organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N′-[(E)-4-Bromo­benzyl­­idene]-1-benzo­furan-2-carbohydrazide monohydrate

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri, Mangalore 574 199, India
*Correspondence e-mail: hkfun@usm.my

(Received 11 June 2012; accepted 13 June 2012; online 16 June 2012)

The title compound, C16H11BrN2O2·H2O, exists in a trans conformation with respect to the N=C bond [1.2815 (14) Å] and the benzofuran ring system forms a dihedral angle of 2.96 (5)° with the benzene ring. In the crystal, the ketone O atom accepts two O—H⋯O and one C—H⋯O hydrogen bond, and the water O atom accepts an N—H⋯O inter­action. Together, these lead to infinite layers lying parallel to (100).

Related literature

For related structures and background to the biological activity of hydrazones, see: Fun et al. (2012a[Fun, H.-K., Quah, C. K. & Abdel-Aziz, H. A. (2012a). Acta Cryst. E68, o1682.],b[Fun, H.-K., Quah, C. K., Shetty, D. N., Narayana, B. & Sarojini, B. K. (2012b). Acta Cryst. E68, o1484.]). For the stability of the temperature controller used in the data collection, see Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C16H11BrN2O2·H2O

  • Mr = 361.19

  • Monoclinic, C c

  • a = 25.0594 (4) Å

  • b = 4.6718 (1) Å

  • c = 12.6166 (2) Å

  • β = 99.175 (1)°

  • V = 1458.16 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.83 mm−1

  • T = 100 K

  • 0.41 × 0.22 × 0.13 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.390, Tmax = 0.708

  • 22903 measured reflections

  • 6458 independent reflections

  • 6000 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.021

  • wR(F2) = 0.048

  • S = 1.00

  • 6458 reflections

  • 205 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.55 e Å−3

  • Δρmin = −0.24 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 3029 Friedel pairs

  • Flack parameter: 0.002 (3)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H2W1⋯O2i 0.85 2.00 2.7932 (11) 157
O1W—H1W1⋯O2ii 0.82 2.10 2.8987 (11) 167
N1—H1N1⋯O1Wiii 0.890 (17) 1.947 (18) 2.8108 (13) 163.4 (17)
C6—H6A⋯O2iv 0.93 2.53 3.3418 (18) 146
Symmetry codes: (i) [x, -y+1, z-{\script{1\over 2}}]; (ii) [x, -y, z-{\script{1\over 2}}]; (iii) x, y-1, z; (iv) [x, -y-1, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

As part of our ongoing synthetic and structural studies of hydrazones with possible biological activities (Fun et al., 2012a,b), the title compound, (I), was synthesized and its crystal structure is now reported.

The title compound (Fig. 1) crystallises as a hydrate and exists in a trans conformation with respect to the N2C10 bond [1.2815 (14) Å]. The benzofuran ring system (O1/C1-C8, r.m.s deviation = 0.016 Å) forms a dihedral angle of 2.96 (5)° with the benzene ring (C11-C16). Bond lengths and angles are comparable to those in related structures (Fun et al., 2012a, 2012b)

In the crystal (Fig.2), molecules are linked via O1W–H2W1···O2, O1W–H1W1···O2 and C6–H6A···O2 trifurcated acceptor bonds (Table 1) and together with N1–H1N1···O1W hydrogen bonds form two-dimensional arrays parallel to (100).

Related literature top

For related structures and background to the biological activity of hydrazones, see: Fun et al. (2012a,b). For the stability of the temperature controller used in the data collection, see Cosier & Glazer (1986).

Experimental top

The title compound was obtained by refluxing a mixture of 1-benzofuran-2-carbohydrazide (0.01 mol), 4-bromobenzaldehyde (0.01 mol) in ethanol (30 ml) and 3 drops of concentrated sulfuric acid for 1 h. Excess ethanol was removed from the reaction mixture under reduced pressure. The solid product obtained was filtered, washed with ethanol and dried. Colourless blocks were obtained by slow evaporation of an ethanol-N,N-dimethylformamide (DMF) (3:1) solution.

Refinement top

Atom H1N1 was located in a difference Fourier map and refined freely [N1–H1N1 = 0.890 (17) Å]. O-bound H atoms were located in a difference Fourier map and refined using a riding model with O–H = 0.8182 or 0.8477 Å. The rest of hydrogen atoms were positioned geometrically and refined using a riding model with C–H = 0.93 Å and Uiso(H) = 1.2 Ueq(C).

Structure description top

As part of our ongoing synthetic and structural studies of hydrazones with possible biological activities (Fun et al., 2012a,b), the title compound, (I), was synthesized and its crystal structure is now reported.

The title compound (Fig. 1) crystallises as a hydrate and exists in a trans conformation with respect to the N2C10 bond [1.2815 (14) Å]. The benzofuran ring system (O1/C1-C8, r.m.s deviation = 0.016 Å) forms a dihedral angle of 2.96 (5)° with the benzene ring (C11-C16). Bond lengths and angles are comparable to those in related structures (Fun et al., 2012a, 2012b)

In the crystal (Fig.2), molecules are linked via O1W–H2W1···O2, O1W–H1W1···O2 and C6–H6A···O2 trifurcated acceptor bonds (Table 1) and together with N1–H1N1···O1W hydrogen bonds form two-dimensional arrays parallel to (100).

For related structures and background to the biological activity of hydrazones, see: Fun et al. (2012a,b). For the stability of the temperature controller used in the data collection, see Cosier & Glazer (1986).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing 50% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. The crystal structure of the title compound, viewed along the b axis. H atoms not involved in hydrogen bonds (dashed lines) have been omitted for clarity.
N'-[(E)-4-Bromobenzylidene]-1-benzofuran-2-carbohydrazide monohydrate top
Crystal data top
C16H11BrN2O2·H2OF(000) = 728
Mr = 361.19Dx = 1.645 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
Hall symbol: C -2ycCell parameters from 9978 reflections
a = 25.0594 (4) Åθ = 3.3–35.9°
b = 4.6718 (1) ŵ = 2.83 mm1
c = 12.6166 (2) ÅT = 100 K
β = 99.175 (1)°Block, colourless
V = 1458.16 (5) Å30.41 × 0.22 × 0.13 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD
diffractometer
6458 independent reflections
Radiation source: fine-focus sealed tube6000 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
φ and ω scansθmax = 35.9°, θmin = 3.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 3840
Tmin = 0.390, Tmax = 0.708k = 77
22903 measured reflectionsl = 2020
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.021H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.048 w = 1/[σ2(Fo2) + (0.0159P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max = 0.001
6458 reflectionsΔρmax = 0.55 e Å3
205 parametersΔρmin = 0.24 e Å3
2 restraintsAbsolute structure: Flack (1983), 3029 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.002 (3)
Crystal data top
C16H11BrN2O2·H2OV = 1458.16 (5) Å3
Mr = 361.19Z = 4
Monoclinic, CcMo Kα radiation
a = 25.0594 (4) ŵ = 2.83 mm1
b = 4.6718 (1) ÅT = 100 K
c = 12.6166 (2) Å0.41 × 0.22 × 0.13 mm
β = 99.175 (1)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
6458 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
6000 reflections with I > 2σ(I)
Tmin = 0.390, Tmax = 0.708Rint = 0.024
22903 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.021H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.048Δρmax = 0.55 e Å3
S = 1.00Δρmin = 0.24 e Å3
6458 reflectionsAbsolute structure: Flack (1983), 3029 Friedel pairs
205 parametersAbsolute structure parameter: 0.002 (3)
2 restraints
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.493770 (6)1.100705 (19)0.508751 (8)0.02217 (3)
O10.18964 (3)0.55368 (16)0.27425 (6)0.01388 (14)
O20.23751 (3)0.22894 (17)0.52806 (6)0.01613 (14)
N10.25775 (4)0.12217 (17)0.36132 (8)0.01253 (15)
N20.29362 (4)0.08563 (17)0.40538 (8)0.01311 (15)
C10.15501 (5)0.6274 (2)0.42754 (10)0.0167 (2)
H1A0.14990.61590.49880.020*
C20.12501 (5)0.7988 (2)0.34457 (9)0.01525 (18)
C30.08115 (5)0.9889 (3)0.33817 (10)0.0212 (2)
H3A0.06461.02530.39780.025*
C40.06318 (5)1.1207 (2)0.24052 (10)0.0196 (2)
H4A0.03391.24550.23430.024*
C50.08847 (5)1.0683 (2)0.15094 (11)0.0174 (2)
H5A0.07571.16160.08680.021*
C60.13193 (7)0.8818 (2)0.15468 (11)0.0167 (2)
H6A0.14890.84860.09550.020*
C70.14821 (4)0.7488 (2)0.25269 (9)0.01312 (17)
C80.19229 (4)0.4854 (2)0.38103 (9)0.01323 (17)
C90.23162 (4)0.2696 (2)0.42951 (9)0.01253 (17)
C100.32052 (4)0.2111 (2)0.34060 (9)0.01383 (17)
H10A0.31470.16280.26820.017*
C110.36048 (6)0.4314 (2)0.38081 (11)0.0136 (2)
C120.39181 (5)0.5549 (2)0.31113 (11)0.0176 (2)
H12A0.38600.50280.23910.021*
C130.43169 (5)0.7550 (2)0.34769 (10)0.0184 (2)
H13A0.45310.83320.30120.022*
C140.43889 (5)0.8351 (2)0.45464 (10)0.0167 (2)
C150.40692 (5)0.7233 (2)0.52486 (9)0.0175 (2)
H15A0.41160.78440.59590.021*
C160.36790 (5)0.5192 (2)0.48830 (9)0.01555 (19)
H16A0.34670.44100.53520.019*
O1W0.27065 (4)0.74269 (17)0.14979 (7)0.01805 (15)
H2W10.26950.88480.10770.010 (4)*
H1W10.25840.59150.12360.039 (6)*
H1N10.2547 (7)0.166 (4)0.2920 (14)0.020 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.01396 (4)0.01463 (4)0.03562 (7)0.00355 (5)0.00306 (4)0.00589 (5)
O10.0141 (4)0.0144 (3)0.0133 (4)0.0033 (2)0.0027 (3)0.0009 (2)
O20.0209 (4)0.0149 (3)0.0130 (3)0.0020 (3)0.0039 (3)0.0014 (2)
N10.0136 (4)0.0121 (3)0.0119 (4)0.0020 (3)0.0022 (3)0.0012 (3)
N20.0126 (4)0.0113 (3)0.0150 (4)0.0019 (3)0.0009 (3)0.0012 (3)
C10.0201 (5)0.0172 (5)0.0136 (5)0.0042 (3)0.0053 (4)0.0019 (3)
C20.0153 (5)0.0148 (4)0.0160 (5)0.0031 (3)0.0035 (4)0.0005 (3)
C30.0224 (6)0.0227 (5)0.0197 (6)0.0093 (4)0.0069 (4)0.0013 (4)
C40.0179 (5)0.0197 (5)0.0209 (6)0.0075 (4)0.0017 (4)0.0007 (4)
C50.0183 (5)0.0177 (4)0.0152 (5)0.0016 (3)0.0001 (4)0.0015 (3)
C60.0183 (6)0.0197 (5)0.0123 (5)0.0014 (4)0.0028 (4)0.0003 (4)
C70.0119 (4)0.0116 (4)0.0159 (5)0.0013 (3)0.0025 (4)0.0008 (3)
C80.0145 (4)0.0122 (4)0.0128 (5)0.0014 (3)0.0016 (4)0.0019 (3)
C90.0127 (4)0.0111 (4)0.0139 (5)0.0001 (3)0.0022 (4)0.0003 (3)
C100.0147 (5)0.0132 (4)0.0136 (5)0.0003 (3)0.0023 (4)0.0001 (3)
C110.0130 (5)0.0121 (4)0.0157 (5)0.0017 (3)0.0023 (4)0.0023 (3)
C120.0190 (5)0.0172 (4)0.0176 (5)0.0006 (4)0.0061 (4)0.0020 (4)
C130.0163 (5)0.0167 (4)0.0232 (6)0.0012 (3)0.0060 (4)0.0046 (4)
C140.0131 (5)0.0121 (4)0.0239 (6)0.0006 (3)0.0004 (4)0.0041 (3)
C150.0170 (5)0.0168 (4)0.0178 (5)0.0034 (3)0.0002 (4)0.0016 (4)
C160.0152 (5)0.0156 (4)0.0159 (5)0.0030 (3)0.0024 (4)0.0006 (3)
O1W0.0251 (4)0.0160 (3)0.0129 (4)0.0005 (3)0.0026 (3)0.0005 (3)
Geometric parameters (Å, º) top
Br1—C141.8967 (11)C5—H5A0.9300
O1—C71.3757 (13)C6—C71.3860 (17)
O1—C81.3757 (13)C6—H6A0.9300
O2—C91.2431 (13)C8—C91.4730 (15)
N1—C91.3501 (14)C10—C111.4686 (17)
N1—N21.3783 (12)C10—H10A0.9300
N1—H1N10.890 (17)C11—C121.3938 (18)
N2—C101.2815 (14)C11—C161.4006 (18)
C1—C81.3537 (16)C12—C131.3923 (17)
C1—C21.4323 (16)C12—H12A0.9300
C1—H1A0.9300C13—C141.3841 (18)
C2—C71.3970 (15)C13—H13A0.9300
C2—C31.4054 (16)C14—C151.3879 (16)
C3—C41.3865 (18)C15—C161.3906 (16)
C3—H3A0.9300C15—H15A0.9300
C4—C51.4027 (19)C16—H16A0.9300
C4—H4A0.9300O1W—H2W10.8477
C5—C61.3895 (19)O1W—H1W10.8182
C7—O1—C8105.33 (8)C1—C8—C9128.15 (10)
C9—N1—N2116.97 (9)O1—C8—C9119.35 (9)
C9—N1—H1N1122.2 (12)O2—C9—N1124.56 (10)
N2—N1—H1N1120.5 (12)O2—C9—C8119.00 (10)
C10—N2—N1116.14 (9)N1—C9—C8116.41 (9)
C8—C1—C2105.98 (10)N2—C10—C11119.96 (10)
C8—C1—H1A127.0N2—C10—H10A120.0
C2—C1—H1A127.0C11—C10—H10A120.0
C7—C2—C3118.90 (10)C12—C11—C16119.23 (12)
C7—C2—C1105.87 (9)C12—C11—C10119.59 (12)
C3—C2—C1135.23 (11)C16—C11—C10121.17 (11)
C4—C3—C2118.16 (11)C13—C12—C11121.05 (12)
C4—C3—H3A120.9C13—C12—H12A119.5
C2—C3—H3A120.9C11—C12—H12A119.5
C3—C4—C5120.93 (11)C14—C13—C12118.66 (11)
C3—C4—H4A119.5C14—C13—H13A120.7
C5—C4—H4A119.5C12—C13—H13A120.7
C6—C5—C4122.31 (12)C13—C14—C15121.45 (11)
C6—C5—H5A118.8C13—C14—Br1120.14 (9)
C4—C5—H5A118.8C15—C14—Br1118.41 (9)
C7—C6—C5115.40 (12)C14—C15—C16119.56 (11)
C7—C6—H6A122.3C14—C15—H15A120.2
C5—C6—H6A122.3C16—C15—H15A120.2
O1—C7—C6125.38 (10)C15—C16—C11119.98 (11)
O1—C7—C2110.34 (9)C15—C16—H16A120.0
C6—C7—C2124.27 (10)C11—C16—H16A120.0
C1—C8—O1112.45 (9)H2W1—O1W—H1W1116.8
C9—N1—N2—C10175.83 (10)N2—N1—C9—O20.50 (15)
C8—C1—C2—C71.26 (13)N2—N1—C9—C8178.34 (9)
C8—C1—C2—C3178.77 (14)C1—C8—C9—O29.58 (17)
C7—C2—C3—C40.58 (18)O1—C8—C9—O2173.05 (9)
C1—C2—C3—C4179.38 (13)C1—C8—C9—N1168.39 (11)
C2—C3—C4—C50.73 (19)O1—C8—C9—N18.97 (14)
C3—C4—C5—C60.7 (2)N1—N2—C10—C11178.76 (9)
C4—C5—C6—C70.66 (19)N2—C10—C11—C12176.26 (11)
C8—O1—C7—C6178.42 (11)N2—C10—C11—C163.47 (17)
C8—O1—C7—C20.63 (11)C16—C11—C12—C132.60 (18)
C5—C6—C7—O1178.99 (10)C10—C11—C12—C13177.13 (11)
C5—C6—C7—C22.09 (18)C11—C12—C13—C141.58 (17)
C3—C2—C7—O1178.84 (10)C12—C13—C14—C150.80 (17)
C1—C2—C7—O11.19 (12)C12—C13—C14—Br1178.62 (9)
C3—C2—C7—C62.09 (18)C13—C14—C15—C162.11 (17)
C1—C2—C7—C6177.88 (11)Br1—C14—C15—C16177.32 (9)
C2—C1—C8—O10.94 (13)C14—C15—C16—C111.05 (17)
C2—C1—C8—C9176.58 (10)C12—C11—C16—C151.26 (18)
C7—O1—C8—C10.21 (12)C10—C11—C16—C15178.47 (11)
C7—O1—C8—C9177.55 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H2W1···O2i0.852.002.7932 (11)157
O1W—H1W1···O2ii0.822.102.8987 (11)167
N1—H1N1···O1Wiii0.890 (17)1.947 (18)2.8108 (13)163.4 (17)
C6—H6A···O2iv0.932.533.3418 (18)146
Symmetry codes: (i) x, y+1, z1/2; (ii) x, y, z1/2; (iii) x, y1, z; (iv) x, y1, z1/2.

Experimental details

Crystal data
Chemical formulaC16H11BrN2O2·H2O
Mr361.19
Crystal system, space groupMonoclinic, Cc
Temperature (K)100
a, b, c (Å)25.0594 (4), 4.6718 (1), 12.6166 (2)
β (°) 99.175 (1)
V3)1458.16 (5)
Z4
Radiation typeMo Kα
µ (mm1)2.83
Crystal size (mm)0.41 × 0.22 × 0.13
Data collection
DiffractometerBruker SMART APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.390, 0.708
No. of measured, independent and
observed [I > 2σ(I)] reflections
22903, 6458, 6000
Rint0.024
(sin θ/λ)max1)0.826
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.021, 0.048, 1.00
No. of reflections6458
No. of parameters205
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.55, 0.24
Absolute structureFlack (1983), 3029 Friedel pairs
Absolute structure parameter0.002 (3)

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H2W1···O2i0.852.002.7932 (11)157
O1W—H1W1···O2ii0.822.102.8987 (11)167
N1—H1N1···O1Wiii0.890 (17)1.947 (18)2.8108 (13)163.4 (17)
C6—H6A···O2iv0.932.533.3418 (18)146
Symmetry codes: (i) x, y+1, z1/2; (ii) x, y, z1/2; (iii) x, y1, z; (iv) x, y1, z1/2.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

§Thomson Reuters ResearcherID: A-5525-2009.

Acknowledgements

The authors thank Universiti Sains Malaysia (USM) for the Research University Grant (No. 1001/PFIZIK/811160). CKQ also thanks USM for an Incentive Grant. BK also thanks the Department of Atomic Energy, Board for Research in Nuclear Sciences, Government of India, for financial assistance.

References

First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFun, H.-K., Quah, C. K. & Abdel-Aziz, H. A. (2012a). Acta Cryst. E68, o1682.  CSD CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Quah, C. K., Shetty, D. N., Narayana, B. & Sarojini, B. K. (2012b). Acta Cryst. E68, o1484.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds