organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(2E)-2-[(3-Methyl-5-phen­­oxy-1-phenyl-1H-pyrazol-4-yl)methyl­­idene]hydrazinecarbo­thio­amide

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri, Mangalore 574 199, India
*Correspondence e-mail: hkfun@usm.my

(Received 11 June 2012; accepted 14 June 2012; online 20 June 2012)

In the title compound, C18H17N5OS, the mean plane of the pyrazole ring [maximum deviation = 0.0031 (12) Å] forms dihedral angles of 19.6 (4) and 9.3 (5)° with the two disorder components of the N-bound benzene ring (with equal occupancies for the two orientations) and a dihedral angle of 72.58 (8)° with the C—O-bonded benzene ring. The mol­ecule exists in a trans conformation with respect to the N=C bond [1.2792 (19) Å]. The mol­ecular structure features an intra­molecular C—H⋯O hydrogen bond, forming an S(6) ring. In the crystal, N—H⋯N and N—H⋯S hydrogen bonds result in the formation of zigzag layers lying parallel to (10-1).

Related literature

For general background to and applications of the pyrazole derivatives, see: Rai et al. (2008[Rai, N. S., Kalluraya, B., Lingappa, B., Shenoy, S. & Puranic, V. G. (2008). Eur. J. Med. Chem. 43, 1715-1720.]); Isloor et al. (2009[Isloor, A. M., Kalluraya, B. & Shetty, P. (2009). Eur. J. Med. Chem. 44, 3784-3787.]); Girisha et al. (2010[Girisha, K. S., Kalluraya, B., Narayana, V. & Padmashree (2010). Eur. J. Med. Chem. 45, 4640-4644.]). For standard bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For the stability of the temperature controller used in the data collection, see Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For related structures, see: Fun et al. (2011a[Fun, H.-K., Quah, C. K., Malladi, S., Hebbar, R. & Isloor, A. M. (2011a). Acta Cryst. E67, o3105.],b[Fun, H.-K., Quah, C. K., Malladi, S., Isloor, A. M. & Shivananda, K. N. (2011b). Acta Cryst. E67, o3102-o3103.],c[Fun, H.-K., Quah, C. K., Malladi, S., Isloor, A. M. & Shivananda, K. N. (2011c). Acta Cryst. E67, o3104.]).

[Scheme 1]

Experimental

Crystal data
  • C18H17N5OS

  • Mr = 351.43

  • Monoclinic, P 21 /n

  • a = 8.8280 (1) Å

  • b = 10.8519 (2) Å

  • c = 17.7353 (2) Å

  • β = 94.379 (1)°

  • V = 1694.09 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 100 K

  • 0.29 × 0.27 × 0.22 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.942, Tmax = 0.955

  • 18467 measured reflections

  • 4948 independent reflections

  • 3879 reflections with I > 2σ(I)

  • Rint = 0.042

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.113

  • S = 1.06

  • 4948 reflections

  • 294 parameters

  • 216 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N1⋯N5i 0.87 (2) 2.50 (2) 3.3237 (19) 158.1 (18)
N2—H1N2⋯S1ii 0.89 (2) 2.56 (2) 3.4414 (13) 167.7 (17)
C13—H13A⋯O1 0.95 2.22 2.814 (12) 120
C13—H13B⋯O1 0.79 2.28 2.814 (12) 125
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (ii) -x+2, -y+2, -z+2.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Pyrazoles possess a wide variety of applications in the agrochemical and pharmaceutical industries including antibacterial (Rai et al., 2008), anti-inflammatory and analgesic (Isloor et al., 2009) activities. In view of these observations and in continuation of our search for biologically active pyrazole derivatives, we herein report the crystal structure of 3-methyl-5-phenoxy-1-phenyl-1H-pyrazole-4-carbaldehyde. Reaction of 5-chloro-3-methyl-1-phenyl-1H-pyrazole-4-carbaldehyde with phenol afforded 5-chloro-3-methyl-1- phenyl-1H-pyrazole-4-carbaldehyde (Girisha et al., 2010).

In the title molecule, Fig. 1, the mean plane of pyrazole ring (N4/N5/C3-C5, maximum deviation = 0.0031 (12) Å at atom N4) forms dihedral angles of 19.6 (4), 9.3 (5) and 72.58 (8)° with the three benzene rings (C12-C17, C12X-C17X and C6-C11). One of the benzene rings (C12-C17) is disordered over two positions with equal refined site-occupancies [0.50 (2) and 0.50 (2)]. The title molecule exists in a trans conformation with respect to the N3//dbC2 bond [1.2792 (19) Å]. Bond lengths (Allen et al., 1987) and angles are within normal ranges and are comparable to related structures (Fun et al., 2011a, 2011b, 2011c). The molecular structure is stabilized by intramolecular C13–H13A···O1 and C13–H13B···O1 hydrogen bonds (Table 1), which generate S(6) ring motifs (Fig. 2, Bernstein et al., 1995).

In the crystal (Fig.2), intermolecular N1–H1N1···N5 and N2–H1N2···S1 hydrogen bonds (Table 1) result in the formation of zigzag layers parallel to (101).

Related literature top

For general background to and applications of the pyrazole derivatives, see: Rai et al. (2008); Isloor et al. (2009); Girisha et al. (2010). For standard bond-length data, see: Allen et al. (1987). For the stability of the temperature controller used in the data collection, see Cosier & Glazer (1986). For hydrogen-bond motifs, see: Bernstein et al. (1995). For related structures, see: Fun et al. (2011a,b,c).

Experimental top

The title compound was obtained by refluxing a mixture 3-methyl-5-phenoxy-1-phenyl-1H-pyrazole-4-carbaldehyde (0.01 mol), thiosemicarbazide (0.01 mol) in ethanol (30 ml) and 3 drops of concentrated sulfuric acid for 1 h. Excess ethanol was removed from the reaction mixture under reduced pressure. The solid product obtained was filtered, washed with ethanol and dried. Pink blocks were obtained by the slow evaporation of an ethanol-N,N-dimethylformamide (DMF) (3:1) solution.

Refinement top

The N-bound hydrogen atoms were located in a difference Fourier map and refined freely [N–H = 0.81 (2)-0.89 (2) Å]. The rest of hydrogen atoms were positioned geometrically and refined using a riding model with C–H = 0.95 or 0.98 Å and Uiso(H) = 1.2 or 1.5 Ueq(C). A rotating-group model was applied for the methyl group. One of the benzene rings (C12-C17) is disordered over two positions with equal refined site-occupancies [0.50 (2) and 0.50 (2)]. Similarity and rigid-bond restraints were applied to the disordered atoms.

Structure description top

Pyrazoles possess a wide variety of applications in the agrochemical and pharmaceutical industries including antibacterial (Rai et al., 2008), anti-inflammatory and analgesic (Isloor et al., 2009) activities. In view of these observations and in continuation of our search for biologically active pyrazole derivatives, we herein report the crystal structure of 3-methyl-5-phenoxy-1-phenyl-1H-pyrazole-4-carbaldehyde. Reaction of 5-chloro-3-methyl-1-phenyl-1H-pyrazole-4-carbaldehyde with phenol afforded 5-chloro-3-methyl-1- phenyl-1H-pyrazole-4-carbaldehyde (Girisha et al., 2010).

In the title molecule, Fig. 1, the mean plane of pyrazole ring (N4/N5/C3-C5, maximum deviation = 0.0031 (12) Å at atom N4) forms dihedral angles of 19.6 (4), 9.3 (5) and 72.58 (8)° with the three benzene rings (C12-C17, C12X-C17X and C6-C11). One of the benzene rings (C12-C17) is disordered over two positions with equal refined site-occupancies [0.50 (2) and 0.50 (2)]. The title molecule exists in a trans conformation with respect to the N3//dbC2 bond [1.2792 (19) Å]. Bond lengths (Allen et al., 1987) and angles are within normal ranges and are comparable to related structures (Fun et al., 2011a, 2011b, 2011c). The molecular structure is stabilized by intramolecular C13–H13A···O1 and C13–H13B···O1 hydrogen bonds (Table 1), which generate S(6) ring motifs (Fig. 2, Bernstein et al., 1995).

In the crystal (Fig.2), intermolecular N1–H1N1···N5 and N2–H1N2···S1 hydrogen bonds (Table 1) result in the formation of zigzag layers parallel to (101).

For general background to and applications of the pyrazole derivatives, see: Rai et al. (2008); Isloor et al. (2009); Girisha et al. (2010). For standard bond-length data, see: Allen et al. (1987). For the stability of the temperature controller used in the data collection, see Cosier & Glazer (1986). For hydrogen-bond motifs, see: Bernstein et al. (1995). For related structures, see: Fun et al. (2011a,b,c).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing 50% probability displacement ellipsoids for non-H atoms. Intramolecular hydrogen bonds are shown as dashed lines.
[Figure 2] Fig. 2. The crystal structure of the title compound, viewed along the [101] direction. H atoms not involved in hydrogen bonds (dashed lines) have been omitted for clarity. Only one disordered component is shown.
(2E)-2-[(3-Methyl-5-phenoxy-1-phenyl-1H-pyrazol-4- yl)methylidene]hydrazinecarbothioamide top
Crystal data top
C18H17N5OSF(000) = 736
Mr = 351.43Dx = 1.378 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 5058 reflections
a = 8.8280 (1) Åθ = 2.3–32.4°
b = 10.8519 (2) ŵ = 0.21 mm1
c = 17.7353 (2) ÅT = 100 K
β = 94.379 (1)°Block, pink
V = 1694.09 (4) Å30.29 × 0.27 × 0.22 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD
diffractometer
4948 independent reflections
Radiation source: fine-focus sealed tube3879 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
φ and ω scansθmax = 30.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1212
Tmin = 0.942, Tmax = 0.955k = 1515
18467 measured reflectionsl = 2224
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.113H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0482P)2 + 0.7836P]
where P = (Fo2 + 2Fc2)/3
4948 reflections(Δ/σ)max = 0.001
294 parametersΔρmax = 0.43 e Å3
216 restraintsΔρmin = 0.26 e Å3
Crystal data top
C18H17N5OSV = 1694.09 (4) Å3
Mr = 351.43Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.8280 (1) ŵ = 0.21 mm1
b = 10.8519 (2) ÅT = 100 K
c = 17.7353 (2) Å0.29 × 0.27 × 0.22 mm
β = 94.379 (1)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
4948 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3879 reflections with I > 2σ(I)
Tmin = 0.942, Tmax = 0.955Rint = 0.042
18467 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.046216 restraints
wR(F2) = 0.113H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.43 e Å3
4948 reflectionsΔρmin = 0.26 e Å3
294 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S11.02274 (4)0.97510 (4)1.12626 (2)0.01906 (10)
O10.32416 (12)0.80260 (10)1.01785 (6)0.0171 (2)
N10.75067 (17)0.87882 (14)1.14880 (8)0.0208 (3)
N20.78833 (15)0.93939 (12)1.02818 (7)0.0168 (3)
N30.64788 (14)0.89082 (12)1.00657 (7)0.0169 (3)
N40.24554 (14)0.73854 (11)0.89336 (7)0.0153 (2)
N50.29680 (15)0.73976 (12)0.82182 (7)0.0182 (3)
C10.84379 (17)0.92800 (13)1.10068 (8)0.0160 (3)
C20.61467 (17)0.88237 (14)0.93528 (9)0.0179 (3)
H2A0.68400.91270.90130.022*
C30.47312 (17)0.82734 (14)0.90555 (8)0.0163 (3)
C40.35025 (17)0.78988 (13)0.94386 (8)0.0151 (3)
C50.43228 (18)0.79306 (14)0.82963 (8)0.0183 (3)
C60.40260 (17)0.72594 (14)1.07080 (8)0.0155 (3)
C70.50846 (17)0.63938 (14)1.05158 (8)0.0167 (3)
H7A0.53060.62881.00040.020*
C80.58163 (19)0.56845 (15)1.10841 (9)0.0207 (3)
H8A0.65480.50901.09610.025*
C90.5488 (2)0.58360 (16)1.18318 (9)0.0250 (4)
H9A0.59940.53501.22190.030*
C100.4411 (2)0.67053 (17)1.20104 (9)0.0269 (4)
H10A0.41800.68071.25210.032*
C110.36739 (19)0.74238 (16)1.14485 (9)0.0219 (3)
H11A0.29410.80181.15700.026*
C120.1022 (18)0.687 (2)0.9077 (9)0.0163 (15)0.50 (2)
C130.0307 (13)0.7157 (11)0.9729 (7)0.0168 (12)0.50 (2)
H13A0.07430.77401.00820.020*0.50 (2)
C140.1050 (15)0.6578 (12)0.9854 (7)0.0217 (13)0.50 (2)
H14A0.15260.67481.03050.026*0.50 (2)
C150.1725 (12)0.5757 (10)0.9335 (7)0.0263 (15)0.50 (2)
H15A0.26560.53680.94310.032*0.50 (2)
C160.1035 (11)0.5501 (10)0.8673 (6)0.0301 (15)0.50 (2)
H16A0.15150.49660.83040.036*0.50 (2)
C170.0365 (12)0.6033 (10)0.8553 (6)0.0248 (15)0.50 (2)
H17A0.08690.58250.81160.030*0.50 (2)
C12X0.0983 (19)0.683 (2)0.9013 (9)0.0186 (16)0.50 (2)
C13X0.0278 (15)0.6967 (13)0.9686 (8)0.0259 (17)0.50 (2)
H13B0.07630.74091.00990.031*0.50 (2)
C14X0.1156 (15)0.6440 (14)0.9742 (8)0.0276 (16)0.50 (2)
H14B0.16360.65021.02020.033*0.50 (2)
C15X0.1871 (12)0.5835 (11)0.9137 (7)0.0286 (15)0.50 (2)
H15B0.28460.54810.91770.034*0.50 (2)
C16X0.1171 (11)0.5744 (9)0.8473 (7)0.0304 (14)0.50 (2)
H16B0.16810.53380.80520.036*0.50 (2)
C17X0.0263 (12)0.6231 (11)0.8405 (6)0.0244 (15)0.50 (2)
H17B0.07410.61500.79460.029*0.50 (2)
C180.5243 (2)0.80836 (19)0.76296 (10)0.0300 (4)
H18A0.45740.83160.71860.045*
H18B0.57540.73050.75290.045*
H18C0.60040.87300.77360.045*
H2N10.669 (2)0.8510 (18)1.1330 (11)0.025 (5)*
H1N10.781 (2)0.8649 (19)1.1957 (12)0.030 (5)*
H1N20.850 (2)0.9640 (19)0.9934 (12)0.032 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.01562 (19)0.0281 (2)0.01348 (17)0.00380 (15)0.00110 (13)0.00271 (14)
O10.0174 (5)0.0224 (5)0.0119 (5)0.0045 (4)0.0031 (4)0.0019 (4)
N10.0161 (7)0.0320 (8)0.0139 (6)0.0047 (6)0.0007 (5)0.0019 (5)
N20.0146 (6)0.0214 (6)0.0144 (6)0.0043 (5)0.0004 (5)0.0009 (5)
N30.0129 (6)0.0199 (6)0.0177 (6)0.0019 (5)0.0005 (5)0.0006 (5)
N40.0130 (6)0.0199 (6)0.0133 (6)0.0011 (5)0.0022 (5)0.0012 (5)
N50.0162 (6)0.0260 (7)0.0125 (6)0.0030 (5)0.0020 (5)0.0012 (5)
C10.0166 (7)0.0167 (7)0.0147 (7)0.0011 (6)0.0020 (5)0.0023 (5)
C20.0147 (7)0.0230 (7)0.0164 (7)0.0027 (6)0.0033 (6)0.0012 (6)
C30.0150 (7)0.0209 (7)0.0129 (6)0.0018 (6)0.0002 (5)0.0023 (5)
C40.0143 (7)0.0176 (7)0.0136 (6)0.0018 (5)0.0012 (5)0.0020 (5)
C50.0164 (7)0.0234 (7)0.0149 (7)0.0034 (6)0.0008 (6)0.0021 (6)
C60.0149 (7)0.0183 (7)0.0135 (6)0.0019 (5)0.0020 (5)0.0035 (5)
C70.0165 (7)0.0194 (7)0.0148 (7)0.0020 (6)0.0039 (6)0.0013 (5)
C80.0187 (8)0.0206 (7)0.0229 (8)0.0009 (6)0.0024 (6)0.0039 (6)
C90.0234 (8)0.0315 (9)0.0200 (8)0.0017 (7)0.0005 (6)0.0102 (7)
C100.0271 (9)0.0397 (10)0.0146 (7)0.0023 (7)0.0054 (6)0.0069 (7)
C110.0204 (8)0.0300 (8)0.0160 (7)0.0036 (7)0.0062 (6)0.0018 (6)
C120.011 (2)0.016 (2)0.021 (3)0.001 (2)0.003 (2)0.002 (2)
C130.013 (2)0.013 (3)0.026 (2)0.0041 (17)0.0103 (18)0.0068 (17)
C140.020 (2)0.016 (2)0.030 (3)0.0049 (17)0.006 (2)0.0092 (19)
C150.020 (3)0.023 (2)0.038 (3)0.0064 (19)0.015 (3)0.009 (3)
C160.023 (2)0.031 (3)0.038 (3)0.014 (2)0.007 (2)0.012 (2)
C170.020 (2)0.029 (3)0.026 (3)0.004 (2)0.010 (2)0.007 (2)
C12X0.011 (3)0.021 (3)0.025 (3)0.001 (2)0.008 (3)0.003 (2)
C13X0.025 (2)0.024 (4)0.028 (3)0.004 (2)0.001 (2)0.003 (2)
C14X0.018 (3)0.031 (4)0.035 (3)0.005 (2)0.013 (3)0.003 (3)
C15X0.016 (2)0.031 (2)0.040 (4)0.0073 (18)0.007 (3)0.006 (3)
C16X0.024 (2)0.031 (3)0.036 (3)0.006 (2)0.009 (2)0.011 (2)
C17X0.017 (2)0.030 (3)0.026 (3)0.007 (2)0.004 (2)0.005 (2)
C180.0265 (9)0.0471 (11)0.0170 (8)0.0129 (8)0.0061 (7)0.0001 (7)
Geometric parameters (Å, º) top
S1—C11.6892 (16)C10—C111.388 (2)
O1—C41.3566 (17)C10—H10A0.9500
O1—C61.3979 (17)C11—H11A0.9500
N1—C11.340 (2)C12—C131.395 (9)
N1—H2N10.81 (2)C12—C171.395 (10)
N1—H1N10.87 (2)C13—C141.385 (9)
N2—C11.3461 (19)C13—H13A0.9500
N2—N31.3746 (18)C14—C151.382 (8)
N2—H1N20.89 (2)C14—H14A0.9500
N3—C21.2792 (19)C15—C161.393 (8)
N4—C41.3567 (19)C15—H15A0.9500
N4—N51.3793 (17)C16—C171.395 (8)
N4—C121.423 (13)C16—H16A0.9500
N4—C12X1.447 (12)C17—H17A0.9500
N5—C51.326 (2)C12X—C17X1.375 (10)
C2—C31.448 (2)C12X—C13X1.395 (10)
C2—H2A0.9500C13X—C14X1.400 (9)
C3—C41.384 (2)C13X—H13B0.9500
C3—C51.417 (2)C14X—C15X1.370 (8)
C5—C181.494 (2)C14X—H14B0.9500
C6—C111.384 (2)C15X—C16X1.375 (8)
C6—C71.386 (2)C15X—H15B0.9500
C7—C81.388 (2)C16X—C17X1.386 (9)
C7—H7A0.9500C16X—H16B0.9500
C8—C91.389 (2)C17X—H17B0.9500
C8—H8A0.9500C18—H18A0.9800
C9—C101.393 (2)C18—H18B0.9800
C9—H9A0.9500C18—H18C0.9800
C4—O1—C6118.51 (11)C6—C11—C10118.82 (15)
C1—N1—H2N1119.9 (14)C6—C11—H11A120.6
C1—N1—H1N1121.4 (14)C10—C11—H11A120.6
H2N1—N1—H1N1118 (2)C13—C12—C17120.4 (9)
C1—N2—N3119.05 (13)C13—C12—N4121.8 (8)
C1—N2—H1N2119.5 (14)C17—C12—N4117.8 (9)
N3—N2—H1N2120.2 (14)C14—C13—C12118.9 (8)
C2—N3—N2115.90 (13)C14—C13—H13A120.6
C4—N4—N5110.39 (12)C12—C13—H13A120.6
C4—N4—C12127.8 (6)C15—C14—C13121.4 (8)
N5—N4—C12121.8 (5)C15—C14—H14A119.3
C4—N4—C12X132.6 (6)C13—C14—H14A119.3
N5—N4—C12X117.0 (6)C14—C15—C16119.7 (8)
C12—N4—C12X4.8 (10)C14—C15—H15A120.1
C5—N5—N4105.35 (12)C16—C15—H15A120.1
N1—C1—N2116.66 (14)C15—C16—C17119.7 (7)
N1—C1—S1123.78 (12)C15—C16—H16A120.1
N2—C1—S1119.56 (12)C17—C16—H16A120.1
N3—C2—C3121.06 (14)C16—C17—C12119.8 (8)
N3—C2—H2A119.5C16—C17—H17A120.1
C3—C2—H2A119.5C12—C17—H17A120.1
C4—C3—C5103.72 (13)C17X—C12X—C13X120.6 (10)
C4—C3—C2129.01 (14)C17X—C12X—N4119.1 (9)
C5—C3—C2127.19 (14)C13X—C12X—N4120.3 (9)
O1—C4—N4121.53 (13)C12X—C13X—C14X119.0 (9)
O1—C4—C3129.96 (14)C12X—C13X—H13B120.5
N4—C4—C3108.46 (13)C14X—C13X—H13B120.5
N5—C5—C3112.08 (14)C15X—C14X—C13X120.3 (9)
N5—C5—C18120.41 (14)C15X—C14X—H14B119.8
C3—C5—C18127.50 (14)C13X—C14X—H14B119.8
C11—C6—C7121.69 (14)C14X—C15X—C16X119.7 (8)
C11—C6—O1115.15 (13)C14X—C15X—H15B120.1
C7—C6—O1123.15 (13)C16X—C15X—H15B120.1
C6—C7—C8118.85 (14)C15X—C16X—C17X121.3 (7)
C6—C7—H7A120.6C15X—C16X—H16B119.4
C8—C7—H7A120.6C17X—C16X—H16B119.4
C7—C8—C9120.55 (15)C12X—C17X—C16X119.0 (8)
C7—C8—H8A119.7C12X—C17X—H17B120.5
C9—C8—H8A119.7C16X—C17X—H17B120.5
C8—C9—C10119.56 (15)C5—C18—H18A109.5
C8—C9—H9A120.2C5—C18—H18B109.5
C10—C9—H9A120.2H18A—C18—H18B109.5
C11—C10—C9120.53 (15)C5—C18—H18C109.5
C11—C10—H10A119.7H18A—C18—H18C109.5
C9—C10—H10A119.7H18B—C18—H18C109.5
C1—N2—N3—C2166.48 (14)C8—C9—C10—C110.4 (3)
C4—N4—N5—C50.51 (16)C7—C6—C11—C100.4 (2)
C12—N4—N5—C5179.7 (12)O1—C6—C11—C10179.52 (15)
C12X—N4—N5—C5179.4 (12)C9—C10—C11—C60.1 (3)
N3—N2—C1—N15.8 (2)C4—N4—C12—C1320 (3)
N3—N2—C1—S1174.23 (10)N5—N4—C12—C13161.4 (14)
N2—N3—C2—C3177.04 (13)C12X—N4—C12—C13164 (27)
N3—C2—C3—C47.7 (3)C4—N4—C12—C17158.3 (11)
N3—C2—C3—C5168.53 (16)N5—N4—C12—C1721 (2)
C6—O1—C4—N4107.65 (16)C12X—N4—C12—C1718 (23)
C6—O1—C4—C375.5 (2)C17—C12—C13—C141 (3)
N5—N4—C4—O1178.07 (12)N4—C12—C13—C14176.7 (16)
C12—N4—C4—O12.8 (13)C12—C13—C14—C152 (2)
C12X—N4—C4—O13.3 (14)C13—C14—C15—C160.0 (18)
N5—N4—C4—C30.62 (17)C14—C15—C16—C172.8 (13)
C12—N4—C4—C3179.7 (13)C15—C16—C17—C123.7 (16)
C12X—N4—C4—C3179.3 (14)C13—C12—C17—C162 (3)
C5—C3—C4—O1177.63 (15)N4—C12—C17—C16179.6 (13)
C2—C3—C4—O15.5 (3)C4—N4—C12X—C17X171.0 (11)
C5—C3—C4—N40.45 (16)N5—N4—C12X—C17X8 (2)
C2—C3—C4—N4177.34 (15)C12—N4—C12X—C17X175 (27)
N4—N5—C5—C30.21 (17)C4—N4—C12X—C13X12 (3)
N4—N5—C5—C18178.89 (15)N5—N4—C12X—C13X169.3 (15)
C4—C3—C5—N50.15 (18)C12—N4—C12X—C13X8 (23)
C2—C3—C5—N5177.11 (15)C17X—C12X—C13X—C14X2 (3)
C4—C3—C5—C18178.41 (16)N4—C12X—C13X—C14X179.0 (16)
C2—C3—C5—C181.5 (3)C12X—C13X—C14X—C15X2 (2)
C4—O1—C6—C11178.56 (14)C13X—C14X—C15X—C16X0.2 (19)
C4—O1—C6—C71.5 (2)C14X—C15X—C16X—C17X1.3 (14)
C11—C6—C7—C80.6 (2)C13X—C12X—C17X—C16X1 (3)
O1—C6—C7—C8179.31 (14)N4—C12X—C17X—C16X177.6 (14)
C6—C7—C8—C90.3 (2)C15X—C16X—C17X—C12X1.0 (17)
C7—C8—C9—C100.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···N5i0.87 (2)2.50 (2)3.3237 (19)158.1 (18)
N2—H1N2···S1ii0.89 (2)2.56 (2)3.4414 (13)167.7 (17)
C13—H13A···O10.952.222.814 (12)120
C13—H13B···O10.792.282.814 (12)125
Symmetry codes: (i) x+1/2, y+3/2, z+1/2; (ii) x+2, y+2, z+2.

Experimental details

Crystal data
Chemical formulaC18H17N5OS
Mr351.43
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)8.8280 (1), 10.8519 (2), 17.7353 (2)
β (°) 94.379 (1)
V3)1694.09 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.21
Crystal size (mm)0.29 × 0.27 × 0.22
Data collection
DiffractometerBruker SMART APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.942, 0.955
No. of measured, independent and
observed [I > 2σ(I)] reflections
18467, 4948, 3879
Rint0.042
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.113, 1.06
No. of reflections4948
No. of parameters294
No. of restraints216
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.43, 0.26

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···N5i0.87 (2)2.50 (2)3.3237 (19)158.1 (18)
N2—H1N2···S1ii0.89 (2)2.56 (2)3.4414 (13)167.7 (17)
C13—H13A···O10.952.222.814 (12)120
C13—H13B···O10.792.282.814 (12)125
Symmetry codes: (i) x+1/2, y+3/2, z+1/2; (ii) x+2, y+2, z+2.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

§Thomson Reuters ResearcherID: A-5525-2009.

Acknowledgements

The authors thank Universiti Sains Malaysia (USM) for the Research University grant (No. 1001/PFIZIK/811160). CKQ also thanks USM for an Incentive Grant.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFun, H.-K., Quah, C. K., Malladi, S., Hebbar, R. & Isloor, A. M. (2011a). Acta Cryst. E67, o3105.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Quah, C. K., Malladi, S., Isloor, A. M. & Shivananda, K. N. (2011b). Acta Cryst. E67, o3102–o3103.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Quah, C. K., Malladi, S., Isloor, A. M. & Shivananda, K. N. (2011c). Acta Cryst. E67, o3104.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGirisha, K. S., Kalluraya, B., Narayana, V. & Padmashree (2010). Eur. J. Med. Chem. 45, 4640–4644.  Google Scholar
First citationIsloor, A. M., Kalluraya, B. & Shetty, P. (2009). Eur. J. Med. Chem. 44, 3784–3787.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRai, N. S., Kalluraya, B., Lingappa, B., Shenoy, S. & Puranic, V. G. (2008). Eur. J. Med. Chem. 43, 1715–1720.  Web of Science PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds