organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-(3-Fluoro­anilino)thieno[2,3-b]pyridine-6-carb­­oxy­lic acid

aFundação Oswaldo Cruz, Instituto de Tecnologia em Fármacos, Departamento de Síntese Orgânica, Manguinhos, CEP 21041-250, Rio de Janeiro, RJ, Brazil, bUniversidade Federal Fluminense, Instituto de Química, Departamento de Química Orgânica, Programa de Pós-Graduação em Química Orgânica, Campus do Valonguinho, CEP 24210-150, Niterói, RJ, Brazil, cCHEMSOL, 1 Harcourt Road, Aberdeen AB15 5NY, Scotland, dCentro de Desenvolvimento Tecnológico em Saúde (CDTS), Fundação Oswaldo Cruz (FIOCRUZ), Casa Amarela, Campus de Manguinhos, Av. Brasil 4365, 21040-900 Rio de Janeiro, RJ, Brazil, and eDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 9 June 2012; accepted 15 June 2012; online 27 June 2012)

In the title compound, C14H9FN2O2S, the thieno[2,3-b]pyridine residue is almost planar (r.m.s. deviation = 0.0194 Å), with the carb­oxy­lic acid group [dihedral angle = 11.9 (3)°] and the benzene ring [71.1 (4)°] being twisted out of this plane to different extents. An intra­molecular N—H⋯O(carbon­yl) hydrogen bond closes an S(6) ring. Supra­molecular chains along [01-1] mediated by O—H⋯N(pyridine) hydrogen bonds feature in the crystal. A three-dimensional architecture is completed by ππ inter­actions occurring between the benzene ring and the two rings of the thieno[2,3-b]pyridine residue [centroid–centroid distances = 3.6963 (13) and 3.3812 (13) Å]. The F atom is disordered over the two meta sites in a near statistical ratio [0.545 (5):0.455 (5)].

Related literature

For the biological activity of 4-(aryl­amino)­thieno[2,3-b]pyridine-5-carb­oxy­lic acids, see: Bernardino et al. (2007[Bernardino, A. M. R., de Azevedo, A. R., Pinheiro, L. C. S., Borges, J. C., Carvalho, V. L., Miranda, M. D., de Meneses, M. D. F., Nascimento, M., Ferreira, D., Rebello, M. A., Silva, V. A. G. G. & Frugulhetti, I. C. P. P. (2007). Med. Chem. Res. 16, 352-369.]); Pinheiro et al. (2008[Pinheiro, L. C. S., Borges, J. Ç., Oliveira, C. D., Ferreira, V. F., Romeiro, G. A., Marques, I. P., Abreu, P. A., Frugulheti, I. C. P. P., Rodrigues, C. R., Albuquerque, M. G., Castro, H. C. & Bernardino, A. M. R. (2008). ARKIVOC, pp. 77-87.]). For the synthesis, see: Leal et al. (2008[Leal, B., Afonso, I. F., Rodrigues, C. R., Abreu, P. A., Garrett, R., Pinheiro, L. C. S., Azevedo, A. R., Borges, J. C., Vegi, P. F., Santos, C. C. C., da Silveira, F. C. A., Cabral, L. M., Frugulhetti, I. C. P. P., Bernardino, A. M. R., Santos, D. O. & Castro, H. C. (2008). Bioorg. Med. Chem. 16, 8196-8204.]).

[Scheme 1]

Experimental

Crystal data
  • C14H9FN2O2S

  • Mr = 288.29

  • Orthorhombic, P n a 21

  • a = 17.0666 (6) Å

  • b = 8.7147 (3) Å

  • c = 7.9931 (2) Å

  • V = 1188.82 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.29 mm−1

  • T = 120 K

  • 0.66 × 0.24 × 0.17 mm

Data collection
  • Bruker–Nonius Roper CCD camera on κ-goniostat diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2007[Sheldrick, G. M. (2007). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.788, Tmax = 1.000

  • 10259 measured reflections

  • 2643 independent reflections

  • 2376 reflections with I > 2σ(I)

  • Rint = 0.058

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.087

  • S = 1.06

  • 2643 reflections

  • 197 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.42 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1181 Friedel pairs

  • Flack parameter: 0.15 (9)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1o⋯N1i 0.86 (2) 1.84 (2) 2.681 (2) 167 (3)
N2—H2n⋯O2 0.88 (2) 1.85 (2) 2.635 (2) 147 (2)
Symmetry code: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: COLLECT (Hooft, 1998[Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Among the reported thienopyridine derivatives is a family of 4-(arylamino)thieno[2,3-b]pyridine-5-carboxylic acids, whose anti-virial and anti-bacterial activities have been investigated (Leal et al., 2008; Bernardino et al., 2007; Pinheiro et al., 2008). The structure of one of these derivatives, the title compound (I), is now reported.

In (I), Fig. 1, the nine atoms comprising the thieno[2,3-b]pyridine fused ring system are planar with a r.m.s. deviation of 0.0194 Å and maximum deviations of 0.0343 (19) and -0.0227 (16) for the C7 and C6 atoms, respectively. The carboxylic acid residue is twisted out of this plane, forming a dihedral angle of 11.9 (3)°, and the terminal benzene ring, which is orientated towards the thienyl ring, is almost orthogonal, the dihedral angle being 71.1 (4)°. There is an intramolecular NH···O(carbonyl) hydrogen bond, Table 1, which closes an S(6) loop.

In the crystal packing, supramolecular chains along [0 1 - 1] are formed via O—H···N(pyridyl) hydrogen bonds, Fig. 2 and Table 1. These are consolidated into a three-dimensional architecture via ππ interactions whereby the thieno[2,3-b]pyridine residue is straddled by a symmetry related benzene ring [inter-centroid (thienyl···benzene) distance = 3.6963 (13) Å, angle of inclination = 1.41 (12)°, and inter-centroid (pyridyl···benzene) distance = 3.3812 (13) Å and angle of inclination = 3.25 (11)° for symmetry operation -x, 2 - y, -1/2 + z], Fig. 3.

Related literature top

For the biological activity of 4-(arylamino)thieno[2,3-b]pyridine-5-carboxylic acids, see: Bernardino et al. (2007); Pinheiro et al. (2008). For the synthesis, see: Leal et al. (2008).

Experimental top

The title compound was prepared as reported (Leal et al., 2008). The dark orange blade used in the structure determination was grown from its toluene/acetonitrile solution.

Refinement top

The C-bound H atoms were geometrically placed (C—H = 0.95 Å) and refined as riding with Uiso(H) = 1.2Ueq(C). The O– and N-bound H atoms were located from a difference map and refined with distance restraints of O—H = 0.84±0.01 and N—H = 0.88±0.01 Å, and with Uiso(H) = zUeq(carrier atom); z = 1.5 for O and z = 1.2 for N. The F1 atom is disordered over two position. Each site was refined with individual anisotropic displacement parameters. The major component refined to a site occupancy factor = 0.545 (5). The (022) reflection was omitted from the final refinement owing to poor agreement.

Structure description top

Among the reported thienopyridine derivatives is a family of 4-(arylamino)thieno[2,3-b]pyridine-5-carboxylic acids, whose anti-virial and anti-bacterial activities have been investigated (Leal et al., 2008; Bernardino et al., 2007; Pinheiro et al., 2008). The structure of one of these derivatives, the title compound (I), is now reported.

In (I), Fig. 1, the nine atoms comprising the thieno[2,3-b]pyridine fused ring system are planar with a r.m.s. deviation of 0.0194 Å and maximum deviations of 0.0343 (19) and -0.0227 (16) for the C7 and C6 atoms, respectively. The carboxylic acid residue is twisted out of this plane, forming a dihedral angle of 11.9 (3)°, and the terminal benzene ring, which is orientated towards the thienyl ring, is almost orthogonal, the dihedral angle being 71.1 (4)°. There is an intramolecular NH···O(carbonyl) hydrogen bond, Table 1, which closes an S(6) loop.

In the crystal packing, supramolecular chains along [0 1 - 1] are formed via O—H···N(pyridyl) hydrogen bonds, Fig. 2 and Table 1. These are consolidated into a three-dimensional architecture via ππ interactions whereby the thieno[2,3-b]pyridine residue is straddled by a symmetry related benzene ring [inter-centroid (thienyl···benzene) distance = 3.6963 (13) Å, angle of inclination = 1.41 (12)°, and inter-centroid (pyridyl···benzene) distance = 3.3812 (13) Å and angle of inclination = 3.25 (11)° for symmetry operation -x, 2 - y, -1/2 + z], Fig. 3.

For the biological activity of 4-(arylamino)thieno[2,3-b]pyridine-5-carboxylic acids, see: Bernardino et al. (2007); Pinheiro et al. (2008). For the synthesis, see: Leal et al. (2008).

Computing details top

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); data reduction: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. A view of the supramolecular chain in (I) sustained by O—H···N (orange dashed lines) hydrogen bonds.
[Figure 3] Fig. 3. A view in projection down the c axis of the unit-cell contents for (I). The O—H···N and ππ interactions are shown as orange and purple dashed lines, respectively.
4-(3-Fluoroanilino)thieno[2,3-b]pyridine-6-carboxylic acid top
Crystal data top
C14H9FN2O2SF(000) = 592
Mr = 288.29Dx = 1.611 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 1601 reflections
a = 17.0666 (6) Åθ = 1.0–27.5°
b = 8.7147 (3) ŵ = 0.29 mm1
c = 7.9931 (2) ÅT = 120 K
V = 1188.82 (7) Å3Blade, dark-orange
Z = 40.66 × 0.24 × 0.17 mm
Data collection top
Bruker–Nonius Roper CCD camera on κ-goniostat
diffractometer
2643 independent reflections
Radiation source: Bruker-Nonius FR591 rotating anode2376 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.058
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 3.5°
φ & ω scansh = 2222
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
k = 1111
Tmin = 0.788, Tmax = 1.000l = 109
10259 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.087 w = 1/[σ2(Fo2) + (0.0375P)2 + 0.2847P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
2643 reflectionsΔρmax = 0.20 e Å3
197 parametersΔρmin = 0.42 e Å3
3 restraintsAbsolute structure: Flack (1983), 1181 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.15 (9)
Crystal data top
C14H9FN2O2SV = 1188.82 (7) Å3
Mr = 288.29Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 17.0666 (6) ŵ = 0.29 mm1
b = 8.7147 (3) ÅT = 120 K
c = 7.9931 (2) Å0.66 × 0.24 × 0.17 mm
Data collection top
Bruker–Nonius Roper CCD camera on κ-goniostat
diffractometer
2643 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
2376 reflections with I > 2σ(I)
Tmin = 0.788, Tmax = 1.000Rint = 0.058
10259 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.035H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.087Δρmax = 0.20 e Å3
S = 1.06Δρmin = 0.42 e Å3
2643 reflectionsAbsolute structure: Flack (1983), 1181 Friedel pairs
197 parametersAbsolute structure parameter: 0.15 (9)
3 restraints
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.02466 (3)0.49277 (6)0.56709 (9)0.02149 (14)
O10.26956 (9)0.89190 (18)1.0209 (2)0.0246 (4)
H1O0.2865 (16)0.959 (2)1.090 (3)0.037*
O20.17443 (8)1.06688 (18)1.0208 (2)0.0254 (4)
N10.15569 (10)0.5951 (2)0.7157 (2)0.0185 (4)
N20.03616 (11)0.9821 (2)0.9068 (3)0.0214 (4)
H2N0.0711 (11)1.041 (3)0.956 (3)0.026*
C10.18990 (13)0.7023 (2)0.8094 (3)0.0184 (5)
H10.24450.69180.82980.022*
C20.15232 (12)0.8288 (2)0.8800 (2)0.0161 (4)
C30.07089 (13)0.8526 (2)0.8490 (3)0.0167 (4)
C40.03239 (12)0.7380 (2)0.7525 (3)0.0154 (4)
C50.04725 (13)0.7259 (2)0.6927 (3)0.0190 (5)
H50.08720.79770.71950.023*
C60.05889 (12)0.6029 (2)0.5952 (3)0.0214 (5)
H60.10810.57840.54640.026*
C70.07779 (12)0.6170 (2)0.6923 (3)0.0172 (4)
C80.19891 (12)0.9401 (3)0.9793 (3)0.0198 (5)
C90.04436 (13)1.0256 (3)0.9067 (3)0.0197 (5)
C100.06524 (14)1.1599 (3)0.8256 (3)0.0222 (5)
H100.02791.21530.76130.027*
C120.19667 (14)1.1360 (3)0.9319 (4)0.0341 (6)
H120.24871.17410.94060.041*
C140.09947 (13)0.9457 (3)1.0002 (3)0.0245 (5)
H140.08570.85311.05540.029*
C110.14136 (15)1.2115 (3)0.8400 (3)0.0315 (6)0.545 (5)
C130.17454 (14)1.0032 (3)1.0113 (3)0.0310 (6)0.545 (5)
H130.21220.94911.07610.037*0.545 (5)
F10.16627 (15)1.3395 (3)0.7761 (3)0.0330 (9)0.545 (5)
C11'0.14136 (15)1.2115 (3)0.8400 (3)0.0315 (6)0.455 (5)
H110.15591.30320.78380.038*0.455 (5)
C13'0.17454 (14)1.0032 (3)1.0113 (3)0.0310 (6)0.455 (5)
F1'0.23113 (18)0.9534 (4)1.1023 (4)0.0392 (12)0.455 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0221 (2)0.0178 (2)0.0245 (3)0.0018 (2)0.0014 (3)0.0059 (2)
O10.0187 (7)0.0219 (8)0.0332 (9)0.0019 (6)0.0077 (6)0.0077 (7)
O20.0198 (8)0.0194 (8)0.0370 (10)0.0001 (6)0.0014 (7)0.0092 (7)
N10.0181 (9)0.0169 (9)0.0205 (9)0.0010 (7)0.0011 (7)0.0018 (8)
N20.0165 (9)0.0178 (9)0.0300 (11)0.0007 (7)0.0026 (8)0.0070 (8)
C10.0175 (10)0.0170 (10)0.0208 (12)0.0006 (8)0.0013 (8)0.0037 (9)
C20.0162 (10)0.0149 (9)0.0171 (11)0.0008 (8)0.0004 (8)0.0001 (8)
C30.0198 (11)0.0139 (10)0.0163 (10)0.0010 (8)0.0016 (8)0.0019 (9)
C40.0194 (10)0.0147 (10)0.0123 (10)0.0002 (8)0.0006 (8)0.0015 (8)
C50.0172 (10)0.0201 (11)0.0197 (11)0.0003 (8)0.0007 (8)0.0030 (9)
C60.0203 (10)0.0213 (10)0.0226 (12)0.0011 (8)0.0030 (9)0.0002 (9)
C70.0204 (10)0.0145 (10)0.0165 (10)0.0013 (8)0.0003 (8)0.0006 (8)
C80.0184 (11)0.0211 (11)0.0199 (12)0.0006 (9)0.0015 (9)0.0005 (9)
C90.0178 (10)0.0219 (11)0.0194 (11)0.0016 (9)0.0033 (8)0.0071 (9)
C100.0214 (12)0.0197 (11)0.0256 (12)0.0001 (10)0.0029 (9)0.0040 (10)
C120.0170 (11)0.0419 (15)0.0434 (15)0.0045 (11)0.0050 (11)0.0252 (13)
C140.0249 (12)0.0257 (11)0.0230 (12)0.0059 (10)0.0003 (10)0.0021 (10)
C110.0325 (14)0.0242 (12)0.0379 (15)0.0084 (11)0.0111 (12)0.0113 (11)
C130.0208 (12)0.0425 (16)0.0296 (14)0.0062 (10)0.0022 (10)0.0162 (12)
F10.0327 (16)0.0212 (14)0.0452 (18)0.0071 (12)0.0064 (12)0.0067 (12)
C11'0.0325 (14)0.0242 (12)0.0379 (15)0.0084 (11)0.0111 (12)0.0113 (11)
C13'0.0208 (12)0.0425 (16)0.0296 (14)0.0062 (10)0.0022 (10)0.0162 (12)
F1'0.0281 (18)0.046 (2)0.044 (2)0.0163 (14)0.0099 (15)0.0147 (18)
Geometric parameters (Å, º) top
S1—C71.731 (2)C6—H60.9500
S1—C61.733 (2)C9—C141.388 (3)
O1—C81.319 (3)C9—C101.384 (3)
O1—H1O0.852 (10)C10—C11'1.380 (3)
O2—C81.227 (3)C10—C111.380 (3)
N1—C11.332 (3)C10—H100.9500
N1—C71.356 (3)C12—C11'1.365 (4)
N2—C31.356 (3)C12—C111.365 (4)
N2—C91.426 (3)C12—C13'1.373 (4)
N2—H2N0.881 (10)C12—C131.373 (4)
C1—C21.394 (3)C12—H120.9500
C1—H10.9500C14—C13'1.378 (3)
C2—C31.427 (3)C14—C131.378 (3)
C2—C81.484 (3)C14—H140.9500
C3—C41.422 (3)C11—F11.298 (4)
C4—C71.394 (3)C13—H130.9500
C4—C51.445 (3)C11'—H110.9500
C5—C61.340 (3)C13'—F1'1.284 (4)
C5—H50.9500
C7—S1—C690.55 (10)C11'—C10—C9118.6 (2)
C8—O1—H1O104.9 (19)C11—C10—C9118.6 (2)
C1—N1—C7114.12 (18)C11'—C10—H10120.7
C3—N2—C9129.99 (18)C11—C10—H10120.7
C3—N2—H2N110.0 (17)C9—C10—H10120.7
C9—N2—H2N119.9 (17)C11'—C12—C110.0 (3)
N1—C1—C2125.5 (2)C11'—C12—C13'117.7 (2)
N1—C1—H1117.3C11—C12—C13'117.7 (2)
C2—C1—H1117.3C11'—C12—C13117.7 (2)
C1—C2—C3119.5 (2)C11—C12—C13117.7 (2)
C1—C2—C8119.12 (19)C13'—C12—C130.0 (2)
C3—C2—C8121.30 (19)C11'—C12—H12121.1
N2—C3—C4124.5 (2)C11—C12—H12121.1
N2—C3—C2119.2 (2)C13'—C12—H12121.1
C4—C3—C2116.25 (18)C13—C12—H12121.1
C7—C4—C3117.46 (18)C9—C14—C13'118.9 (2)
C7—C4—C5110.70 (19)C9—C14—C13118.9 (2)
C3—C4—C5131.71 (19)C13'—C14—C130.00 (7)
C6—C5—C4113.0 (2)C9—C14—H14120.6
C6—C5—H5123.5C13'—C14—H14120.6
C4—C5—H5123.5C13—C14—H14120.6
C5—C6—S1113.36 (17)F1—C11—C12113.5 (3)
C5—C6—H6123.3F1—C11—C10123.8 (3)
S1—C6—H6123.3C12—C11—C10122.6 (2)
N1—C7—C4127.12 (19)C12—C13—C14122.1 (2)
N1—C7—S1120.36 (16)C12—C13—H13118.9
C4—C7—S1112.43 (15)C14—C13—H13118.9
O2—C8—O1122.0 (2)C12—C11'—C10122.6 (2)
O2—C8—C2123.44 (19)C12—C11'—H11118.7
O1—C8—C2114.57 (19)C10—C11'—H11118.7
C14—C9—C10120.1 (2)F1'—C13'—C12109.9 (3)
C14—C9—N2121.3 (2)F1'—C13'—C14127.8 (3)
C10—C9—N2118.2 (2)C12—C13'—C14122.1 (2)
C11'—C10—C110.0 (2)
C7—N1—C1—C20.3 (3)C10—C9—C14—C13'0.5 (3)
N1—C1—C2—C31.9 (3)N2—C9—C14—C13'172.4 (2)
N1—C1—C2—C8178.91 (19)C10—C9—C14—C130.5 (3)
C9—N2—C3—C49.1 (4)N2—C9—C14—C13172.4 (2)
C9—N2—C3—C2173.2 (2)C11'—C12—C11—F10 (97)
C1—C2—C3—N2174.7 (2)C13'—C12—C11—F1176.8 (2)
C8—C2—C3—N22.2 (3)C13—C12—C11—F1176.8 (2)
C1—C2—C3—C43.1 (3)C11'—C12—C11—C100 (100)
C8—C2—C3—C4179.95 (19)C13'—C12—C11—C100.4 (4)
N2—C3—C4—C7175.4 (2)C13—C12—C11—C100.4 (4)
C2—C3—C4—C72.3 (3)C11'—C10—C11—F10 (100)
N2—C3—C4—C50.0 (4)C9—C10—C11—F1176.5 (3)
C2—C3—C4—C5177.7 (2)C11'—C10—C11—C120 (75)
C7—C4—C5—C60.2 (3)C9—C10—C11—C120.4 (4)
C3—C4—C5—C6175.9 (2)C11'—C12—C13—C140.1 (4)
C4—C5—C6—S10.3 (3)C11—C12—C13—C140.1 (4)
C7—S1—C6—C50.20 (18)C13'—C12—C13—C140 (100)
C1—N1—C7—C41.2 (3)C9—C14—C13—C120.6 (4)
C1—N1—C7—S1177.51 (16)C13'—C14—C13—C120 (100)
C3—C4—C7—N10.2 (3)C11—C12—C11'—C100 (100)
C5—C4—C7—N1176.5 (2)C13'—C12—C11'—C100.4 (4)
C3—C4—C7—S1176.41 (16)C13—C12—C11'—C100.4 (4)
C5—C4—C7—S10.1 (2)C11—C10—C11'—C120 (75)
C6—S1—C7—N1176.90 (18)C9—C10—C11'—C120.4 (4)
C6—S1—C7—C40.07 (17)C11'—C12—C13'—F1'174.9 (3)
C1—C2—C8—O2166.8 (2)C11—C12—C13'—F1'174.9 (3)
C3—C2—C8—O210.2 (3)C13—C12—C13'—F1'0 (59)
C1—C2—C8—O113.5 (3)C11'—C12—C13'—C140.1 (4)
C3—C2—C8—O1169.52 (19)C11—C12—C13'—C140.1 (4)
C3—N2—C9—C1465.4 (4)C13—C12—C13'—C140 (100)
C3—N2—C9—C10121.5 (3)C9—C14—C13'—F1'173.6 (3)
C14—C9—C10—C11'0.0 (3)C13—C14—C13'—F1'0 (79)
N2—C9—C10—C11'173.1 (2)C9—C14—C13'—C120.6 (4)
C14—C9—C10—C110.0 (3)C13—C14—C13'—C120 (100)
N2—C9—C10—C11173.1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1o···N1i0.86 (2)1.84 (2)2.681 (2)167 (3)
N2—H2n···O20.88 (2)1.85 (2)2.635 (2)147 (2)
Symmetry code: (i) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC14H9FN2O2S
Mr288.29
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)120
a, b, c (Å)17.0666 (6), 8.7147 (3), 7.9931 (2)
V3)1188.82 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.29
Crystal size (mm)0.66 × 0.24 × 0.17
Data collection
DiffractometerBruker–Nonius Roper CCD camera on κ-goniostat
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2007)
Tmin, Tmax0.788, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
10259, 2643, 2376
Rint0.058
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.087, 1.06
No. of reflections2643
No. of parameters197
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.20, 0.42
Absolute structureFlack (1983), 1181 Friedel pairs
Absolute structure parameter0.15 (9)

Computer programs: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1o···N1i0.86 (2)1.84 (2)2.681 (2)167 (3)
N2—H2n···O20.88 (2)1.852 (19)2.635 (2)147 (2)
Symmetry code: (i) x+1/2, y+1/2, z+1/2.
 

Footnotes

Additional correspondence author, e-mail: j.wardell@abdn.ac.uk.

Acknowledgements

The use of the EPSRC X-ray crystallographic service at the University of Southampton, England, and the valuable assistance of the staff there is gratefully acknowledged. JLW acknowledges support from CAPES (Brazil). We also thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (UM.C/HIR/MOHE/SC/12).

References

First citationBernardino, A. M. R., de Azevedo, A. R., Pinheiro, L. C. S., Borges, J. C., Carvalho, V. L., Miranda, M. D., de Meneses, M. D. F., Nascimento, M., Ferreira, D., Rebello, M. A., Silva, V. A. G. G. & Frugulhetti, I. C. P. P. (2007). Med. Chem. Res. 16, 352–369.  Web of Science CrossRef CAS Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationLeal, B., Afonso, I. F., Rodrigues, C. R., Abreu, P. A., Garrett, R., Pinheiro, L. C. S., Azevedo, A. R., Borges, J. C., Vegi, P. F., Santos, C. C. C., da Silveira, F. C. A., Cabral, L. M., Frugulhetti, I. C. P. P., Bernardino, A. M. R., Santos, D. O. & Castro, H. C. (2008). Bioorg. Med. Chem. 16, 8196–8204.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPinheiro, L. C. S., Borges, J. Ç., Oliveira, C. D., Ferreira, V. F., Romeiro, G. A., Marques, I. P., Abreu, P. A., Frugulheti, I. C. P. P., Rodrigues, C. R., Albuquerque, M. G., Castro, H. C. & Bernardino, A. M. R. (2008). ARKIVOC, pp. 77–87.  CrossRef Google Scholar
First citationSheldrick, G. M. (2007). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds