organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(4aR*,8aS*)-2,3-Di­phenyl-4a,5,6,7,8,8a-hexa­hydro­quinoxaline

aDepartment of Chemistry, Tongji University, Shanghai 200092, People's Republic of China
*Correspondence e-mail: fanly@tongji.edu.cn

(Received 15 June 2012; accepted 20 June 2012; online 27 June 2012)

In the title compound, C20H20N2, the quinoxaline ring adopts a very distorted half-chair conformation [N=C—C=N = 22.7 (2)° for the nominally coplanar atoms] and the cyclo­hexane ring adopts a chair conformation. The quinoxaline and cyclo­hexane rings are cis-fused. The two phenyl rings form a dihedral angle of 63.88 (7)°.

Related literature

For background to dihydro­pyrazine derivatives, see: Raw et al. (2003[Raw, S. A., Wilfred, C. D. & Taylor, R. J. K. (2003). Chem. Commun. pp. 2286-2287.]). For related structures, see: Reich et al. (2004[Reich, B. J. E., Justice, A. K., Beckstead, B. T., Reibenspies, J. H. & Miller, S. A. (2004). J. Org. Chem. 69, 1357-1359.]); Wang et al. (2008)[Wang, G.-X. & Ye, H.-Y. (2008). Acta Cryst. E64, o359.].

[Scheme 1]

Experimental

Crystal data
  • C20H20N2

  • Mr = 288.38

  • Orthorhombic, P 21 21 21

  • a = 6.3546 (1) Å

  • b = 13.4894 (2) Å

  • c = 19.1921 (3) Å

  • V = 1645.14 (4) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.52 mm−1

  • T = 293 K

  • 0.20 × 0.20 × 0.10 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004)[Bruker (20004). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.] Tmin = 0.902, Tmax = 0.949

  • 4074 measured reflections

  • 2739 independent reflections

  • 2703 reflections with I > 2σ(I)

  • Rint = 0.010

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.099

  • S = 1.05

  • 2739 reflections

  • 199 parameters

  • H-atom parameters constrained

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.14 e Å−3

Data collection: APEX2 (Bruker, 2004)[Bruker (20004). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]; cell refinement: SAINT-Plus (Bruker, 2001)[Bruker (20004). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]; data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Dihydropyrazine ring systems are found as a key unit in natural products and biochemical materials (Raw et al., 2003). Therefore, the synthesis of dihydropyrazine derivatives attract much interest in organic chemistry. In this respect, we report herein the crystal structure of the title compound.

In the title compound, Fig. 1, the quinoxaline ring has a very distorted half-chair conformation and the cyclohexane ring has a chair conformation. The dihedral angle between the two benzene rings is 63.88 (7)°. The lengths of the CN bonds [1.2678 (18)Å] are comparable to those in similar compounds (Wang et al., 2008; Reich et al., 2004).

Related literature top

For background to dihydropyrazine derivatives, see: Raw et al. (2003). For related structures, see: Reich et al. (2004); Wang et al. (2008).

Experimental top

2-hydroxy-1,2-diphenylethanone (0.212 g, 1 mmol) and YbCl3 (0.028 g, 0.1 mmol) were dissolved in 5 ml EtOH and stirred until the solid dissolved completely in refluxing, then (1R,2S)-cyclohexane-1,2-diamine (0.171 g, 1.5 mmol) and H2O2 (0.022 g, 0.2 mmol) were added into the mixture. After 30 min, TLC showed the reaction to be complete. The reaction mixture was cooled to room temperature. The solvent was evaporated in vacuum and the product purified by column chromatography on neutral alumina deactivated with H2O (6 wt%) (PE-EtOAc = 5:1) to give the title compound. The compound was recrystallized from methanol to give yellow blocks.

Refinement top

Hydrogen atoms were positioned geometrically and allowed to ride on their parent atoms, with C–H = 0.93–0.98 Å, and with Uiso(H) values set to 1.2Ueq(C).

Structure description top

Dihydropyrazine ring systems are found as a key unit in natural products and biochemical materials (Raw et al., 2003). Therefore, the synthesis of dihydropyrazine derivatives attract much interest in organic chemistry. In this respect, we report herein the crystal structure of the title compound.

In the title compound, Fig. 1, the quinoxaline ring has a very distorted half-chair conformation and the cyclohexane ring has a chair conformation. The dihedral angle between the two benzene rings is 63.88 (7)°. The lengths of the CN bonds [1.2678 (18)Å] are comparable to those in similar compounds (Wang et al., 2008; Reich et al., 2004).

For background to dihydropyrazine derivatives, see: Raw et al. (2003). For related structures, see: Reich et al. (2004); Wang et al. (2008).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids drawn at the 30% probability level.
(4aR*,8aS*)-2,3-Diphenyl-4a,5,6,7,8,8a-hexahydroquinoxaline top
Crystal data top
C20H20N2F(000) = 616
Mr = 288.38Dx = 1.164 Mg m3
Orthorhombic, P212121Cu Kα radiation, λ = 1.54178 Å
Hall symbol: P 2ac 2abCell parameters from 2779 reflections
a = 6.3546 (1) Åθ = 3.3–72.4°
b = 13.4894 (2) ŵ = 0.52 mm1
c = 19.1921 (3) ÅT = 293 K
V = 1645.14 (4) Å3Block, yellow
Z = 40.20 × 0.20 × 0.10 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
2739 independent reflections
Radiation source: fine-focus sealed tube2703 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.010
phi and ω scansθmax = 72.6°, θmin = 5.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 75
Tmin = 0.902, Tmax = 0.949k = 1516
4074 measured reflectionsl = 1723
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.099 w = 1/[σ2(Fo2) + (0.0617P)2 + 0.1364P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
2739 reflectionsΔρmax = 0.14 e Å3
199 parametersΔρmin = 0.14 e Å3
0 restraintsAbsolute structure: unk
Primary atom site location: structure-invariant direct methods
Crystal data top
C20H20N2V = 1645.14 (4) Å3
Mr = 288.38Z = 4
Orthorhombic, P212121Cu Kα radiation
a = 6.3546 (1) ŵ = 0.52 mm1
b = 13.4894 (2) ÅT = 293 K
c = 19.1921 (3) Å0.20 × 0.20 × 0.10 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
2739 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
2703 reflections with I > 2σ(I)
Tmin = 0.902, Tmax = 0.949Rint = 0.010
4074 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.099H-atom parameters constrained
S = 1.05Δρmax = 0.14 e Å3
2739 reflectionsΔρmin = 0.14 e Å3
199 parametersAbsolute structure: unk
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.18801 (18)0.39372 (8)0.62663 (6)0.0410 (3)
N20.0579 (2)0.33893 (9)0.50829 (6)0.0492 (3)
C10.1165 (2)0.29069 (10)0.61739 (7)0.0419 (3)
H1B0.22550.25420.59200.050*
C20.0862 (3)0.24167 (12)0.68822 (8)0.0544 (4)
H2B0.06320.17120.68180.065*
H2C0.21280.25010.71580.065*
C30.0991 (3)0.28592 (15)0.72680 (8)0.0654 (5)
H3A0.07000.35490.73720.079*
H3B0.11830.25120.77060.079*
C40.2993 (3)0.27893 (16)0.68428 (11)0.0674 (5)
H4A0.41380.31000.70960.081*
H4B0.33530.20980.67720.081*
C50.2729 (2)0.32958 (14)0.61387 (10)0.0605 (4)
H5A0.39920.32000.58630.073*
H5B0.25360.40020.62080.073*
C60.0850 (2)0.28777 (10)0.57496 (7)0.0453 (3)
H6A0.11550.21810.56470.054*
C70.1606 (2)0.45124 (10)0.57517 (7)0.0388 (3)
C80.0606 (2)0.41514 (9)0.50853 (7)0.0414 (3)
C90.2231 (3)0.55791 (10)0.58259 (7)0.0442 (3)
C100.4058 (3)0.58177 (13)0.61799 (9)0.0591 (4)
H10A0.48850.53180.63710.071*
C110.4658 (4)0.68056 (16)0.62502 (11)0.0769 (6)
H11A0.59030.69650.64790.092*
C120.3419 (5)0.75417 (13)0.59834 (10)0.0843 (8)
H12A0.38230.82010.60310.101*
C130.1589 (5)0.73123 (13)0.56464 (10)0.0803 (7)
H13A0.07400.78160.54720.096*
C140.0993 (4)0.63297 (11)0.55626 (9)0.0614 (4)
H14A0.02470.61770.53280.074*
C150.1024 (3)0.46329 (10)0.43996 (7)0.0444 (3)
C160.2983 (3)0.50275 (13)0.42434 (8)0.0535 (4)
H16A0.40230.50540.45840.064*
C170.3394 (3)0.53842 (14)0.35770 (9)0.0631 (4)
H17A0.47130.56440.34730.076*
C180.1862 (4)0.53548 (13)0.30698 (9)0.0634 (5)
H18A0.21470.55900.26240.076*
C190.0101 (3)0.49741 (13)0.32258 (8)0.0605 (4)
H19A0.11420.49580.28860.073*
C200.0522 (3)0.46158 (11)0.38877 (8)0.0514 (4)
H20A0.18480.43620.39900.062*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0362 (5)0.0423 (6)0.0445 (6)0.0035 (5)0.0028 (5)0.0021 (5)
N20.0577 (7)0.0453 (6)0.0446 (6)0.0099 (6)0.0039 (6)0.0055 (5)
C10.0413 (7)0.0367 (6)0.0476 (7)0.0000 (6)0.0081 (6)0.0014 (6)
C20.0568 (9)0.0541 (8)0.0523 (8)0.0089 (7)0.0006 (7)0.0092 (7)
C30.0728 (11)0.0777 (11)0.0458 (8)0.0250 (10)0.0162 (8)0.0067 (8)
C40.0529 (9)0.0777 (11)0.0716 (10)0.0188 (9)0.0248 (8)0.0114 (10)
C50.0380 (7)0.0664 (10)0.0771 (11)0.0071 (7)0.0026 (7)0.0018 (9)
C60.0510 (7)0.0387 (6)0.0462 (7)0.0117 (6)0.0013 (6)0.0057 (6)
C70.0368 (6)0.0378 (6)0.0419 (6)0.0007 (5)0.0043 (5)0.0047 (5)
C80.0455 (7)0.0360 (6)0.0427 (6)0.0001 (6)0.0007 (6)0.0060 (5)
C90.0560 (8)0.0390 (7)0.0376 (6)0.0067 (6)0.0075 (6)0.0065 (5)
C100.0606 (9)0.0534 (8)0.0632 (9)0.0126 (8)0.0026 (8)0.0113 (7)
C110.0866 (13)0.0702 (12)0.0738 (12)0.0356 (11)0.0105 (11)0.0232 (10)
C120.148 (2)0.0435 (9)0.0617 (10)0.0306 (12)0.0243 (14)0.0141 (8)
C130.142 (2)0.0406 (8)0.0581 (9)0.0044 (11)0.0039 (13)0.0052 (7)
C140.0894 (12)0.0426 (7)0.0522 (8)0.0040 (8)0.0030 (9)0.0040 (6)
C150.0567 (8)0.0340 (6)0.0425 (7)0.0010 (6)0.0005 (6)0.0050 (5)
C160.0607 (9)0.0529 (8)0.0469 (7)0.0056 (8)0.0019 (7)0.0016 (7)
C170.0737 (11)0.0616 (9)0.0539 (8)0.0074 (9)0.0126 (8)0.0062 (7)
C180.0919 (13)0.0539 (8)0.0443 (8)0.0018 (9)0.0072 (8)0.0071 (7)
C190.0833 (12)0.0513 (8)0.0469 (8)0.0057 (9)0.0121 (8)0.0012 (7)
C200.0616 (9)0.0428 (7)0.0496 (8)0.0009 (7)0.0029 (7)0.0028 (6)
Geometric parameters (Å, º) top
N1—C71.2680 (18)C9—C141.378 (2)
N1—C11.4728 (17)C9—C101.383 (2)
N2—C81.2745 (19)C10—C111.393 (3)
N2—C61.4638 (19)C10—H10A0.9300
C1—C61.518 (2)C11—C121.367 (4)
C1—C21.524 (2)C11—H11A0.9300
C1—H1B0.9800C12—C131.366 (4)
C2—C31.513 (2)C12—H12A0.9300
C2—H2B0.9700C13—C141.388 (3)
C2—H2C0.9700C13—H13A0.9300
C3—C41.515 (3)C14—H14A0.9300
C3—H3A0.9700C15—C161.387 (2)
C3—H3B0.9700C15—C201.390 (2)
C4—C51.523 (3)C16—C171.391 (2)
C4—H4A0.9700C16—H16A0.9300
C4—H4B0.9700C17—C181.377 (3)
C5—C61.517 (2)C17—H17A0.9300
C5—H5A0.9700C18—C191.381 (3)
C5—H5B0.9700C18—H18A0.9300
C6—H6A0.9800C19—C201.385 (2)
C7—C91.4996 (18)C19—H19A0.9300
C7—C81.5087 (18)C20—H20A0.9300
C8—C151.4914 (19)
C7—N1—C1116.18 (11)C9—C7—C8120.12 (12)
C8—N2—C6116.52 (12)N2—C8—C15116.95 (12)
N1—C1—C6110.45 (11)N2—C8—C7120.82 (12)
N1—C1—C2109.94 (12)C15—C8—C7122.18 (11)
C6—C1—C2111.15 (12)C14—C9—C10119.24 (15)
N1—C1—H1B108.4C14—C9—C7121.25 (14)
C6—C1—H1B108.4C10—C9—C7119.49 (14)
C2—C1—H1B108.4C9—C10—C11120.01 (19)
C3—C2—C1111.32 (14)C9—C10—H10A120.0
C3—C2—H2B109.4C11—C10—H10A120.0
C1—C2—H2B109.4C12—C11—C10120.1 (2)
C3—C2—H2C109.4C12—C11—H11A120.0
C1—C2—H2C109.4C10—C11—H11A120.0
H2B—C2—H2C108.0C13—C12—C11120.20 (17)
C2—C3—C4111.43 (13)C13—C12—H12A119.9
C2—C3—H3A109.3C11—C12—H12A119.9
C4—C3—H3A109.3C12—C13—C14120.2 (2)
C2—C3—H3B109.3C12—C13—H13A119.9
C4—C3—H3B109.3C14—C13—H13A119.9
H3A—C3—H3B108.0C9—C14—C13120.2 (2)
C3—C4—C5110.93 (13)C9—C14—H14A119.9
C3—C4—H4A109.5C13—C14—H14A119.9
C5—C4—H4A109.5C16—C15—C20119.22 (14)
C3—C4—H4B109.5C16—C15—C8121.16 (14)
C5—C4—H4B109.5C20—C15—C8119.41 (14)
H4A—C4—H4B108.0C15—C16—C17119.99 (16)
C6—C5—C4110.90 (15)C15—C16—H16A120.0
C6—C5—H5A109.5C17—C16—H16A120.0
C4—C5—H5A109.5C18—C17—C16120.46 (18)
C6—C5—H5B109.5C18—C17—H17A119.8
C4—C5—H5B109.5C16—C17—H17A119.8
H5A—C5—H5B108.0C17—C18—C19119.72 (15)
N2—C6—C5110.33 (13)C17—C18—H18A120.1
N2—C6—C1110.95 (11)C19—C18—H18A120.1
C5—C6—C1112.96 (12)C18—C19—C20120.20 (17)
N2—C6—H6A107.4C18—C19—H19A119.9
C5—C6—H6A107.4C20—C19—H19A119.9
C1—C6—H6A107.4C19—C20—C15120.39 (17)
N1—C7—C9118.48 (12)C19—C20—H20A119.8
N1—C7—C8121.37 (12)C15—C20—H20A119.8

Experimental details

Crystal data
Chemical formulaC20H20N2
Mr288.38
Crystal system, space groupOrthorhombic, P212121
Temperature (K)293
a, b, c (Å)6.3546 (1), 13.4894 (2), 19.1921 (3)
V3)1645.14 (4)
Z4
Radiation typeCu Kα
µ (mm1)0.52
Crystal size (mm)0.20 × 0.20 × 0.10
Data collection
DiffractometerBruker SMART APEX CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.902, 0.949
No. of measured, independent and
observed [I > 2σ(I)] reflections
4074, 2739, 2703
Rint0.010
(sin θ/λ)max1)0.619
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.099, 1.05
No. of reflections2739
No. of parameters199
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.14, 0.14
Absolute structureUnk

Computer programs: APEX2 (Bruker, 2004), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

This work was supported by the National Natural Scientific Foundation of China (No. 1380234048).

References

First citationBruker (20004). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationRaw, S. A., Wilfred, C. D. & Taylor, R. J. K. (2003). Chem. Commun. pp. 2286–2287.  Web of Science CrossRef Google Scholar
First citationReich, B. J. E., Justice, A. K., Beckstead, B. T., Reibenspies, J. H. & Miller, S. A. (2004). J. Org. Chem. 69, 1357–1359.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, G.-X. & Ye, H.-Y. (2008). Acta Cryst. E64, o359.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds