metal-organic compounds
[2-(1-{2-[Azanidyl(ethylsulfanyl)methylidene-κN]hydrazin-1-ylidene-κN1}ethyl)phenolato-κO](pyridine-κN)nickel(II)
aDepartment of Chemistry, School of Sciences, Ferdowsi University of Mashhad, 91775-1436 Mashhad, Iran, bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and cChemistry Department and Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: edward.tiekink@gmail.com
The NiII atom in the title complex, [Ni(C11H13N3OS)(C5H5N)], exists within a square-planar N3O donor set provided by N,N′,O atoms of the dianionic tridentate ligand and a pyridine N atom. The maximum deviation from the ideal geometry is seen in the N—Ni—N five-membered chelate bite angle of 83.28 (12)°. The pyridine molecule forms a dihedral angle of 44.43 (6)° with the N3O donor set. Supramolecular stacks along the a axis mediated by alternating π–π interactions between the pyridine and five- [centroid–centroid distance = 3.4784 (16) Å] and six-membered [3.4633 (17) Å] chelate rings, feature in the crystal packing.
Related literature
For the complexing ability of S-alkyl of thiosemicarbazone derivatives, see: Ahmadi et al. (2012). For medicinal applications of thiosemicarbazone, see: Dilworth & Hueting (2012). For a related structure, see: Guveli & Ulkuseven (2011).
Experimental
Crystal data
|
|
Data collection: CrysAlis PRO (Agilent, 2012); cell CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).
Supporting information
https://doi.org/10.1107/S1600536812026177/hb6842sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536812026177/hb6842Isup2.hkl
Nickel acetate tetrahydrate (0.25 g, 1.0 mmol) was added to a solution of 1-(2-hydroxyphenyl)ethanone S-ethylisothiosemicarbazone hydrobromide (0.25 g, 1.0 mmol) in ethanol (10 ml). Three drops of pyridine was added to solution. The red solution was heated under reflux for 1 h. Orange prisms were deposited after 3 days, collected by filtration, washed with ethanol, and dried in air. M. pt: 421 K. Yield: 85%.
Carbon-bound H-atoms were placed in calculated positions [C—H = 0.95–0.99 Å, Uiso(H) = 1.2–1.5Ueq(C)] and were included in the
in the riding model approximation. Nitrogen-bound H-atom was refined with N—H = 0.88±0.01 Å and free Uiso.Schiff bases derived from S-alkyl
of thiosemicarbazone comprise an important class of ligands containing sulfur-nitrogen donor atoms for metals. Thus, they are capable of reacting with both transition and some main group metals (Ahmadi et al., 2012) and may be used as therapeutic and imaging agents (Dilworth & Hueting, 2012). Herein, the crystal and molecular structure of the title complex, (I), is described.The NiII atom in (I), Fig. 1, exists within a square planar N3O donor set defined by the N,N,O atoms of the dinegative tridentate ligand and a pyridine-N atom, Table 1. The donor set is planar with a r.m.s. deviation = 0.0323 Å and maximum deviations of 0.0336 (13) and -0.0331 (13) Å for the N3 and N1 atoms, respectively. The Ni atom lies 0.0056 (13) Å out of the plane. The maximum deviations from the ideal geometry are manifested in the N1—Ni—N3 chelate angle of 83.28 (12)°. The pyridine molecule is inclined to the N3O donor set, forming a dihedral angle of 44.43 (6)°. The molecular structure resembles that of the S-methyl ester where the Ni atom is coordinated by Ph3P rather than pyridine (Guveli & Ulkuseven, 2011).
The most notable feature of the crystal packing is the formation of π—π interactions whereby the pyridine links alternating five- [inter-centroid distance = 3.4784 (16) Å, angle of inclination = 4.67 (14)° for 1/2 + x, 1/2 - y, 2 - z] and six-membered [3.4633 (17) Å and 4.13 (13)° for -1/2 + x, 1/2 - y, 2 - z] chelate rings along the a axis, Fig. 2. Stacks assemble without specific interactions between them, Fig. 3.
For the complexing ability of S-alkyl
of thiosemicarbazone derivatives, see: Ahmadi et al. (2012). For medicinal applications of thiosemicarbazone, see: Dilworth & Hueting (2012). For a related structure, see: Guveli & Ulkuseven (2011).Data collection: CrysAlis PRO (Agilent, 2012); cell
CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).[Ni(C11H13N3OS)(C5H5N)] | F(000) = 776 |
Mr = 373.11 | Dx = 1.586 Mg m−3 |
Orthorhombic, P212121 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2ac 2ab | Cell parameters from 2330 reflections |
a = 7.2956 (4) Å | θ = 2.8–27.5° |
b = 9.8463 (5) Å | µ = 1.39 mm−1 |
c = 21.7489 (11) Å | T = 100 K |
V = 1562.33 (14) Å3 | Prism, orange |
Z = 4 | 0.35 × 0.10 × 0.05 mm |
Agilent SuperNova Dual diffractometer with an Atlas detector | 3584 independent reflections |
Radiation source: SuperNova (Mo) X-ray Source | 3130 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.037 |
Detector resolution: 10.4041 pixels mm-1 | θmax = 27.6°, θmin = 2.8° |
ω scan | h = −9→8 |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012) | k = −10→12 |
Tmin = 0.790, Tmax = 1.000 | l = −28→24 |
6002 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.040 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.075 | w = 1/[σ2(Fo2) + (0.0263P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.00 | (Δ/σ)max = 0.001 |
3584 reflections | Δρmax = 0.45 e Å−3 |
213 parameters | Δρmin = −0.39 e Å−3 |
1 restraint | Absolute structure: Flack (1983), 1501 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: −0.028 (16) |
[Ni(C11H13N3OS)(C5H5N)] | V = 1562.33 (14) Å3 |
Mr = 373.11 | Z = 4 |
Orthorhombic, P212121 | Mo Kα radiation |
a = 7.2956 (4) Å | µ = 1.39 mm−1 |
b = 9.8463 (5) Å | T = 100 K |
c = 21.7489 (11) Å | 0.35 × 0.10 × 0.05 mm |
Agilent SuperNova Dual diffractometer with an Atlas detector | 3584 independent reflections |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012) | 3130 reflections with I > 2σ(I) |
Tmin = 0.790, Tmax = 1.000 | Rint = 0.037 |
6002 measured reflections |
R[F2 > 2σ(F2)] = 0.040 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.075 | Δρmax = 0.45 e Å−3 |
S = 1.00 | Δρmin = −0.39 e Å−3 |
3584 reflections | Absolute structure: Flack (1983), 1501 Friedel pairs |
213 parameters | Absolute structure parameter: −0.028 (16) |
1 restraint |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Ni | 0.14271 (5) | 0.31649 (4) | 0.939044 (16) | 0.00822 (10) | |
S1 | 0.36781 (11) | 0.04998 (8) | 0.79776 (3) | 0.01256 (17) | |
O1 | 0.0483 (3) | 0.4726 (2) | 0.97176 (9) | 0.0118 (5) | |
N1 | 0.1406 (4) | 0.3762 (3) | 0.85785 (10) | 0.0089 (5) | |
N2 | 0.2056 (3) | 0.2818 (3) | 0.81453 (12) | 0.0104 (6) | |
N3 | 0.2446 (3) | 0.1623 (3) | 0.90504 (12) | 0.0103 (6) | |
H3n | 0.302 (4) | 0.099 (3) | 0.9257 (13) | 0.021 (10)* | |
N4 | 0.1443 (4) | 0.2372 (3) | 1.01959 (10) | 0.0089 (5) | |
C1 | −0.0040 (4) | 0.5820 (3) | 0.94155 (15) | 0.0099 (6) | |
C2 | −0.0797 (4) | 0.6887 (4) | 0.97594 (14) | 0.0129 (7) | |
H2 | −0.0866 | 0.6793 | 1.0193 | 0.015* | |
C3 | −0.1441 (4) | 0.8058 (3) | 0.94965 (13) | 0.0131 (6) | |
H3 | −0.1943 | 0.8759 | 0.9745 | 0.016* | |
C4 | −0.1351 (4) | 0.8210 (3) | 0.88596 (13) | 0.0149 (6) | |
H4 | −0.1789 | 0.9017 | 0.8671 | 0.018* | |
C5 | −0.0625 (4) | 0.7188 (3) | 0.85051 (14) | 0.0138 (7) | |
H5 | −0.0596 | 0.7300 | 0.8071 | 0.017* | |
C6 | 0.0081 (4) | 0.5972 (3) | 0.87607 (14) | 0.0096 (7) | |
C7 | 0.0840 (4) | 0.4927 (3) | 0.83555 (14) | 0.0092 (7) | |
C8 | 0.0990 (4) | 0.5138 (3) | 0.76748 (13) | 0.0132 (7) | |
H8A | 0.2278 | 0.5071 | 0.7550 | 0.020* | |
H8B | 0.0517 | 0.6039 | 0.7568 | 0.020* | |
H8C | 0.0273 | 0.4442 | 0.7461 | 0.020* | |
C9 | 0.2640 (4) | 0.1738 (4) | 0.84474 (14) | 0.0102 (6) | |
C10 | 0.3791 (5) | −0.0970 (3) | 0.84806 (13) | 0.0132 (7) | |
H10A | 0.4728 | −0.0826 | 0.8803 | 0.016* | |
H10B | 0.2592 | −0.1119 | 0.8682 | 0.016* | |
C11 | 0.4295 (4) | −0.2193 (3) | 0.80864 (15) | 0.0190 (8) | |
H11A | 0.4229 | −0.3020 | 0.8336 | 0.029* | |
H11B | 0.5544 | −0.2081 | 0.7928 | 0.029* | |
H11C | 0.3437 | −0.2264 | 0.7741 | 0.029* | |
C12 | 0.0869 (4) | 0.1084 (3) | 1.02762 (14) | 0.0111 (7) | |
H12 | 0.0466 | 0.0583 | 0.9928 | 0.013* | |
C13 | 0.0843 (4) | 0.0461 (4) | 1.08490 (15) | 0.0188 (8) | |
H13 | 0.0408 | −0.0444 | 1.0892 | 0.023* | |
C14 | 0.1455 (5) | 0.1168 (4) | 1.13532 (14) | 0.0188 (8) | |
H14 | 0.1469 | 0.0759 | 1.1749 | 0.023* | |
C15 | 0.2050 (4) | 0.2491 (4) | 1.12707 (15) | 0.0169 (8) | |
H15 | 0.2485 | 0.3004 | 1.1611 | 0.020* | |
C16 | 0.2005 (4) | 0.3057 (4) | 1.06906 (13) | 0.0125 (7) | |
H16 | 0.2391 | 0.3972 | 1.0641 | 0.015* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ni | 0.01111 (18) | 0.00732 (18) | 0.00623 (17) | 0.00083 (17) | 0.00031 (17) | 0.00024 (17) |
S1 | 0.0188 (4) | 0.0093 (4) | 0.0096 (4) | 0.0025 (4) | 0.0027 (4) | −0.0010 (3) |
O1 | 0.0203 (12) | 0.0087 (12) | 0.0064 (11) | 0.0043 (10) | −0.0002 (9) | 0.0011 (10) |
N1 | 0.0105 (13) | 0.0090 (13) | 0.0072 (12) | −0.0001 (12) | 0.0003 (12) | −0.0036 (10) |
N2 | 0.0151 (13) | 0.0081 (14) | 0.0080 (13) | 0.0013 (10) | 0.0020 (10) | −0.0025 (11) |
N3 | 0.0170 (14) | 0.0078 (16) | 0.0061 (13) | 0.0031 (12) | −0.0001 (10) | −0.0010 (12) |
N4 | 0.0096 (12) | 0.0090 (13) | 0.0081 (12) | 0.0018 (12) | 0.0051 (12) | 0.0002 (10) |
C1 | 0.0061 (14) | 0.0127 (16) | 0.0108 (15) | −0.0014 (11) | −0.0009 (14) | 0.0025 (15) |
C2 | 0.0140 (15) | 0.0141 (16) | 0.0106 (15) | −0.0003 (15) | −0.0003 (12) | −0.0032 (16) |
C3 | 0.0139 (14) | 0.0110 (15) | 0.0144 (15) | 0.0019 (15) | 0.0006 (14) | −0.0033 (14) |
C4 | 0.0167 (15) | 0.0100 (15) | 0.0179 (15) | 0.0051 (17) | −0.0012 (14) | 0.0035 (15) |
C5 | 0.0164 (17) | 0.0152 (18) | 0.0097 (15) | 0.0026 (14) | 0.0003 (13) | 0.0015 (14) |
C6 | 0.0090 (16) | 0.0104 (17) | 0.0093 (15) | −0.0017 (13) | 0.0011 (12) | −0.0011 (14) |
C7 | 0.0066 (15) | 0.0084 (16) | 0.0126 (16) | −0.0021 (12) | −0.0020 (12) | −0.0019 (14) |
C8 | 0.0187 (18) | 0.0131 (17) | 0.0077 (15) | 0.0049 (14) | −0.0025 (13) | 0.0011 (14) |
C9 | 0.0082 (15) | 0.0120 (17) | 0.0104 (15) | −0.0008 (14) | −0.0010 (12) | −0.0025 (16) |
C10 | 0.0174 (18) | 0.0089 (15) | 0.0132 (15) | 0.0047 (14) | 0.0009 (14) | 0.0001 (13) |
C11 | 0.0280 (19) | 0.0109 (18) | 0.0181 (18) | 0.0032 (14) | 0.0036 (15) | 0.0003 (15) |
C12 | 0.0129 (17) | 0.0114 (17) | 0.0090 (15) | −0.0011 (13) | 0.0004 (13) | −0.0012 (14) |
C13 | 0.0182 (18) | 0.0155 (18) | 0.0227 (19) | 0.0041 (14) | 0.0057 (14) | 0.0061 (16) |
C14 | 0.0195 (18) | 0.025 (2) | 0.0120 (16) | 0.0090 (17) | 0.0079 (16) | 0.0119 (15) |
C15 | 0.0157 (18) | 0.025 (2) | 0.0106 (17) | 0.0043 (15) | −0.0012 (13) | −0.0015 (16) |
C16 | 0.0138 (15) | 0.0130 (16) | 0.0107 (15) | 0.0023 (13) | −0.0003 (12) | −0.0031 (16) |
Ni—O1 | 1.828 (2) | C5—C6 | 1.416 (4) |
Ni—N1 | 1.861 (2) | C5—H5 | 0.9500 |
Ni—N3 | 1.845 (3) | C6—C7 | 1.464 (4) |
Ni—N4 | 1.918 (2) | C7—C8 | 1.499 (4) |
S1—C9 | 1.762 (3) | C8—H8A | 0.9800 |
S1—C10 | 1.816 (3) | C8—H8B | 0.9800 |
O1—C1 | 1.318 (4) | C8—H8C | 0.9800 |
N1—C7 | 1.312 (4) | C10—C11 | 1.523 (4) |
N1—N2 | 1.405 (3) | C10—H10A | 0.9900 |
N2—C9 | 1.321 (4) | C10—H10B | 0.9900 |
N3—C9 | 1.324 (4) | C11—H11A | 0.9800 |
N3—H3n | 0.871 (10) | C11—H11B | 0.9800 |
N4—C16 | 1.334 (4) | C11—H11C | 0.9800 |
N4—C12 | 1.347 (4) | C12—C13 | 1.389 (4) |
C1—C2 | 1.403 (4) | C12—H12 | 0.9500 |
C1—C6 | 1.435 (4) | C13—C14 | 1.373 (5) |
C2—C3 | 1.371 (4) | C13—H13 | 0.9500 |
C2—H2 | 0.9500 | C14—C15 | 1.385 (5) |
C3—C4 | 1.395 (4) | C14—H14 | 0.9500 |
C3—H3 | 0.9500 | C15—C16 | 1.380 (4) |
C4—C5 | 1.374 (4) | C15—H15 | 0.9500 |
C4—H4 | 0.9500 | C16—H16 | 0.9500 |
O1—Ni—N3 | 178.07 (11) | C6—C7—C8 | 121.6 (3) |
O1—Ni—N1 | 95.77 (11) | C7—C8—H8A | 109.5 |
N3—Ni—N1 | 83.28 (12) | C7—C8—H8B | 109.5 |
O1—Ni—N4 | 89.37 (10) | H8A—C8—H8B | 109.5 |
N3—Ni—N4 | 91.65 (11) | C7—C8—H8C | 109.5 |
N1—Ni—N4 | 174.40 (12) | H8A—C8—H8C | 109.5 |
C9—S1—C10 | 102.80 (15) | H8B—C8—H8C | 109.5 |
C1—O1—Ni | 127.0 (2) | N2—C9—N3 | 121.8 (3) |
C7—N1—N2 | 115.9 (2) | N2—C9—S1 | 114.1 (2) |
C7—N1—Ni | 129.0 (2) | N3—C9—S1 | 124.2 (3) |
N2—N1—Ni | 115.11 (19) | C11—C10—S1 | 107.6 (2) |
C9—N2—N1 | 107.9 (2) | C11—C10—H10A | 110.2 |
C9—N3—Ni | 111.7 (2) | S1—C10—H10A | 110.2 |
C9—N3—H3n | 121 (2) | C11—C10—H10B | 110.2 |
Ni—N3—H3n | 125 (2) | S1—C10—H10B | 110.2 |
C16—N4—C12 | 117.9 (3) | H10A—C10—H10B | 108.5 |
C16—N4—Ni | 122.2 (2) | C10—C11—H11A | 109.5 |
C12—N4—Ni | 120.0 (2) | C10—C11—H11B | 109.5 |
O1—C1—C2 | 117.4 (3) | H11A—C11—H11B | 109.5 |
O1—C1—C6 | 124.2 (3) | C10—C11—H11C | 109.5 |
C2—C1—C6 | 118.4 (3) | H11A—C11—H11C | 109.5 |
C3—C2—C1 | 122.9 (3) | H11B—C11—H11C | 109.5 |
C3—C2—H2 | 118.6 | N4—C12—C13 | 122.4 (3) |
C1—C2—H2 | 118.6 | N4—C12—H12 | 118.8 |
C2—C3—C4 | 119.2 (3) | C13—C12—H12 | 118.8 |
C2—C3—H3 | 120.4 | C14—C13—C12 | 119.2 (3) |
C4—C3—H3 | 120.4 | C14—C13—H13 | 120.4 |
C5—C4—C3 | 119.8 (3) | C12—C13—H13 | 120.4 |
C5—C4—H4 | 120.1 | C13—C14—C15 | 118.4 (3) |
C3—C4—H4 | 120.1 | C13—C14—H14 | 120.8 |
C4—C5—C6 | 122.6 (3) | C15—C14—H14 | 120.8 |
C4—C5—H5 | 118.7 | C16—C15—C14 | 119.4 (3) |
C6—C5—H5 | 118.7 | C16—C15—H15 | 120.3 |
C5—C6—C1 | 117.1 (3) | C14—C15—H15 | 120.3 |
C5—C6—C7 | 119.7 (3) | N4—C16—C15 | 122.7 (3) |
C1—C6—C7 | 123.2 (3) | N4—C16—H16 | 118.7 |
N1—C7—C6 | 120.8 (3) | C15—C16—H16 | 118.7 |
N1—C7—C8 | 117.6 (3) | ||
N1—Ni—O1—C1 | 2.0 (3) | O1—C1—C6—C7 | −1.2 (5) |
N4—Ni—O1—C1 | −175.7 (2) | C2—C1—C6—C7 | −179.9 (3) |
O1—Ni—N1—C7 | −1.2 (3) | N2—N1—C7—C6 | 178.1 (2) |
N3—Ni—N1—C7 | −179.5 (3) | Ni—N1—C7—C6 | −0.5 (4) |
O1—Ni—N1—N2 | −179.8 (2) | N2—N1—C7—C8 | −1.6 (4) |
N3—Ni—N1—N2 | 1.9 (2) | Ni—N1—C7—C8 | 179.9 (2) |
C7—N1—N2—C9 | 177.3 (3) | C5—C6—C7—N1 | −176.1 (3) |
Ni—N1—N2—C9 | −3.9 (3) | C1—C6—C7—N1 | 2.0 (5) |
N1—Ni—N3—C9 | 0.7 (2) | C5—C6—C7—C8 | 3.5 (4) |
N4—Ni—N3—C9 | 178.3 (2) | C1—C6—C7—C8 | −178.3 (3) |
O1—Ni—N4—C16 | −43.2 (2) | N1—N2—C9—N3 | 4.8 (4) |
N3—Ni—N4—C16 | 135.2 (2) | N1—N2—C9—S1 | −175.12 (19) |
O1—Ni—N4—C12 | 136.6 (2) | Ni—N3—C9—N2 | −3.5 (4) |
N3—Ni—N4—C12 | −45.0 (2) | Ni—N3—C9—S1 | 176.45 (17) |
Ni—O1—C1—C2 | 177.51 (19) | C10—S1—C9—N2 | −166.5 (2) |
Ni—O1—C1—C6 | −1.1 (4) | C10—S1—C9—N3 | 13.6 (3) |
O1—C1—C2—C3 | −178.0 (3) | C9—S1—C10—C11 | 168.3 (2) |
C6—C1—C2—C3 | 0.7 (5) | C16—N4—C12—C13 | 0.1 (4) |
C1—C2—C3—C4 | 0.1 (5) | Ni—N4—C12—C13 | −179.7 (2) |
C2—C3—C4—C5 | 0.1 (5) | N4—C12—C13—C14 | −1.2 (5) |
C3—C4—C5—C6 | −1.2 (5) | C12—C13—C14—C15 | 1.0 (5) |
C4—C5—C6—C1 | 1.9 (5) | C13—C14—C15—C16 | 0.2 (5) |
C4—C5—C6—C7 | −179.8 (3) | C12—N4—C16—C15 | 1.2 (5) |
O1—C1—C6—C5 | 177.0 (3) | Ni—N4—C16—C15 | −179.0 (2) |
C2—C1—C6—C5 | −1.6 (4) | C14—C15—C16—N4 | −1.4 (5) |
Experimental details
Crystal data | |
Chemical formula | [Ni(C11H13N3OS)(C5H5N)] |
Mr | 373.11 |
Crystal system, space group | Orthorhombic, P212121 |
Temperature (K) | 100 |
a, b, c (Å) | 7.2956 (4), 9.8463 (5), 21.7489 (11) |
V (Å3) | 1562.33 (14) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 1.39 |
Crystal size (mm) | 0.35 × 0.10 × 0.05 |
Data collection | |
Diffractometer | Agilent SuperNova Dual diffractometer with an Atlas detector |
Absorption correction | Multi-scan (CrysAlis PRO; Agilent, 2012) |
Tmin, Tmax | 0.790, 1.000 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 6002, 3584, 3130 |
Rint | 0.037 |
(sin θ/λ)max (Å−1) | 0.651 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.040, 0.075, 1.00 |
No. of reflections | 3584 |
No. of parameters | 213 |
No. of restraints | 1 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.45, −0.39 |
Absolute structure | Flack (1983), 1501 Friedel pairs |
Absolute structure parameter | −0.028 (16) |
Computer programs: CrysAlis PRO (Agilent, 2012), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).
Footnotes
‡Additional correspondence author, e-mail: r.takjoo@um.ac.ir.
Acknowledgements
The authors are grateful to the Ferdowsi University of Mashhad for financial support, and thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (UM·C/HIR/MOHE/SC/3).
References
Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England. Google Scholar
Ahmadi, M., Mague, T. J., Akbari, A. & Takjoo, R. (2012). Polyhedron, doi:10.1016/j.poly.2012.05.004. Google Scholar
Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Dilworth, J. R. & Hueting, R. (2012). Inorg. Chim. Acta, 389, 3–15. Web of Science CrossRef CAS Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Guveli, S. & Ulkuseven, B. (2011). Polyhedron, 30, 1385–1388. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Schiff bases derived from S-alkyl esters of thiosemicarbazone comprise an important class of ligands containing sulfur-nitrogen donor atoms for metals. Thus, they are capable of reacting with both transition and some main group metals (Ahmadi et al., 2012) and may be used as therapeutic and imaging agents (Dilworth & Hueting, 2012). Herein, the crystal and molecular structure of the title complex, (I), is described.
The NiII atom in (I), Fig. 1, exists within a square planar N3O donor set defined by the N,N,O atoms of the dinegative tridentate ligand and a pyridine-N atom, Table 1. The donor set is planar with a r.m.s. deviation = 0.0323 Å and maximum deviations of 0.0336 (13) and -0.0331 (13) Å for the N3 and N1 atoms, respectively. The Ni atom lies 0.0056 (13) Å out of the plane. The maximum deviations from the ideal geometry are manifested in the N1—Ni—N3 chelate angle of 83.28 (12)°. The pyridine molecule is inclined to the N3O donor set, forming a dihedral angle of 44.43 (6)°. The molecular structure resembles that of the S-methyl ester where the Ni atom is coordinated by Ph3P rather than pyridine (Guveli & Ulkuseven, 2011).
The most notable feature of the crystal packing is the formation of π—π interactions whereby the pyridine links alternating five- [inter-centroid distance = 3.4784 (16) Å, angle of inclination = 4.67 (14)° for symmetry operation: 1/2 + x, 1/2 - y, 2 - z] and six-membered [3.4633 (17) Å and 4.13 (13)° for -1/2 + x, 1/2 - y, 2 - z] chelate rings along the a axis, Fig. 2. Stacks assemble without specific interactions between them, Fig. 3.