metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

[2-(1-{2-[Aza­nid­yl(ethyl­sulfan­yl)methyl­­idene-κN]hydrazin-1-yl­­idene-κN1}eth­yl)phenolato-κO](pyridine-κN)nickel(II)

aDepartment of Chemistry, School of Sciences, Ferdowsi University of Mashhad, 91775-1436 Mashhad, Iran, bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and cChemistry Department and Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 9 June 2012; accepted 9 June 2012; online 16 June 2012)

The NiII atom in the title complex, [Ni(C11H13N3OS)(C5H5N)], exists within a square-planar N3O donor set provided by N,N′,O atoms of the dianionic tridentate ligand and a pyridine N atom. The maximum deviation from the ideal geometry is seen in the N—Ni—N five-membered chelate bite angle of 83.28 (12)°. The pyridine mol­ecule forms a dihedral angle of 44.43 (6)° with the N3O donor set. Supra­molecular stacks along the a axis mediated by alternating ππ inter­actions between the pyridine and five- [centroid–centroid distance = 3.4784 (16) Å] and six-membered [3.4633 (17) Å] chelate rings, feature in the crystal packing.

Related literature

For the complexing ability of S-alkyl esters of thio­semicarbazone derivatives, see: Ahmadi et al. (2012[Ahmadi, M., Mague, T. J., Akbari, A. & Takjoo, R. (2012). Polyhedron, doi:10.1016/j.poly.2012.05.004.]). For medicinal applications of thio­semicarbazone, see: Dilworth & Hueting (2012[Dilworth, J. R. & Hueting, R. (2012). Inorg. Chim. Acta, 389, 3-15.]). For a related structure, see: Guveli & Ulkuseven (2011[Guveli, S. & Ulkuseven, B. (2011). Polyhedron, 30, 1385-1388.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C11H13N3OS)(C5H5N)]

  • Mr = 373.11

  • Orthorhombic, P 21 21 21

  • a = 7.2956 (4) Å

  • b = 9.8463 (5) Å

  • c = 21.7489 (11) Å

  • V = 1562.33 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.39 mm−1

  • T = 100 K

  • 0.35 × 0.10 × 0.05 mm

Data collection
  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.790, Tmax = 1.000

  • 6002 measured reflections

  • 3584 independent reflections

  • 3130 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.075

  • S = 1.00

  • 3584 reflections

  • 213 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.45 e Å−3

  • Δρmin = −0.39 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1501 Friedel pairs

  • Flack parameter: −0.028 (16)

Table 1
Selected bond lengths (Å)

Ni—O1 1.828 (2)
Ni—N1 1.861 (2)
Ni—N3 1.845 (3)
Ni—N4 1.918 (2)

Data collection: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Schiff bases derived from S-alkyl esters of thiosemicarbazone comprise an important class of ligands containing sulfur-nitrogen donor atoms for metals. Thus, they are capable of reacting with both transition and some main group metals (Ahmadi et al., 2012) and may be used as therapeutic and imaging agents (Dilworth & Hueting, 2012). Herein, the crystal and molecular structure of the title complex, (I), is described.

The NiII atom in (I), Fig. 1, exists within a square planar N3O donor set defined by the N,N,O atoms of the dinegative tridentate ligand and a pyridine-N atom, Table 1. The donor set is planar with a r.m.s. deviation = 0.0323 Å and maximum deviations of 0.0336 (13) and -0.0331 (13) Å for the N3 and N1 atoms, respectively. The Ni atom lies 0.0056 (13) Å out of the plane. The maximum deviations from the ideal geometry are manifested in the N1—Ni—N3 chelate angle of 83.28 (12)°. The pyridine molecule is inclined to the N3O donor set, forming a dihedral angle of 44.43 (6)°. The molecular structure resembles that of the S-methyl ester where the Ni atom is coordinated by Ph3P rather than pyridine (Guveli & Ulkuseven, 2011).

The most notable feature of the crystal packing is the formation of ππ interactions whereby the pyridine links alternating five- [inter-centroid distance = 3.4784 (16) Å, angle of inclination = 4.67 (14)° for symmetry operation: 1/2 + x, 1/2 - y, 2 - z] and six-membered [3.4633 (17) Å and 4.13 (13)° for -1/2 + x, 1/2 - y, 2 - z] chelate rings along the a axis, Fig. 2. Stacks assemble without specific interactions between them, Fig. 3.

Related literature top

For the complexing ability of S-alkyl esters of thiosemicarbazone derivatives, see: Ahmadi et al. (2012). For medicinal applications of thiosemicarbazone, see: Dilworth & Hueting (2012). For a related structure, see: Guveli & Ulkuseven (2011).

Experimental top

Nickel acetate tetrahydrate (0.25 g, 1.0 mmol) was added to a solution of 1-(2-hydroxyphenyl)ethanone S-ethylisothiosemicarbazone hydrobromide (0.25 g, 1.0 mmol) in ethanol (10 ml). Three drops of pyridine was added to solution. The red solution was heated under reflux for 1 h. Orange prisms were deposited after 3 days, collected by filtration, washed with ethanol, and dried in air. M. pt: 421 K. Yield: 85%.

Refinement top

Carbon-bound H-atoms were placed in calculated positions [C—H = 0.95–0.99 Å, Uiso(H) = 1.2–1.5Ueq(C)] and were included in the refinement in the riding model approximation. Nitrogen-bound H-atom was refined with N—H = 0.88±0.01 Å and free Uiso.

Structure description top

Schiff bases derived from S-alkyl esters of thiosemicarbazone comprise an important class of ligands containing sulfur-nitrogen donor atoms for metals. Thus, they are capable of reacting with both transition and some main group metals (Ahmadi et al., 2012) and may be used as therapeutic and imaging agents (Dilworth & Hueting, 2012). Herein, the crystal and molecular structure of the title complex, (I), is described.

The NiII atom in (I), Fig. 1, exists within a square planar N3O donor set defined by the N,N,O atoms of the dinegative tridentate ligand and a pyridine-N atom, Table 1. The donor set is planar with a r.m.s. deviation = 0.0323 Å and maximum deviations of 0.0336 (13) and -0.0331 (13) Å for the N3 and N1 atoms, respectively. The Ni atom lies 0.0056 (13) Å out of the plane. The maximum deviations from the ideal geometry are manifested in the N1—Ni—N3 chelate angle of 83.28 (12)°. The pyridine molecule is inclined to the N3O donor set, forming a dihedral angle of 44.43 (6)°. The molecular structure resembles that of the S-methyl ester where the Ni atom is coordinated by Ph3P rather than pyridine (Guveli & Ulkuseven, 2011).

The most notable feature of the crystal packing is the formation of ππ interactions whereby the pyridine links alternating five- [inter-centroid distance = 3.4784 (16) Å, angle of inclination = 4.67 (14)° for symmetry operation: 1/2 + x, 1/2 - y, 2 - z] and six-membered [3.4633 (17) Å and 4.13 (13)° for -1/2 + x, 1/2 - y, 2 - z] chelate rings along the a axis, Fig. 2. Stacks assemble without specific interactions between them, Fig. 3.

For the complexing ability of S-alkyl esters of thiosemicarbazone derivatives, see: Ahmadi et al. (2012). For medicinal applications of thiosemicarbazone, see: Dilworth & Hueting (2012). For a related structure, see: Guveli & Ulkuseven (2011).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing displacement ellipsoids at the 70% probability level.
[Figure 2] Fig. 2. Supramolecular stack along the a axis in (I) mediated by ππ interactions, shown as purple dashed lines.
[Figure 3] Fig. 3. A view of the unit-cell contents of (I) in projection down the a axis. The ππ interactions are shown as purple dashed lines.
[2-(1-{2-[Azanidyl(ethylsulfanyl)methylidene-κN]hydrazin-1- ylidene-κN1}ethyl)phenolato-κO](pyridine-κN)nickel(II) top
Crystal data top
[Ni(C11H13N3OS)(C5H5N)]F(000) = 776
Mr = 373.11Dx = 1.586 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 2330 reflections
a = 7.2956 (4) Åθ = 2.8–27.5°
b = 9.8463 (5) ŵ = 1.39 mm1
c = 21.7489 (11) ÅT = 100 K
V = 1562.33 (14) Å3Prism, orange
Z = 40.35 × 0.10 × 0.05 mm
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
3584 independent reflections
Radiation source: SuperNova (Mo) X-ray Source3130 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.037
Detector resolution: 10.4041 pixels mm-1θmax = 27.6°, θmin = 2.8°
ω scanh = 98
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
k = 1012
Tmin = 0.790, Tmax = 1.000l = 2824
6002 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.075 w = 1/[σ2(Fo2) + (0.0263P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max = 0.001
3584 reflectionsΔρmax = 0.45 e Å3
213 parametersΔρmin = 0.39 e Å3
1 restraintAbsolute structure: Flack (1983), 1501 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.028 (16)
Crystal data top
[Ni(C11H13N3OS)(C5H5N)]V = 1562.33 (14) Å3
Mr = 373.11Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 7.2956 (4) ŵ = 1.39 mm1
b = 9.8463 (5) ÅT = 100 K
c = 21.7489 (11) Å0.35 × 0.10 × 0.05 mm
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
3584 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
3130 reflections with I > 2σ(I)
Tmin = 0.790, Tmax = 1.000Rint = 0.037
6002 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.040H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.075Δρmax = 0.45 e Å3
S = 1.00Δρmin = 0.39 e Å3
3584 reflectionsAbsolute structure: Flack (1983), 1501 Friedel pairs
213 parametersAbsolute structure parameter: 0.028 (16)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni0.14271 (5)0.31649 (4)0.939044 (16)0.00822 (10)
S10.36781 (11)0.04998 (8)0.79776 (3)0.01256 (17)
O10.0483 (3)0.4726 (2)0.97176 (9)0.0118 (5)
N10.1406 (4)0.3762 (3)0.85785 (10)0.0089 (5)
N20.2056 (3)0.2818 (3)0.81453 (12)0.0104 (6)
N30.2446 (3)0.1623 (3)0.90504 (12)0.0103 (6)
H3n0.302 (4)0.099 (3)0.9257 (13)0.021 (10)*
N40.1443 (4)0.2372 (3)1.01959 (10)0.0089 (5)
C10.0040 (4)0.5820 (3)0.94155 (15)0.0099 (6)
C20.0797 (4)0.6887 (4)0.97594 (14)0.0129 (7)
H20.08660.67931.01930.015*
C30.1441 (4)0.8058 (3)0.94965 (13)0.0131 (6)
H30.19430.87590.97450.016*
C40.1351 (4)0.8210 (3)0.88596 (13)0.0149 (6)
H40.17890.90170.86710.018*
C50.0625 (4)0.7188 (3)0.85051 (14)0.0138 (7)
H50.05960.73000.80710.017*
C60.0081 (4)0.5972 (3)0.87607 (14)0.0096 (7)
C70.0840 (4)0.4927 (3)0.83555 (14)0.0092 (7)
C80.0990 (4)0.5138 (3)0.76748 (13)0.0132 (7)
H8A0.22780.50710.75500.020*
H8B0.05170.60390.75680.020*
H8C0.02730.44420.74610.020*
C90.2640 (4)0.1738 (4)0.84474 (14)0.0102 (6)
C100.3791 (5)0.0970 (3)0.84806 (13)0.0132 (7)
H10A0.47280.08260.88030.016*
H10B0.25920.11190.86820.016*
C110.4295 (4)0.2193 (3)0.80864 (15)0.0190 (8)
H11A0.42290.30200.83360.029*
H11B0.55440.20810.79280.029*
H11C0.34370.22640.77410.029*
C120.0869 (4)0.1084 (3)1.02762 (14)0.0111 (7)
H120.04660.05830.99280.013*
C130.0843 (4)0.0461 (4)1.08490 (15)0.0188 (8)
H130.04080.04441.08920.023*
C140.1455 (5)0.1168 (4)1.13532 (14)0.0188 (8)
H140.14690.07591.17490.023*
C150.2050 (4)0.2491 (4)1.12707 (15)0.0169 (8)
H150.24850.30041.16110.020*
C160.2005 (4)0.3057 (4)1.06906 (13)0.0125 (7)
H160.23910.39721.06410.015*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni0.01111 (18)0.00732 (18)0.00623 (17)0.00083 (17)0.00031 (17)0.00024 (17)
S10.0188 (4)0.0093 (4)0.0096 (4)0.0025 (4)0.0027 (4)0.0010 (3)
O10.0203 (12)0.0087 (12)0.0064 (11)0.0043 (10)0.0002 (9)0.0011 (10)
N10.0105 (13)0.0090 (13)0.0072 (12)0.0001 (12)0.0003 (12)0.0036 (10)
N20.0151 (13)0.0081 (14)0.0080 (13)0.0013 (10)0.0020 (10)0.0025 (11)
N30.0170 (14)0.0078 (16)0.0061 (13)0.0031 (12)0.0001 (10)0.0010 (12)
N40.0096 (12)0.0090 (13)0.0081 (12)0.0018 (12)0.0051 (12)0.0002 (10)
C10.0061 (14)0.0127 (16)0.0108 (15)0.0014 (11)0.0009 (14)0.0025 (15)
C20.0140 (15)0.0141 (16)0.0106 (15)0.0003 (15)0.0003 (12)0.0032 (16)
C30.0139 (14)0.0110 (15)0.0144 (15)0.0019 (15)0.0006 (14)0.0033 (14)
C40.0167 (15)0.0100 (15)0.0179 (15)0.0051 (17)0.0012 (14)0.0035 (15)
C50.0164 (17)0.0152 (18)0.0097 (15)0.0026 (14)0.0003 (13)0.0015 (14)
C60.0090 (16)0.0104 (17)0.0093 (15)0.0017 (13)0.0011 (12)0.0011 (14)
C70.0066 (15)0.0084 (16)0.0126 (16)0.0021 (12)0.0020 (12)0.0019 (14)
C80.0187 (18)0.0131 (17)0.0077 (15)0.0049 (14)0.0025 (13)0.0011 (14)
C90.0082 (15)0.0120 (17)0.0104 (15)0.0008 (14)0.0010 (12)0.0025 (16)
C100.0174 (18)0.0089 (15)0.0132 (15)0.0047 (14)0.0009 (14)0.0001 (13)
C110.0280 (19)0.0109 (18)0.0181 (18)0.0032 (14)0.0036 (15)0.0003 (15)
C120.0129 (17)0.0114 (17)0.0090 (15)0.0011 (13)0.0004 (13)0.0012 (14)
C130.0182 (18)0.0155 (18)0.0227 (19)0.0041 (14)0.0057 (14)0.0061 (16)
C140.0195 (18)0.025 (2)0.0120 (16)0.0090 (17)0.0079 (16)0.0119 (15)
C150.0157 (18)0.025 (2)0.0106 (17)0.0043 (15)0.0012 (13)0.0015 (16)
C160.0138 (15)0.0130 (16)0.0107 (15)0.0023 (13)0.0003 (12)0.0031 (16)
Geometric parameters (Å, º) top
Ni—O11.828 (2)C5—C61.416 (4)
Ni—N11.861 (2)C5—H50.9500
Ni—N31.845 (3)C6—C71.464 (4)
Ni—N41.918 (2)C7—C81.499 (4)
S1—C91.762 (3)C8—H8A0.9800
S1—C101.816 (3)C8—H8B0.9800
O1—C11.318 (4)C8—H8C0.9800
N1—C71.312 (4)C10—C111.523 (4)
N1—N21.405 (3)C10—H10A0.9900
N2—C91.321 (4)C10—H10B0.9900
N3—C91.324 (4)C11—H11A0.9800
N3—H3n0.871 (10)C11—H11B0.9800
N4—C161.334 (4)C11—H11C0.9800
N4—C121.347 (4)C12—C131.389 (4)
C1—C21.403 (4)C12—H120.9500
C1—C61.435 (4)C13—C141.373 (5)
C2—C31.371 (4)C13—H130.9500
C2—H20.9500C14—C151.385 (5)
C3—C41.395 (4)C14—H140.9500
C3—H30.9500C15—C161.380 (4)
C4—C51.374 (4)C15—H150.9500
C4—H40.9500C16—H160.9500
O1—Ni—N3178.07 (11)C6—C7—C8121.6 (3)
O1—Ni—N195.77 (11)C7—C8—H8A109.5
N3—Ni—N183.28 (12)C7—C8—H8B109.5
O1—Ni—N489.37 (10)H8A—C8—H8B109.5
N3—Ni—N491.65 (11)C7—C8—H8C109.5
N1—Ni—N4174.40 (12)H8A—C8—H8C109.5
C9—S1—C10102.80 (15)H8B—C8—H8C109.5
C1—O1—Ni127.0 (2)N2—C9—N3121.8 (3)
C7—N1—N2115.9 (2)N2—C9—S1114.1 (2)
C7—N1—Ni129.0 (2)N3—C9—S1124.2 (3)
N2—N1—Ni115.11 (19)C11—C10—S1107.6 (2)
C9—N2—N1107.9 (2)C11—C10—H10A110.2
C9—N3—Ni111.7 (2)S1—C10—H10A110.2
C9—N3—H3n121 (2)C11—C10—H10B110.2
Ni—N3—H3n125 (2)S1—C10—H10B110.2
C16—N4—C12117.9 (3)H10A—C10—H10B108.5
C16—N4—Ni122.2 (2)C10—C11—H11A109.5
C12—N4—Ni120.0 (2)C10—C11—H11B109.5
O1—C1—C2117.4 (3)H11A—C11—H11B109.5
O1—C1—C6124.2 (3)C10—C11—H11C109.5
C2—C1—C6118.4 (3)H11A—C11—H11C109.5
C3—C2—C1122.9 (3)H11B—C11—H11C109.5
C3—C2—H2118.6N4—C12—C13122.4 (3)
C1—C2—H2118.6N4—C12—H12118.8
C2—C3—C4119.2 (3)C13—C12—H12118.8
C2—C3—H3120.4C14—C13—C12119.2 (3)
C4—C3—H3120.4C14—C13—H13120.4
C5—C4—C3119.8 (3)C12—C13—H13120.4
C5—C4—H4120.1C13—C14—C15118.4 (3)
C3—C4—H4120.1C13—C14—H14120.8
C4—C5—C6122.6 (3)C15—C14—H14120.8
C4—C5—H5118.7C16—C15—C14119.4 (3)
C6—C5—H5118.7C16—C15—H15120.3
C5—C6—C1117.1 (3)C14—C15—H15120.3
C5—C6—C7119.7 (3)N4—C16—C15122.7 (3)
C1—C6—C7123.2 (3)N4—C16—H16118.7
N1—C7—C6120.8 (3)C15—C16—H16118.7
N1—C7—C8117.6 (3)
N1—Ni—O1—C12.0 (3)O1—C1—C6—C71.2 (5)
N4—Ni—O1—C1175.7 (2)C2—C1—C6—C7179.9 (3)
O1—Ni—N1—C71.2 (3)N2—N1—C7—C6178.1 (2)
N3—Ni—N1—C7179.5 (3)Ni—N1—C7—C60.5 (4)
O1—Ni—N1—N2179.8 (2)N2—N1—C7—C81.6 (4)
N3—Ni—N1—N21.9 (2)Ni—N1—C7—C8179.9 (2)
C7—N1—N2—C9177.3 (3)C5—C6—C7—N1176.1 (3)
Ni—N1—N2—C93.9 (3)C1—C6—C7—N12.0 (5)
N1—Ni—N3—C90.7 (2)C5—C6—C7—C83.5 (4)
N4—Ni—N3—C9178.3 (2)C1—C6—C7—C8178.3 (3)
O1—Ni—N4—C1643.2 (2)N1—N2—C9—N34.8 (4)
N3—Ni—N4—C16135.2 (2)N1—N2—C9—S1175.12 (19)
O1—Ni—N4—C12136.6 (2)Ni—N3—C9—N23.5 (4)
N3—Ni—N4—C1245.0 (2)Ni—N3—C9—S1176.45 (17)
Ni—O1—C1—C2177.51 (19)C10—S1—C9—N2166.5 (2)
Ni—O1—C1—C61.1 (4)C10—S1—C9—N313.6 (3)
O1—C1—C2—C3178.0 (3)C9—S1—C10—C11168.3 (2)
C6—C1—C2—C30.7 (5)C16—N4—C12—C130.1 (4)
C1—C2—C3—C40.1 (5)Ni—N4—C12—C13179.7 (2)
C2—C3—C4—C50.1 (5)N4—C12—C13—C141.2 (5)
C3—C4—C5—C61.2 (5)C12—C13—C14—C151.0 (5)
C4—C5—C6—C11.9 (5)C13—C14—C15—C160.2 (5)
C4—C5—C6—C7179.8 (3)C12—N4—C16—C151.2 (5)
O1—C1—C6—C5177.0 (3)Ni—N4—C16—C15179.0 (2)
C2—C1—C6—C51.6 (4)C14—C15—C16—N41.4 (5)

Experimental details

Crystal data
Chemical formula[Ni(C11H13N3OS)(C5H5N)]
Mr373.11
Crystal system, space groupOrthorhombic, P212121
Temperature (K)100
a, b, c (Å)7.2956 (4), 9.8463 (5), 21.7489 (11)
V3)1562.33 (14)
Z4
Radiation typeMo Kα
µ (mm1)1.39
Crystal size (mm)0.35 × 0.10 × 0.05
Data collection
DiffractometerAgilent SuperNova Dual
diffractometer with an Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2012)
Tmin, Tmax0.790, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
6002, 3584, 3130
Rint0.037
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.075, 1.00
No. of reflections3584
No. of parameters213
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.45, 0.39
Absolute structureFlack (1983), 1501 Friedel pairs
Absolute structure parameter0.028 (16)

Computer programs: CrysAlis PRO (Agilent, 2012), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Selected bond lengths (Å) top
Ni—O11.828 (2)Ni—N31.845 (3)
Ni—N11.861 (2)Ni—N41.918 (2)
 

Footnotes

Additional correspondence author, e-mail: r.takjoo@um.ac.ir.

Acknowledgements

The authors are grateful to the Ferdowsi University of Mashhad for financial support, and thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (UM·C/HIR/MOHE/SC/3).

References

First citationAgilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationAhmadi, M., Mague, T. J., Akbari, A. & Takjoo, R. (2012). Polyhedron, doi:10.1016/j.poly.2012.05.004.  Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationDilworth, J. R. & Hueting, R. (2012). Inorg. Chim. Acta, 389, 3–15.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGuveli, S. & Ulkuseven, B. (2011). Polyhedron, 30, 1385–1388.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds