metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

[2-(1-{2-[Aza­nid­yl(ethyl­sulfan­yl)methyl­­idene-κN]hydrazin-1-yl­­idene-κN1}eth­yl)phenolato-κO](di­methyl sulfoxide-κO)dioxidomolybdenum(VI)

aDepartment of Chemistry, School of Sciences, Ferdowsi University of Mashhad, 91775-1436 Mashhad, Iran, bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and cChemistry Department and Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 11 June 2012; accepted 12 June 2012; online 20 June 2012)

The MoVI atom in the title complex, [Mo(C11H13N3OS)O2(C2H6OS)], is N,N′,O-coordinated by the dianionic tridentate ligand, two mutually cis oxide O atoms and a dimethyl sulfoxide O atom, defining a distorted octa­hedral N2O4 donor set. The most prominent feature of the crystal packing is the formation of inversion dimers via pairs of N—H⋯O hydrogen bonds and eight-membered {⋯HNMoO}2 loops. The Schiff base ligand is disordered over two orientations of equal occupancy.

Related literature

For the coordination chemistry and medicinal applications of thio­semicarbazone derivatives, see: Ahmadi et al. (2012[Ahmadi, M., Mague, T. J., Akbari, A. & Takjoo, R. (2012). Polyhedron, doi:10.1016/j.poly.2012.05.004.]); Dilworth & Hueting (2012[Dilworth, J. R. & Hueting, R. (2012). Inorg. Chim. Acta, 389, 3-15.]). For related structures, see: Ceylan et al. (2009[Ceylan, B. I., Kurt, Y. D. & Ulkuseven, B. (2009). Rev. Inorg. Chem. 29, 49-67.]); Takjoo et al. (2012[Takjoo, R., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, m911.]).

[Scheme 1]

Experimental

Crystal data
  • [Mo(C11H13N3OS)O2(C2H6OS)]

  • Mr = 441.37

  • Triclinic, [P \overline 1]

  • a = 8.0411 (3) Å

  • b = 9.7243 (3) Å

  • c = 12.0849 (4) Å

  • α = 73.387 (3)°

  • β = 84.465 (3)°

  • γ = 86.077 (3)°

  • V = 900.47 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.98 mm−1

  • T = 100 K

  • 0.35 × 0.15 × 0.05 mm

Data collection
  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.691, Tmax = 1.000

  • 13626 measured reflections

  • 4149 independent reflections

  • 3811 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.072

  • S = 1.03

  • 4149 reflections

  • 234 parameters

  • 100 restraints

  • H-atom parameters constrained

  • Δρmax = 0.73 e Å−3

  • Δρmin = −0.87 e Å−3

Table 1
Selected bond lengths (Å)

Mo—O1 2.011 (7)
Mo—O2 2.2747 (16)
Mo—O3 1.7133 (16)
Mo—O4 1.7021 (18)
Mo—N1 2.193 (6)
Mo—N3 1.933 (15)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3n⋯O3i 0.88 2.23 3.090 (15) 166
N3′—H3n′⋯O3i 0.88 1.94 2.816 (16) 171
Symmetry code: (i) -x+1, -y+1, -z+1.

Data collection: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Schiff bases derived from S-alkyl esters of thiosemicarbazone are capable of complexing both transition and main group metals (Ahmadi et al., 2012) and these may be used as therapeutic and imaging agents (Dilworth & Hueting, 2012). Herein, the crystal and molecular structure of the title complex, (I), is described, which was determined as a part of on-going studies (Takjoo et al., 2012).

The MoVI atom in (I), Fig. 1, exists within a distorted octahedral N2O4 donor set defined by the N,N,O atoms of the dinegative tridentate ligand, two oxo-O atoms and a DMSO-O atom, Table 1; the oxo-O atoms are cis. The dihedral angle between the five- and six-membered chelate rings is 11.34 (19) Å indicating some bending in the Schiff base ligand (the comparable angle in the second conformation of the disordered ligand is 7.81 (17)°). The molecular structure resembles that of the complex where the Mo atom is coordinated by methanol rather than DMSO (Ceylan et al., 2009).

While whole molecule disorder of the Schiff base ligands precludes a detailed analysis of the crystal packing, a common feature of both orientations is the formation of N—H···O hydrogen bonds between centrosymmetrically related molecules to form a dimeric aggregate via an eight-membered {···HNMoO}2 synthon, Fig. 2 and Table 2.

Related literature top

For the coordination chemistry and medicinal applications of thiosemicarbazone derivatives, see: Ahmadi et al. (2012); Dilworth & Hueting (2012). For related structures, see: Ceylan et al. (2009); Takjoo et al. (2012).

Experimental top

An ethanolic solution (3 ml) of molybdenyl acetylacetonate (0.33 g, 1 mmol) was added drop-wise to an ethanolic solution (3 ml) of 1-(2-hydroxyphenyl)ethanone S-ethylisothiosemicarbazone hydrobromide (0.32 g, 1 mmol) under stirring. The clear solution was stirred for 1 h and yellow precipitate was appeared. The product was then filtered, washed with cold ethanol and dried in air. The resulting compound was dissolved in DMSO (2 ml) and by slow evaporation of the solvent orange prisms appeared after one week. M.pt. 427 K. Yield: 33%.

Refinement top

Nitrogen- and carbon-bound H-atoms were placed in calculated positions [N—H = 0.88 Å and C—H = 0.95–0.99 Å, Uiso(H) = 1.2–1.5Ueq(N,C)] and were included in the refinement in the riding model approximation.

The dianion is disordered over two positions in a 1:1 ratio. The benzene rings were refined as rigid hexagons of 1.39 Å sides and other pairs of bond distances were restrained to within 0.01 Å of each other. The anisotropic displacement parameters (restrained to be nearly isotropic) of the primed atoms were set to those of the unprimed ones.

Structure description top

Schiff bases derived from S-alkyl esters of thiosemicarbazone are capable of complexing both transition and main group metals (Ahmadi et al., 2012) and these may be used as therapeutic and imaging agents (Dilworth & Hueting, 2012). Herein, the crystal and molecular structure of the title complex, (I), is described, which was determined as a part of on-going studies (Takjoo et al., 2012).

The MoVI atom in (I), Fig. 1, exists within a distorted octahedral N2O4 donor set defined by the N,N,O atoms of the dinegative tridentate ligand, two oxo-O atoms and a DMSO-O atom, Table 1; the oxo-O atoms are cis. The dihedral angle between the five- and six-membered chelate rings is 11.34 (19) Å indicating some bending in the Schiff base ligand (the comparable angle in the second conformation of the disordered ligand is 7.81 (17)°). The molecular structure resembles that of the complex where the Mo atom is coordinated by methanol rather than DMSO (Ceylan et al., 2009).

While whole molecule disorder of the Schiff base ligands precludes a detailed analysis of the crystal packing, a common feature of both orientations is the formation of N—H···O hydrogen bonds between centrosymmetrically related molecules to form a dimeric aggregate via an eight-membered {···HNMoO}2 synthon, Fig. 2 and Table 2.

For the coordination chemistry and medicinal applications of thiosemicarbazone derivatives, see: Ahmadi et al. (2012); Dilworth & Hueting (2012). For related structures, see: Ceylan et al. (2009); Takjoo et al. (2012).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. A view of the centrosymmetric aggregate in (I) mediated by N—H···O hydrogen bonds, shown as blue dashed lines. A similar arragement is found for the second conformation of the Schiff base ligand.
[2-(1-{2-[Azanidyl(ethylsulfanyl)methylidene-κN]hydrazin-1-ylidene- κN1}ethyl)phenolato-κO](dimethyl sulfoxide-κO)dioxidomolybdenum(VI) top
Crystal data top
[Mo(C11H13N3OS)O2(C2H6OS)]Z = 2
Mr = 441.37F(000) = 448
Triclinic, P1Dx = 1.628 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.0411 (3) ÅCell parameters from 8498 reflections
b = 9.7243 (3) Åθ = 2.4–27.5°
c = 12.0849 (4) ŵ = 0.98 mm1
α = 73.387 (3)°T = 100 K
β = 84.465 (3)°Prism, orange
γ = 86.077 (3)°0.35 × 0.15 × 0.05 mm
V = 900.47 (5) Å3
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
4149 independent reflections
Radiation source: SuperNova (Mo) X-ray Source3811 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.037
Detector resolution: 10.4041 pixels mm-1θmax = 27.6°, θmin = 2.4°
ω scanh = 1010
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
k = 1212
Tmin = 0.691, Tmax = 1.000l = 1515
13626 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.072H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0278P)2 + 1.0887P]
where P = (Fo2 + 2Fc2)/3
4149 reflections(Δ/σ)max = 0.001
234 parametersΔρmax = 0.73 e Å3
100 restraintsΔρmin = 0.87 e Å3
Crystal data top
[Mo(C11H13N3OS)O2(C2H6OS)]γ = 86.077 (3)°
Mr = 441.37V = 900.47 (5) Å3
Triclinic, P1Z = 2
a = 8.0411 (3) ÅMo Kα radiation
b = 9.7243 (3) ŵ = 0.98 mm1
c = 12.0849 (4) ÅT = 100 K
α = 73.387 (3)°0.35 × 0.15 × 0.05 mm
β = 84.465 (3)°
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
4149 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
3811 reflections with I > 2σ(I)
Tmin = 0.691, Tmax = 1.000Rint = 0.037
13626 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.030100 restraints
wR(F2) = 0.072H-atom parameters constrained
S = 1.03Δρmax = 0.73 e Å3
4149 reflectionsΔρmin = 0.87 e Å3
234 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Mo0.39828 (2)0.62362 (2)0.284368 (16)0.01779 (7)
S20.02453 (7)0.59823 (6)0.30257 (5)0.02079 (13)
O20.13555 (19)0.56941 (17)0.36645 (13)0.0208 (3)
O30.4236 (2)0.67549 (16)0.40557 (15)0.0217 (3)
O40.5828 (2)0.6597 (2)0.20227 (15)0.0370 (5)
C120.1234 (3)0.4305 (3)0.3508 (2)0.0268 (5)
H12A0.06300.36200.31410.040*
H12B0.23930.44410.32960.040*
H12C0.12230.39340.43510.040*
C130.1570 (3)0.6982 (2)0.3810 (2)0.0221 (5)
H13A0.11760.79590.36310.033*
H13B0.15470.65150.46430.033*
H13C0.27170.70220.35880.033*
S10.4023 (2)0.14457 (15)0.38075 (13)0.0307 (3)0.50
O10.2528 (12)0.7850 (6)0.1938 (4)0.0162 (9)0.50
N10.3150 (11)0.5172 (5)0.1633 (5)0.0149 (10)0.50
N20.3133 (9)0.3667 (6)0.2053 (4)0.0203 (9)0.50
N30.439 (3)0.4201 (15)0.3527 (10)0.0137 (16)0.50
H3n0.49520.38930.41490.016*0.50
C10.2566 (5)0.8284 (3)0.07631 (19)0.0176 (9)0.50
C20.2480 (5)0.9757 (3)0.0241 (3)0.0275 (8)0.50
H20.24121.04050.07030.033*0.50
C30.2494 (5)1.0281 (3)0.0957 (3)0.0329 (9)0.50
H30.24351.12870.13140.040*0.50
C40.2593 (5)0.9332 (4)0.16331 (19)0.0335 (9)0.50
H40.26020.96910.24520.040*0.50
C50.2679 (5)0.7860 (3)0.1111 (3)0.0278 (8)0.50
H50.27470.72110.15730.033*0.50
C60.2666 (4)0.7335 (2)0.0087 (3)0.0183 (8)0.50
C70.2706 (7)0.5771 (6)0.0576 (4)0.0188 (9)0.50
C80.2263 (7)0.4788 (6)0.0121 (4)0.0277 (8)0.50
H8A0.16570.39760.03910.042*0.50
H8B0.32910.44310.04720.042*0.50
H8C0.15570.53260.07320.042*0.50
C90.3817 (12)0.3257 (6)0.3040 (5)0.0185 (11)0.50
C100.3280 (7)0.0531 (6)0.2844 (5)0.0306 (9)0.50
H10A0.36940.10190.20380.037*0.50
H10B0.37590.04670.30390.037*0.50
C110.1370 (8)0.0490 (7)0.2911 (6)0.0422 (12)0.50
H11A0.10110.06210.21340.063*0.50
H11B0.08660.12630.32220.063*0.50
H11C0.10130.04390.34190.063*0.50
S1'0.3906 (2)0.12666 (15)0.43708 (13)0.0307 (3)0.50
O1'0.2699 (12)0.7538 (6)0.1728 (4)0.0162 (9)0.50
N1'0.3129 (11)0.4692 (6)0.1856 (5)0.0149 (10)0.50
N2'0.3038 (9)0.3236 (6)0.2459 (4)0.0203 (9)0.50
N3'0.434 (3)0.4047 (15)0.3800 (10)0.0137 (16)0.50
H3n'0.48950.38180.44260.016*0.50
C1'0.2776 (5)0.7739 (3)0.05697 (19)0.0176 (9)0.50
C2'0.2822 (5)0.9143 (3)0.0140 (3)0.0275 (8)0.50
H2'0.28160.99190.01930.033*0.50
C3'0.2878 (5)0.9413 (3)0.1336 (3)0.0329 (9)0.50
H3'0.29101.03720.18210.040*0.50
C4'0.2888 (5)0.8278 (4)0.18223 (19)0.0335 (9)0.50
H4'0.29260.84620.26400.040*0.50
C5'0.2841 (5)0.6874 (3)0.1113 (3)0.0278 (8)0.50
H5'0.28470.60990.14450.033*0.50
C6'0.2785 (5)0.6605 (3)0.0083 (2)0.0183 (8)0.50
C7'0.2681 (7)0.5090 (6)0.0789 (5)0.0188 (9)0.50
C8'0.2100 (7)0.3937 (6)0.0307 (4)0.0277 (8)0.50
H8'A0.13950.32800.09060.042*0.50
H8'B0.30760.33990.00650.042*0.50
H8'C0.14560.43880.03620.042*0.50
C9'0.3720 (12)0.3009 (6)0.3435 (5)0.0185 (11)0.50
C10'0.3169 (7)0.0189 (5)0.3535 (5)0.0306 (9)0.50
H10C0.36110.05640.27170.037*0.50
H10D0.36210.08090.38260.037*0.50
C11'0.1275 (8)0.0176 (7)0.3585 (6)0.0422 (12)0.50
H11D0.09580.04640.31510.063*0.50
H11E0.08210.11510.32410.063*0.50
H11F0.08230.01670.43940.063*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mo0.01666 (11)0.01953 (11)0.01794 (11)0.00370 (7)0.00961 (7)0.00315 (8)
S20.0173 (3)0.0254 (3)0.0192 (3)0.0038 (2)0.0098 (2)0.0022 (2)
O20.0160 (8)0.0250 (8)0.0199 (8)0.0045 (6)0.0099 (6)0.0005 (7)
O30.0200 (8)0.0159 (8)0.0345 (9)0.0010 (6)0.0119 (7)0.0130 (7)
O40.0225 (9)0.0648 (14)0.0226 (9)0.0156 (9)0.0076 (7)0.0053 (9)
C120.0229 (12)0.0233 (12)0.0397 (14)0.0036 (10)0.0110 (10)0.0141 (11)
C130.0203 (11)0.0164 (11)0.0312 (12)0.0030 (9)0.0110 (9)0.0056 (9)
S10.0580 (6)0.0097 (4)0.0242 (6)0.0007 (4)0.0099 (8)0.0029 (6)
O10.0220 (19)0.012 (2)0.0160 (17)0.0021 (19)0.0077 (17)0.0041 (12)
N10.0204 (11)0.008 (3)0.015 (2)0.006 (3)0.0055 (18)0.000 (2)
N20.0332 (15)0.012 (3)0.017 (3)0.005 (2)0.010 (2)0.0030 (19)
N30.0215 (15)0.012 (2)0.008 (5)0.000 (2)0.009 (5)0.002 (3)
C10.0167 (15)0.021 (2)0.0157 (15)0.0021 (17)0.0070 (12)0.0037 (15)
C20.031 (2)0.021 (2)0.028 (2)0.0037 (16)0.0094 (16)0.0009 (13)
C30.036 (2)0.028 (2)0.028 (2)0.0096 (17)0.0079 (16)0.0077 (15)
C40.029 (2)0.045 (2)0.0224 (18)0.0022 (18)0.0092 (15)0.0005 (18)
C50.0245 (17)0.039 (2)0.0215 (15)0.0002 (18)0.0089 (13)0.0087 (18)
C60.0172 (14)0.017 (2)0.0203 (14)0.0016 (19)0.0079 (11)0.003 (2)
C70.0164 (13)0.021 (3)0.025 (2)0.003 (2)0.0070 (14)0.014 (2)
C80.037 (2)0.031 (2)0.0202 (19)0.0053 (19)0.0133 (16)0.0112 (15)
C90.0272 (17)0.011 (2)0.018 (4)0.0034 (18)0.002 (3)0.004 (2)
C100.046 (2)0.0160 (18)0.034 (2)0.0063 (15)0.000 (2)0.0140 (19)
C110.048 (2)0.034 (3)0.052 (3)0.0188 (19)0.012 (3)0.026 (3)
S1'0.0580 (6)0.0097 (4)0.0242 (6)0.0007 (4)0.0099 (8)0.0029 (6)
O1'0.0220 (19)0.012 (2)0.0160 (17)0.0021 (19)0.0077 (17)0.0041 (12)
N1'0.0204 (11)0.008 (3)0.015 (2)0.006 (3)0.0055 (18)0.000 (2)
N2'0.0332 (15)0.012 (3)0.017 (3)0.005 (2)0.010 (2)0.0030 (19)
N3'0.0215 (15)0.012 (2)0.008 (5)0.000 (2)0.009 (5)0.002 (3)
C1'0.0167 (15)0.021 (2)0.0157 (15)0.0021 (17)0.0070 (12)0.0037 (15)
C2'0.031 (2)0.021 (2)0.028 (2)0.0037 (16)0.0094 (16)0.0009 (13)
C3'0.036 (2)0.028 (2)0.028 (2)0.0096 (17)0.0079 (16)0.0077 (15)
C4'0.029 (2)0.045 (2)0.0224 (18)0.0022 (18)0.0092 (15)0.0005 (18)
C5'0.0245 (17)0.039 (2)0.0215 (15)0.0002 (18)0.0089 (13)0.0087 (18)
C6'0.0172 (14)0.017 (2)0.0203 (14)0.0016 (19)0.0079 (11)0.003 (2)
C7'0.0164 (13)0.021 (3)0.025 (2)0.003 (2)0.0070 (14)0.014 (2)
C8'0.037 (2)0.031 (2)0.0202 (19)0.0053 (19)0.0133 (16)0.0112 (15)
C9'0.0272 (17)0.011 (2)0.018 (4)0.0034 (18)0.002 (3)0.004 (2)
C10'0.046 (2)0.0160 (18)0.034 (2)0.0063 (15)0.000 (2)0.0140 (19)
C11'0.048 (2)0.034 (3)0.052 (3)0.0188 (19)0.012 (3)0.026 (3)
Geometric parameters (Å, º) top
Mo—O12.011 (7)C8—H8A0.9800
Mo—O22.2747 (16)C8—H8B0.9800
Mo—O31.7133 (16)C8—H8C0.9800
Mo—O41.7021 (18)C10—C111.533 (7)
Mo—O1'1.897 (7)C10—H10A0.9900
Mo—N12.193 (6)C10—H10B0.9900
Mo—N31.933 (15)C11—H11A0.9800
Mo—N3'2.127 (15)C11—H11B0.9800
Mo—N1'2.340 (6)C11—H11C0.9800
S2—O21.5330 (15)S1'—C9'1.753 (5)
S2—C131.780 (2)S1'—C10'1.810 (5)
S2—C121.782 (2)O1'—C1'1.353 (5)
C12—H12A0.9800N1'—C7'1.315 (6)
C12—H12B0.9800N1'—N2'1.398 (5)
C12—H12C0.9800N2'—C9'1.304 (6)
C13—H13A0.9800N3'—C9'1.353 (6)
C13—H13B0.9800N3'—H3n'0.8800
C13—H13C0.9800C1'—C2'1.3900
S1—C91.746 (6)C1'—C6'1.3900
S1—C101.818 (5)C2'—C3'1.3900
O1—C11.359 (5)C2'—H2'0.9500
N1—C71.316 (6)C3'—C4'1.3900
N1—N21.406 (5)C3'—H3'0.9500
N2—C91.307 (6)C4'—C5'1.3900
N3—C91.351 (6)C4'—H4'0.9500
N3—H3n0.8800C5'—C6'1.3900
C1—C21.3900C5'—H5'0.9500
C1—C61.3900C6'—C7'1.479 (5)
C2—C31.3900C7'—C8'1.521 (6)
C2—H20.9500C8'—H8'A0.9800
C3—C41.3900C8'—H8'B0.9800
C3—H30.9500C8'—H8'C0.9800
C4—C51.3900C10'—C11'1.519 (7)
C4—H40.9500C10'—H10C0.9900
C5—C61.3900C10'—H10D0.9900
C5—H50.9500C11'—H11D0.9800
C6—C71.465 (6)C11'—H11E0.9800
C7—C81.522 (6)C11'—H11F0.9800
O4—Mo—O3104.39 (8)C6—C5—H5120.0
O4—Mo—O1'94.2 (3)C4—C5—H5120.0
O3—Mo—O1'115.50 (14)C5—C6—C1120.0
O4—Mo—N398.5 (7)C5—C6—C7116.8 (3)
O3—Mo—N396.7 (3)C1—C6—C7123.2 (3)
O1'—Mo—N3141.2 (5)N1—C7—C6120.7 (4)
O4—Mo—O199.5 (3)N1—C7—C8117.9 (5)
O3—Mo—O1102.65 (14)C6—C7—C8121.4 (4)
O1'—Mo—O112.9 (2)N2—C9—N3122.3 (8)
N3—Mo—O1149.3 (6)N2—C9—S1121.5 (5)
O4—Mo—N3'103.0 (6)N3—C9—S1116.2 (8)
O3—Mo—N3'90.1 (3)C11—C10—S1113.6 (4)
O1'—Mo—N3'144.7 (5)C11—C10—H10A108.9
N3—Mo—N3'7.2 (8)S1—C10—H10A108.9
O1—Mo—N3'150.4 (6)C11—C10—H10B108.9
O4—Mo—N190.4 (2)S1—C10—H10B108.9
O3—Mo—N1163.71 (19)H10A—C10—H10B107.7
O1'—Mo—N169.3 (2)C10—C11—H11A109.5
N3—Mo—N174.0 (3)C10—C11—H11B109.5
O1—Mo—N181.2 (2)H11A—C11—H11B109.5
N3'—Mo—N179.8 (3)C10—C11—H11C109.5
O4—Mo—O2170.16 (7)H11A—C11—H11C109.5
O3—Mo—O285.28 (7)H11B—C11—H11C109.5
O1'—Mo—O279.7 (3)C9'—S1'—C10'102.2 (3)
N3—Mo—O282.0 (7)C1'—O1'—Mo128.9 (4)
O1—Mo—O276.2 (3)C7'—N1'—N2'117.3 (5)
N3'—Mo—O278.5 (6)C7'—N1'—Mo125.2 (4)
N1—Mo—O280.3 (2)N2'—N1'—Mo117.5 (4)
O4—Mo—N1'94.7 (2)C9'—N2'—N1'108.8 (5)
O3—Mo—N1'154.27 (16)C9'—N3'—Mo119.4 (9)
O1'—Mo—N1'79.4 (2)C9'—N3'—H3n'120.3
N3—Mo—N1'63.1 (3)Mo—N3'—H3n'120.3
O1—Mo—N1'90.7 (2)O1'—C1'—C2'117.6 (3)
N3'—Mo—N1'68.7 (3)O1'—C1'—C6'122.4 (3)
N1—Mo—N1'11.27 (17)C2'—C1'—C6'120.0
O2—Mo—N1'76.6 (2)C1'—C2'—C3'120.0
O2—S2—C13103.33 (10)C1'—C2'—H2'120.0
O2—S2—C12103.52 (10)C3'—C2'—H2'120.0
C13—S2—C1299.67 (12)C4'—C3'—C2'120.0
S2—O2—Mo125.84 (9)C4'—C3'—H3'120.0
S2—C12—H12A109.5C2'—C3'—H3'120.0
S2—C12—H12B109.5C3'—C4'—C5'120.0
H12A—C12—H12B109.5C3'—C4'—H4'120.0
S2—C12—H12C109.5C5'—C4'—H4'120.0
H12A—C12—H12C109.5C6'—C5'—C4'120.0
H12B—C12—H12C109.5C6'—C5'—H5'120.0
S2—C13—H13A109.5C4'—C5'—H5'120.0
S2—C13—H13B109.5C5'—C6'—C1'120.0
H13A—C13—H13B109.5C5'—C6'—C7'117.2 (3)
S2—C13—H13C109.5C1'—C6'—C7'122.7 (3)
H13A—C13—H13C109.5N1'—C7'—C6'120.5 (4)
H13B—C13—H13C109.5N1'—C7'—C8'117.6 (5)
C9—S1—C10103.3 (3)C6'—C7'—C8'121.8 (4)
C1—O1—Mo124.2 (4)C7'—C8'—H8'A109.5
C7—N1—N2117.6 (5)C7'—C8'—H8'B109.5
C7—N1—Mo127.8 (4)H8'A—C8'—H8'B109.5
N2—N1—Mo114.5 (4)C7'—C8'—H8'C109.5
C9—N2—N1108.9 (5)H8'A—C8'—H8'C109.5
C9—N3—Mo119.3 (10)H8'B—C8'—H8'C109.5
C9—N3—H3n120.3N2'—C9'—N3'124.3 (8)
Mo—N3—H3n120.3N2'—C9'—S1'120.4 (5)
O1—C1—C2116.7 (3)N3'—C9'—S1'115.2 (7)
O1—C1—C6123.3 (3)C11'—C10'—S1'113.5 (4)
C2—C1—C6120.0C11'—C10'—H10C108.9
C3—C2—C1120.0S1'—C10'—H10C108.9
C3—C2—H2120.0C11'—C10'—H10D108.9
C1—C2—H2120.0S1'—C10'—H10D108.9
C4—C3—C2120.0H10C—C10'—H10D107.7
C4—C3—H3120.0C10'—C11'—H11D109.5
C2—C3—H3120.0C10'—C11'—H11E109.5
C3—C4—C5120.0H11D—C11'—H11E109.5
C3—C4—H4120.0C10'—C11'—H11F109.5
C5—C4—H4120.0H11D—C11'—H11F109.5
C6—C5—C4120.0H11E—C11'—H11F109.5
C13—S2—O2—Mo125.78 (12)Mo—N3—C9—S1172.6 (9)
C12—S2—O2—Mo130.66 (13)C10—S1—C9—N24.7 (8)
O3—Mo—O2—S2139.32 (13)C10—S1—C9—N3175.7 (12)
O1'—Mo—O2—S222.32 (18)C9—S1—C10—C1181.4 (5)
N3—Mo—O2—S2123.3 (3)O4—Mo—O1'—C1'44.6 (7)
O1—Mo—O2—S235.04 (18)O3—Mo—O1'—C1'152.7 (6)
N3'—Mo—O2—S2129.7 (3)N3—Mo—O1'—C1'64.4 (14)
N1—Mo—O2—S248.22 (18)O1—Mo—O1'—C1'160 (3)
N1'—Mo—O2—S259.11 (17)N3'—Mo—O1'—C1'74.9 (13)
O4—Mo—O1—C142.4 (7)N1—Mo—O1'—C1'44.2 (7)
O3—Mo—O1—C1149.6 (6)O2—Mo—O1'—C1'127.6 (8)
O1'—Mo—O1—C123.9 (18)N1'—Mo—O1'—C1'49.4 (7)
N3—Mo—O1—C182.8 (13)O4—Mo—N1'—C7'69.8 (7)
N3'—Mo—O1—C197.0 (11)O3—Mo—N1'—C7'151.9 (4)
N1—Mo—O1—C146.5 (7)O1'—Mo—N1'—C7'23.5 (7)
O2—Mo—O1—C1128.6 (7)N3—Mo—N1'—C7'166.9 (11)
N1'—Mo—O1—C152.6 (7)O1—Mo—N1'—C7'29.8 (8)
O4—Mo—N1—C771.6 (8)N3'—Mo—N1'—C7'171.9 (11)
O3—Mo—N1—C7133.1 (5)N1—Mo—N1'—C7'2.3 (17)
O1'—Mo—N1—C722.7 (7)O2—Mo—N1'—C7'105.4 (7)
N3—Mo—N1—C7170.3 (11)O4—Mo—N1'—N2'112.3 (6)
O1—Mo—N1—C728.0 (8)O3—Mo—N1'—N2'26.0 (10)
N3'—Mo—N1—C7174.7 (10)O1'—Mo—N1'—N2'154.4 (7)
O2—Mo—N1—C7105.3 (8)N3—Mo—N1'—N2'15.2 (9)
N1'—Mo—N1—C7175 (3)O1—Mo—N1'—N2'148.1 (7)
O4—Mo—N1—N2107.1 (6)N3'—Mo—N1'—N2'10.2 (9)
O3—Mo—N1—N248.2 (12)N1—Mo—N1'—N2'180 (3)
O1'—Mo—N1—N2158.6 (7)O2—Mo—N1'—N2'72.5 (6)
N3—Mo—N1—N28.4 (9)C7'—N1'—N2'—C9'172.1 (8)
O1—Mo—N1—N2153.3 (7)Mo—N1'—N2'—C9'9.8 (9)
N3'—Mo—N1—N24.0 (9)O4—Mo—N3'—C9'98.7 (15)
O2—Mo—N1—N276.0 (6)O3—Mo—N3'—C9'156.5 (15)
N1'—Mo—N1—N25.9 (18)O1'—Mo—N3'—C9'18 (2)
C7—N1—N2—C9171.6 (8)N3—Mo—N3'—C9'47 (8)
Mo—N1—N2—C97.2 (9)O1—Mo—N3'—C9'40 (2)
O4—Mo—N3—C995.9 (15)N1—Mo—N3'—C9'10.7 (14)
O3—Mo—N3—C9158.4 (14)O2—Mo—N3'—C9'71.4 (15)
O1'—Mo—N3—C912 (2)N1'—Mo—N3'—C9'8.6 (13)
O1—Mo—N3—C930 (2)Mo—O1'—C1'—C2'132.5 (5)
N3'—Mo—N3—C9135 (10)Mo—O1'—C1'—C6'48.3 (9)
N1—Mo—N3—C97.9 (13)O1'—C1'—C2'—C3'179.1 (6)
O2—Mo—N3—C974.2 (15)C6'—C1'—C2'—C3'0.0
N1'—Mo—N3—C94.8 (12)C1'—C2'—C3'—C4'0.0
Mo—O1—C1—C2138.2 (4)C2'—C3'—C4'—C5'0.0
Mo—O1—C1—C642.6 (9)C3'—C4'—C5'—C6'0.0
O1—C1—C2—C3179.3 (6)C4'—C5'—C6'—C1'0.0
C6—C1—C2—C30.0C4'—C5'—C6'—C7'178.0 (4)
C1—C2—C3—C40.0O1'—C1'—C6'—C5'179.1 (6)
C2—C3—C4—C50.0C2'—C1'—C6'—C5'0.0
C3—C4—C5—C60.0O1'—C1'—C6'—C7'1.2 (6)
C4—C5—C6—C10.0C2'—C1'—C6'—C7'177.9 (4)
C4—C5—C6—C7178.1 (4)N2'—N1'—C7'—C6'178.4 (6)
O1—C1—C6—C5179.2 (6)Mo—N1'—C7'—C6'3.7 (10)
C2—C1—C6—C50.0N2'—N1'—C7'—C8'0.1 (11)
O1—C1—C6—C71.3 (6)Mo—N1'—C7'—C8'177.8 (5)
C2—C1—C6—C7178.0 (4)C5'—C6'—C7'—N1'159.1 (6)
N2—N1—C7—C6179.0 (6)C1'—C6'—C7'—N1'23.0 (8)
Mo—N1—C7—C62.4 (11)C5'—C6'—C7'—C8'19.4 (6)
N2—N1—C7—C82.0 (11)C1'—C6'—C7'—C8'158.6 (4)
Mo—N1—C7—C8176.7 (5)N1'—N2'—C9'—N3'2.3 (17)
C5—C6—C7—N1161.3 (6)N1'—N2'—C9'—S1'176.8 (6)
C1—C6—C7—N120.6 (8)Mo—N3'—C9'—N2'7 (2)
C5—C6—C7—C817.7 (6)Mo—N3'—C9'—S1'173.7 (8)
C1—C6—C7—C8160.3 (4)C10'—S1'—C9'—N2'5.2 (8)
N1—N2—C9—N30.9 (16)C10'—S1'—C9'—N3'174.0 (12)
N1—N2—C9—S1179.5 (6)C9'—S1'—C10'—C11'80.7 (5)
Mo—N3—C9—N27 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3n···O3i0.882.233.090 (15)166
N3—H3n···O3i0.881.942.816 (16)171
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Mo(C11H13N3OS)O2(C2H6OS)]
Mr441.37
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)8.0411 (3), 9.7243 (3), 12.0849 (4)
α, β, γ (°)73.387 (3), 84.465 (3), 86.077 (3)
V3)900.47 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.98
Crystal size (mm)0.35 × 0.15 × 0.05
Data collection
DiffractometerAgilent SuperNova Dual
diffractometer with an Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2012)
Tmin, Tmax0.691, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
13626, 4149, 3811
Rint0.037
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.072, 1.03
No. of reflections4149
No. of parameters234
No. of restraints100
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.73, 0.87

Computer programs: CrysAlis PRO (Agilent, 2012), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Selected bond lengths (Å) top
Mo—O12.011 (7)Mo—O41.7021 (18)
Mo—O22.2747 (16)Mo—N12.193 (6)
Mo—O31.7133 (16)Mo—N31.933 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3n···O3i0.882.233.090 (15)166
N3'—H3n'···O3i0.881.942.816 (16)171
Symmetry code: (i) x+1, y+1, z+1.
 

Footnotes

Additional correspondence author, e-mail: r.takjoo@um.ac.ir.

Acknowledgements

The authors are grateful to the Ferdowsi University of Mashhad for financial support, and thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (UM.C/HIR/MOHE/SC/3).

References

First citationAgilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationAhmadi, M., Mague, T. J., Akbari, A. & Takjoo, R. (2012). Polyhedron, doi:10.1016/j.poly.2012.05.004.  Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationCeylan, B. I., Kurt, Y. D. & Ulkuseven, B. (2009). Rev. Inorg. Chem. 29, 49–67.  CAS Google Scholar
First citationDilworth, J. R. & Hueting, R. (2012). Inorg. Chim. Acta, 389, 3–15.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTakjoo, R., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, m911.  CSD CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds