240 (15) | C5—H5C | 0.9800 |
Zn—O3 | 1.9397 (13) | C6—C7 | 1.406 (2) |
Zn—N1 | 2.0570 (15) | C7—C8 | 1.366 (2) |
Zn—N3 | 2.1460 (14) | C7—H7 | 0.9500 |
O1—C1 | 1.276 (2) | C8—C9 | 1.494 (2) |
O2—C1 | 1.243 (2) | C9—H9A | 0.9800 |
O3—C3 | 1.279 (2) | C9—H9B | 0.9800 |
O4—C3 | 1.239 (2) | C9—H9C | 0.9800 |
N1—C6 | 1.327 (2) | C10—C11 | 1.410 (2) |
N1—N2 | 1.3752 (19) | C11—C12 | 1.366 (3) |
N2—C8 | 1.383 (2) | C11—H11 | 0.9500 |
N2—C10 | 1.414 (2) | C12—C13 | 1.412 (3) |
N3—C10 | 1.326 (2) | C12—H12 | 0.9500 |
N3—C18 | 1.383 (2) | C13—C18 | 1.418 (2) |
C1—C2 | 1.507 (3) | C13—C14 | 1.422 (2) |
C2—H2A | 0.9800 | C14—C15 | 1.365 (3) |
C2—H2B | 0.9800 | C14—H14 | 0.9500 |
C2—H2C | 0.9800 | C15—C16 | 1.413 (3) |
C3—C4 | 1.507 (3) | C15—H15 | 0.9500 |
C4—H4A | 0.9800 | C16—C17 | 1.376 (3) |
C4—H4B | 0.9800 | C16—H16 | 0.9500 |
C4—H4C | 0.9800 | C17—C18 | 1.411 (2) |
C5—C6 | 1.491 (2) | C17—H17 | 0.9500 |
C5—H5A | 0.9800 | ||
O3—Zn—O1 | 115.05 (6) | H5A—C5—H5C | 109.5 |
O3—Zn—N1 | 100.66 (6) | H5B—C5—H5C | 109.5 |
O1—Zn—N1 | 133.70 (6) | N1—C6—C7 | 109.92 (15) |
O3—Zn—N3 | 130.20 (6) | N1—C6—C5 | 121.23 (16) |
O1—Zn—N3 | 99.32 (5) | C7—C6—C5 | 128.84 (16) |
N1—Zn—N3 | 76.50 (6) | C8—C7—C6 | 107.15 (16) |
O3—Zn—O2 | 100.51 (6) | C8—C7—H7 | 126.4 |
O1—Zn—O2 | 59.65 (5) | C6—C7—H7 | 126.4 |
N1—Zn—O2 | 86.61 (6) | C7—C8—N2 | 106.19 (15) |
N3—Zn—O2 | 128.42 (6) | C7—C8—C9 | 126.73 (16) |
C1—O1—Zn | 96.11 (11) | N2—C8—C9 | 127.07 (15) |
C1—O2—Zn | 83.96 (12) | C8—C9—H9A | 109.5 |
C3—O3—Zn | 113.89 (12) | C8—C9—H9B | 109.5 |
C6—N1—N2 | 106.53 (14) | H9A—C9—H9B | 109.5 |
C6—N1—Zn | 137.00 (12) | C8—C9—H9C | 109.5 |
N2—N1—Zn | 115.34 (10) | H9A—C9—H9C | 109.5 |
N1—N2—C8 | 110.21 (13) | H9B—C9—H9C | 109.5 |
N1—N2—C10 | 116.43 (14) | N3—C10—N2 | 115.77 (14) |
C8—N2—C10 | 133.36 (14) | N3—C10—C11 | 123.55 (16) |
C10—N3—C18 | 118.69 (14) | N2—C10—C11 | 120.68 (15) |
C10—N3—Zn | 114.76 (11) | C12—C11—C10 | 118.35 (16) |
C18—N3—Zn | 126.25 (11) | C12—C11—H11 | 120.8 |
O2—C1—O1 | 120.25 (17) | C10—C11—H11 | 120.8 |
O2—C1—C2 | 120.74 (17) | C11—C12—C13 | 120.42 (16) |
O1—C1—C2 | 119.00 (17) | C11—C12—H12 | 119.8 |
C1—C2—H2A | 109.5 | C13—C12—H12 | 119.8 |
C1—C2—H2B | 109.5 | C12—C13—C18 | 117.95 (16) |
H2A—C2—H2B | 109.5 | C12—C13—C14 | 122.76 (16) |
C1—C2—H2C | 109.5 | C18—C13—C14 | 119.28 (16) |
H2A—C2—H2C | 109.5 | C15—C14—C13 | 120.20 (16) |
H2B—C2—H2C | 109.5 | C15—C14—H14 | 119.9 |
O4—C3—O3 | 123.91 (18) | C13—C14—H14 | 119.9 |
O4—C3—C4 | 120.51 (18) | C14—C15—C16 | 120.16 (17) |
O3—C3—C4 | 115.58 (16) | C14—C15—H15 | 119.9 |
C3—C4—H4A | 109.5 | C16—C15—H15 | 119.9 |
C3—C4—H4B | 109.5 | C17—C16—C15 | 121.15 (17) |
H4A—C4—H4B | 109.5 | C17—C16—H16 | 119.4 |
C3—C4—H4C | 109.5 | C15—C16—H16 | 119.4 |
H4A—C4—H4C | 109.5 | C16—C17—C18 | 119.54 (16) |
H4B—C4—H4C | 109.5 | C16—C17—H17 | 120.2 |
C6—C5—H5A | 109.5 | C18—C17—H17 | 120.2 |
C6—C5—H5B | 109.5 | N3—C18—C17 | 119.36 (15) |
H5A—C5—H5B | 109.5 | N3—C18—C13 | 121.01 (16) |
C6—C5—H5C | 109.5 | C17—C18—C13 | 119.63 (16) |
O3—Zn—O1—C1 | 86.61 (12) | Zn—N1—C6—C7 | −165.93 (13) |
N1—Zn—O1—C1 | −50.21 (13) | N2—N1—C6—C5 | −178.46 (15) |
N3—Zn—O1—C1 | −130.39 (11) | Zn—N1—C6—C5 | 15.0 (3) |
O2—Zn—O1—C1 | −1.07 (10) | N1—C6—C7—C8 | −0.2 (2) |
O3—Zn—O2—C1 | −111.88 (12) | C5—C6—C7—C8 | 178.77 (18) |
O1—Zn—O2—C1 | 1.10 (10) | C6—C7—C8—N2 | −0.27 (19) |
N1—Zn—O2—C1 | 147.89 (12) | C6—C7—C8—C9 | 178.33 (17) |
N3—Zn—O2—C1 | 78.10 (13) | N1—N2—C8—C7 | 0.66 (19) |
O1—Zn—O3—C3 | 65.51 (14) | C10—N2—C8—C7 | 179.74 (17) |
N1—Zn—O3—C3 | −144.72 (13) | N1—N2—C8—C9 | −177.92 (16) |
N3—Zn—O3—C3 | −63.46 (15) | C10—N2—C8—C9 | 1.2 (3) |
O2—Zn—O3—C3 | 126.78 (13) | C18—N3—C10—N2 | 179.97 (14) |
O3—Zn—N1—C6 | −55.42 (18) | Zn—N3—C10—N2 | 5.87 (19) |
O1—Zn—N1—C6 | 85.47 (19) | C18—N3—C10—C11 | −0.4 (3) |
N3—Zn—N1—C6 | 175.51 (19) | Zn—N3—C10—C11 | −174.50 (13) |
O2—Zn—N1—C6 | 44.64 (18) | N1—N2—C10—N3 | 2.6 (2) |
O3—Zn—N1—N2 | 138.85 (11) | C8—N2—C10—N3 | −176.44 (17) |
O1—Zn—N1—N2 | −80.26 (13) | N1—N2—C10—C11 | −177.04 (15) |
N3—Zn—N1—N2 | 9.79 (11) | C8—N2—C10—C11 | 3.9 (3) |
O2—Zn—N1—N2 | −121.08 (12) | N3—C10—C11—C12 | 1.6 (3) |
C6—N1—N2—C8 | −0.80 (18) | N2—C10—C11—C12 | −178.81 (16) |
Zn—N1—N2—C8 | 169.09 (11) | C10—C11—C12—C13 | −1.1 (3) |
C6—N1—N2—C10 | 179.95 (14) | C11—C12—C13—C18 | −0.4 (3) |
Zn—N1—N2—C10 | −10.16 (18) | C11—C12—C13—C14 | −179.51 (17) |
O3—Zn—N3—C10 | −101.18 (13) | C12—C13—C14—C15 | 177.08 (17) |
O1—Zn—N3—C10 | 124.36 (12) | C18—C13—C14—C15 | −2.0 (3) |
N1—Zn—N3—C10 | −8.53 (12) | C13—C14—C15—C16 | 1.1 (3) |
O2—Zn—N3—C10 | 65.92 (14) | C14—C15—C16—C17 | 0.7 (3) |
O3—Zn—N3—C18 | 85.24 (15) | C15—C16—C17—C18 | −1.5 (3) |
O1—Zn—N3—C18 | −49.22 (14) | C10—N3—C18—C17 | 178.31 (15) |
N1—Zn—N3—C18 | 177.89 (15) | Zn—N3—C18—C17 | −8.3 (2) |
O2—Zn—N3—C18 | −107.66 (14) | C10—N3—C18—C13 | −1.2 (2) |
Zn—O2—C1—O1 | −1.76 (17) | Zn—N3—C18—C13 | 172.15 (12) |
Zn—O2—C1—C2 | 177.01 (16) | C16—C17—C18—N3 | −179.02 (16) |
Zn—O1—C1—O2 | 2.01 (19) | C16—C17—C18—C13 | 0.5 (3) |
Zn—O1—C1—C2 | −176.78 (14) | C12—C13—C18—N3 | 1.6 (2) |
Zn—O3—C3—O4 | 5.5 (2) | C14—C13—C18—N3 | −179.25 (15) |
Zn—O3—C3—C4 | −174.94 (12) | C12—C13—C18—C17 | −177.93 (16) |
N2—N1—C6—C7 | 0.63 (19) | C14—C13—C18—C17 | 1.2 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
C4—H4B···O3i | 0.98 | 2.57 | 3.544 (2) | 176 |
C5—H5A···O2ii | 0.98 | 2.60 | 3.417 (3) | 141 |
C7—H7···O2ii | 0.95 | 2.56 | 3.235 (2) | 128 |
C9—H9C···O4iii | 0.98 | 2.36 | 3.274 (2) | 156 |
C12—H12···O1iv | 0.95 | 2.51 | 3.310 (2) | 142 |
Symmetry codes: (i) −x+2, −y+2, −z+1; (ii) −x+2, −y+1, −z+1; (iii) −x+2, −y+1, −z+2; (iv) −x+1, −y+1, −z+2. |
Experimental details
Crystal data | |
Chemical formula | [Zn(C2H3O2)2(C14H13N3)] |
Mr | 406.73 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 100 |
a, b, c (Å) | 7.6586 (4), 10.7334 (6), 11.5772 (4) |
α, β, γ (°) | 69.437 (4), 81.546 (3), 72.736 (4) |
V (Å3) | 849.93 (7) |
Z | 2 |
Radiation type | Cu Kα |
µ (mm−1) | 2.27 |
Crystal size (mm) | 0.25 × 0.15 × 0.05 |
Data collection | |
Diffractometer | Agilent SuperNova Dual diffractometer with Atlas detector |
Absorption correction | Multi-scan (CrysAlis PRO; Agilent, 2012) |
Tmin, Tmax | 0.617, 1.000 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 6205, 3498, 3322 |
Rint | 0.021 |
(sin θ/λ)max (Å−1) | 0.631 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.030, 0.081, 1.03 |
No. of reflections | 3498 |
No. of parameters | 239 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.67, −0.45 |
Computer programs: CrysAlis PRO (Agilent, 2012), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).
Zn—O1 | 2.0388 (14) | Zn—N1 | 2.0570 (15) |
Zn—O2 | 2.3240 (15) | Zn—N3 | 2.1460 (14) |
Zn—O3 | 1.9397 (13) |
D—H···A | D—H | H···A | D···A | D—H···A |
C4—H4B···O3i | 0.98 | 2.57 | 3.544 (2) | 176 |
C5—H5A···O2ii | 0.98 | 2.60 | 3.417 (3) | 141 |
C7—H7···O2ii | 0.95 | 2.56 | 3.235 (2) | 128 |
C9—H9C···O4iii | 0.98 | 2.36 | 3.274 (2) | 156 |
C12—H12···O1iv | 0.95 | 2.51 | 3.310 (2) | 142 |
Symmetry codes: (i) −x+2, −y+2, −z+1; (ii) −x+2, −y+1, −z+1; (iii) −x+2, −y+1, −z+2; (iv) −x+1, −y+1, −z+2. |
Footnotes
‡Additional correspondence author, e-mail: david.young@ubd.edu.bn.
Acknowledgements
We gratefully acknowledge funding from the Brunei Research Council, and thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (UM.C/HIR/MOHE/SC/3).
References
Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356. CSD CrossRef Web of Science Google Scholar
Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England. Google Scholar
Bai, S.-Q., Young, D. J. & Hor, T. S. A. (2011). Chem. Asian J. 6, 292–304. Web of Science CrossRef CAS PubMed Google Scholar
Bai, S.-Q., Young, A. M., Hu, J. J., Young, D. J., Zhang, X., Zong, Y., Xu, J., Zuo, J.-L. & Hor, T. S. A. (2012). CrystEngComm, 14, 961–971. Web of Science CSD CrossRef CAS Google Scholar
Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Chou, P.-T., Chi, Y., Chung, M.-W. & Lin, C.-C. (2011). Coord. Chem. Rev. 255, 2653–2665. Web of Science CrossRef CAS Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Najib, M. H. bin, Tan, A. L., Young, D. J., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, m571–m572. CSD CrossRef IUCr Journals Google Scholar
Savel'eva, Z. A., Popov, S. A., Klevtsova, R. F., Glinskaya, L. A., Uskov, E. M., Tkachev, A. V. & Larionov, S. V. (2009). Russ. Chem. Bull., Int. Ed. 58, 1837–1840. Google Scholar
Scott, F. L., Crowley, K. M. & Reilly, J. (1952). J. Am. Chem. Soc. 74, 3444–3445. CrossRef CAS Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wang, S. (2001). Coord. Chem. Rev. 215, 79–98. Web of Science CrossRef CAS Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Many ZnII complexes of nitrogen-containing ligands exhibit intense emission at room temperature (Wang, 2001; Chou et al., 2011; Bai et al., 2011; Bai et al., 2012). The title compound was prepared as part of a series of potentially luminescent coordination complexes for use in organic light emitting diode (OLED) materials. We have previously reported the solid-state structure of dichlorido[2-(3,5-dimethyl-1H-pyrazol-1-yl-2)quinoline]zinc(II) (Najib et al., 2012), i.e. the dichlorido analogue of the title compound, (I).
The ZnII atom in (I), Fig. 1, is chelated by quinolinyl- and pyrazolyl-N atoms of the heterocyclic ligand, and three carboxylate-O atoms derived from the monodentate and bidentate carboxylates, Table 1. The resulting N2O3 donor set defines an approximate square pyramid with the Zn atom lying 0.8591 (8) Å out of the plane defined by the O1, O2, N1 and N3 atoms [r.m.s. deviation = 0.1122 Å] in the direction of the O3 atom. The assignment of coordination geometry is quantified by the value of τ = 0.06 which compares to the τ values of 0.0 and 1.0 for ideal square pyramidal and trigonal bipyramidal geometries, respectively (Addison et al., 1984). Significant distortions in the coordination geometry are apparent owing the restricted bite angles of the chelating ligands, i.e. O1—Zn—O2 = 59.65 (5)° and N1—Zn—N3 = 76.50 (6)°. Further distortions are related to the relatively close approach of the O4 atom to Zn, the Zn···O4 separation is 2.858 (2) Å. The five-membered chelate ring is approximately planar with a r.m.s. deviation = 0.088 Å and with maximum deviations of 0.074 (2) and -0.057 (1) Å for the N1 and Zn atoms, respectively. The bidentate ligand is planar with the dihedral angle between the quinolinyl and pyrazolyl rings being 2.14 (6)°.
Molecules are consolidated into a three-dimensional architecture by C—H···O interactions, Fig. 2 and Table 2.