organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(2E)-N′-[(E)-2-Hy­dr­oxy­benzyl­­idene]-3-phenyl­prop-2-enohydrazide

aFioCruz-Fundação Oswaldo Cruz, Instituto de Tecnologia em Fármacos-Farmanguinhos, Rua Sizenando Nabuco, 100, Manguinhos, 21041-250 Rio de Janeiro, RJ, Brazil, bPrograma de Pós-Graduação em Química, Instituto de Química, Universidade Federal do Rio de Janeiro, 21949-900 Rio de Janeiro, RJ, Brazil, cLaboratório de Avaliação e Síntese de Substâncias Bioativas, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, PO Box 68023, 21941-902 Rio de Janeiro, RJ, Brazil, dCHEMSOL, 1 Harcourt Road, Aberdeen AB15 5NY, Scotland, eCentro de Desenvolvimento Tecnológico em Saúde (CDTS), Fundação Oswaldo Cruz (FIOCRUZ), Casa Amarela, Campus de Manguinhos, Av. Brasil 4365, 21040-900 Rio de Janeiro, RJ, Brazil, and fDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 18 June 2012; accepted 23 June 2012; online 30 June 2012)

In the non-planar title compound, C16H14N2O2, the dihedral angle between the phenyl rings is 16.67 (8)°. An E conformation is found for each of the imine [1.286 (2) Å] and ethyl­ene [1.335 (2) Å] bonds. The amide O and H atoms are anti, and an intra­molecular hy­droxy O—H⋯N hydrogen bond is noted. The formation of N—H⋯O(hy­droxy) hydrogen bonds in the crystal packing leads to helical chains along the b axis. Supra­molecular layers in the ab plane are formed as the chains are linked by C—H⋯O inter­actions.

Related literature

For background to the biological activity of compounds with the N-acyl­hydrazone framework, (E)-cinnamoylhydrazone derivatives, and related structures, see: Carvalho et al. (2012a[Carvalho, S. A., Silva, E. F. da, Fraga, C. A. M., Wardell, S. M. S. V., Wardell, J. L. & Tiekink, E. R. T. (2012a). Acta Cryst. E68, o2255-o2256.]). For the synthesis, see: Carvalho et al. (2012b[Carvalho, S. A., Feitosa, L. O., Soares, M., Costa, T. E. M. M., Henriques, M. G., Salomão, K., de Castro, S. L., Kaiser, M., Brun, R., Wardell, J. L., Wardell, S. M. S. V., Trossini, G. H. G., Andricopulo, A. D., da Silva, E. F. & Fraga, C. A. M. (2012b). Bioorg. Med. Chem. DOI:10.1016/j.ejmech.2012.05.041.]). For background to the data collection at the National Crystallographic Service, see: Coles & Gale (2012[Coles, S. J. & Gale, P. A. (2012). Chem. Sci. 3, 683-689.]).

[Scheme 1]

Experimental

Crystal data
  • C16H14N2O2

  • Mr = 266.29

  • Orthorhombic, P n a 21

  • a = 24.2707 (17) Å

  • b = 5.1322 (2) Å

  • c = 10.5192 (4) Å

  • V = 1310.29 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 100 K

  • 0.19 × 0.09 × 0.03 mm

Data collection
  • Rigaku Saturn724+ diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2011[Rigaku (2011). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.]) Tmin = 0.878, Tmax = 1.000

  • 5871 measured reflections

  • 1575 independent reflections

  • 1504 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.075

  • S = 0.93

  • 1575 reflections

  • 181 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.15 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1o⋯N1 0.85 (2) 1.86 (2) 2.6080 (19) 147 (2)
N2—H2n⋯O1i 0.88 (1) 2.05 (1) 2.9070 (19) 165 (2)
C3—H3⋯O2ii 0.95 2.54 3.215 (2) 128
C7—H7⋯O2ii 0.95 2.47 3.174 (2) 131
Symmetry codes: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku, 2011[Rigaku (2011). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Compounds related to the title (E)-cinnamoylhydrazone derivative, (I), are of interest owing to their biological activities (Carvalho et al., 2012a). For example, (I), exhibits considerable trypanocidal activity (Carvalho et al., 2012b). Herein, the crystal structure determination of (I) is described.

In (I), Fig. 1, there is a twist in the molecule as seen in the dihedral angle between the phenyl rings of 16.67 (8)°. The greatest deviation from a planar torsion angle is found for C9—C10—C11—C16 of 8.4 (3)°. There is an intramolecular hydroxy-O1···N2 hydrogen bond. The conformation about each of the imine [N1C7 = 1.286 (2) Å] and ethylene [C9C10 = 1.335 (2) Å] bonds is E. The amide-O and –H atoms are anti. The molecular structure of (I) resembles that of the unsubstituted compound (Carvalho et al., 2012a) where the dihedral angle between terminal phenyl rings is 25.48 (12)°.

The formation of N—H···O hydrogen bonds between the amide-H and hydroxyl-O leads to helical supramolecular chains along the b axis, Fig. 2 and Table 1. The chains are linked into a supramolecular layer in the ab plane by C—H···O interactions, Fig. 3 and Table 1; the layers inter-digitate along the c axis, Fig. 4.

Related literature top

For background to the biological activity of compounds with the N-acylhydrazone framework, (E)-cinnamoylhydrazone derivatives, and related structures, see: Carvalho et al. (2012a). For the synthesis, see: Carvalho et al. (2012b). For background to the data collection at the National Crystallographic Service, see: Coles & Gale (2012).

Experimental top

The title compound was prepared as reported (Carvalho et al., 2012b). The sample used in the crystallographic study was grown from its EtOH solution and intensity data was collected at the National Crystallographic Service, England (Coles & Gale, 2012).

Refinement top

The C-bound H atoms were geometrically placed (C—H = 0.95 Å) and refined as riding with Uiso(H) = 1.2Ueq(C). The O– and N-bound H atoms were located from a difference map and refined with the distance restraint O—H = 0.84±0.01 and N—H = 0.88±0.01 Å, and with Uiso(H) = zUeq(carrier atom); z = 1.5 for O and z = 1.2 for N. In the absence of significant anomalous scattering effects, 1033 Friedel pairs were averaged in the final refinement. One reflection, i.e. (20 0 0) was omitted from the final refinement owing to poor agreement.

Structure description top

Compounds related to the title (E)-cinnamoylhydrazone derivative, (I), are of interest owing to their biological activities (Carvalho et al., 2012a). For example, (I), exhibits considerable trypanocidal activity (Carvalho et al., 2012b). Herein, the crystal structure determination of (I) is described.

In (I), Fig. 1, there is a twist in the molecule as seen in the dihedral angle between the phenyl rings of 16.67 (8)°. The greatest deviation from a planar torsion angle is found for C9—C10—C11—C16 of 8.4 (3)°. There is an intramolecular hydroxy-O1···N2 hydrogen bond. The conformation about each of the imine [N1C7 = 1.286 (2) Å] and ethylene [C9C10 = 1.335 (2) Å] bonds is E. The amide-O and –H atoms are anti. The molecular structure of (I) resembles that of the unsubstituted compound (Carvalho et al., 2012a) where the dihedral angle between terminal phenyl rings is 25.48 (12)°.

The formation of N—H···O hydrogen bonds between the amide-H and hydroxyl-O leads to helical supramolecular chains along the b axis, Fig. 2 and Table 1. The chains are linked into a supramolecular layer in the ab plane by C—H···O interactions, Fig. 3 and Table 1; the layers inter-digitate along the c axis, Fig. 4.

For background to the biological activity of compounds with the N-acylhydrazone framework, (E)-cinnamoylhydrazone derivatives, and related structures, see: Carvalho et al. (2012a). For the synthesis, see: Carvalho et al. (2012b). For background to the data collection at the National Crystallographic Service, see: Coles & Gale (2012).

Computing details top

Data collection: CrystalClear (Rigaku, 2011); cell refinement: CrystalClear (Rigaku, 2011); data reduction: CrystalClear (Rigaku, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 70% probability level.
[Figure 2] Fig. 2. A view of the supramolecular helical chain along the b axis in (I). The N—H···O hydrogen bonds are shown as blue dashed lines.
[Figure 3] Fig. 3. A view of the supramolecular layer in the ab plane in (I) sustained by N—H···O and interactions, shown as blue and orange dashed lines, respectively.
[Figure 4] Fig. 4. A view in projection down the b axis of the unit-cell contents for (I) showing the inter-digitation of layers. The N—H···O and C—H···O interactions are shown as blue and orange dashed lines, respectively.
(2E)-N'-[(E)-2-Hydroxybenzylidene]-3-phenylprop- 2-enohydrazide top
Crystal data top
C16H14N2O2F(000) = 560
Mr = 266.29Dx = 1.350 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 5659 reflections
a = 24.2707 (17) Åθ = 3.4–27.5°
b = 5.1322 (2) ŵ = 0.09 mm1
c = 10.5192 (4) ÅT = 100 K
V = 1310.29 (12) Å3Plate, colourless
Z = 40.19 × 0.09 × 0.03 mm
Data collection top
Rigaku Saturn724+
diffractometer
1575 independent reflections
Radiation source: Rotating Anode1504 reflections with I > 2σ(I)
Confocal monochromatorRint = 0.022
Detector resolution: 28.5714 pixels mm-1θmax = 27.5°, θmin = 3.4°
profile data from ω–scansh = 3031
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2011)
k = 66
Tmin = 0.878, Tmax = 1.000l = 1313
5871 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.028H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.075 w = 1/[σ2(Fo2) + (0.0497P)2 + 0.3579P]
where P = (Fo2 + 2Fc2)/3
S = 0.93(Δ/σ)max = 0.001
1575 reflectionsΔρmax = 0.20 e Å3
181 parametersΔρmin = 0.15 e Å3
1 restraintAbsolute structure: nd
Primary atom site location: structure-invariant direct methods
Crystal data top
C16H14N2O2V = 1310.29 (12) Å3
Mr = 266.29Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 24.2707 (17) ŵ = 0.09 mm1
b = 5.1322 (2) ÅT = 100 K
c = 10.5192 (4) Å0.19 × 0.09 × 0.03 mm
Data collection top
Rigaku Saturn724+
diffractometer
1575 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2011)
1504 reflections with I > 2σ(I)
Tmin = 0.878, Tmax = 1.000Rint = 0.022
5871 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0281 restraint
wR(F2) = 0.075H atoms treated by a mixture of independent and constrained refinement
S = 0.93Δρmax = 0.20 e Å3
1575 reflectionsΔρmin = 0.15 e Å3
181 parametersAbsolute structure: nd
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.69975 (5)0.5777 (2)0.10431 (12)0.0192 (3)
H1O0.7247 (7)0.671 (4)0.071 (2)0.029*
O20.81273 (5)1.1490 (3)0.06463 (13)0.0232 (3)
N10.75962 (6)0.7782 (3)0.07685 (14)0.0150 (3)
N20.79692 (6)0.9517 (3)0.12637 (14)0.0158 (3)
H2N0.7997 (9)0.959 (4)0.2096 (10)0.019*
C10.67996 (7)0.4128 (3)0.01381 (17)0.0157 (3)
C20.69722 (7)0.4288 (3)0.11420 (17)0.0140 (3)
C30.67560 (7)0.2498 (3)0.20137 (17)0.0171 (4)
H30.68690.25770.28770.021*
C40.63806 (7)0.0613 (3)0.16428 (19)0.0187 (4)
H40.62410.06020.22440.022*
C50.62097 (7)0.0517 (3)0.03833 (19)0.0201 (4)
H50.59470.07530.01280.024*
C60.64170 (7)0.2249 (3)0.05053 (18)0.0197 (4)
H60.62980.21570.13650.024*
C70.73698 (7)0.6215 (3)0.15666 (17)0.0150 (3)
H70.74630.63190.24420.018*
C80.82227 (7)1.1293 (3)0.04921 (17)0.0156 (3)
C90.86435 (7)1.2853 (3)0.11785 (17)0.0161 (3)
H90.87111.25420.20550.019*
C100.89272 (7)1.4693 (3)0.05648 (17)0.0170 (3)
H100.88151.50650.02810.020*
C110.93932 (7)1.6197 (3)0.10555 (17)0.0159 (3)
C120.96062 (7)1.8241 (3)0.03252 (19)0.0203 (4)
H120.94421.86520.04690.024*
C131.00558 (8)1.9677 (4)0.0748 (2)0.0226 (4)
H131.01962.10610.02420.027*
C141.03004 (7)1.9097 (4)0.19034 (19)0.0225 (4)
H141.06062.00870.21930.027*
C151.00967 (7)1.7064 (4)0.26359 (18)0.0210 (4)
H151.02661.66580.34260.025*
C160.96482 (7)1.5624 (3)0.22228 (18)0.0177 (3)
H160.95121.42380.27320.021*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0245 (6)0.0213 (6)0.0118 (6)0.0067 (5)0.0012 (5)0.0003 (5)
O20.0293 (7)0.0274 (7)0.0130 (6)0.0075 (5)0.0028 (6)0.0001 (6)
N10.0147 (6)0.0154 (6)0.0149 (6)0.0003 (5)0.0009 (5)0.0031 (6)
N20.0175 (7)0.0183 (7)0.0115 (7)0.0035 (5)0.0015 (6)0.0028 (6)
C10.0148 (7)0.0167 (7)0.0154 (8)0.0021 (6)0.0008 (6)0.0019 (7)
C20.0136 (7)0.0144 (7)0.0141 (8)0.0011 (6)0.0011 (6)0.0023 (7)
C30.0170 (8)0.0190 (8)0.0154 (9)0.0017 (6)0.0011 (7)0.0009 (7)
C40.0189 (8)0.0156 (8)0.0215 (9)0.0003 (6)0.0054 (7)0.0021 (7)
C50.0175 (8)0.0179 (8)0.0248 (9)0.0029 (6)0.0001 (7)0.0049 (7)
C60.0189 (8)0.0225 (8)0.0177 (8)0.0014 (7)0.0032 (7)0.0041 (8)
C70.0150 (7)0.0182 (8)0.0118 (7)0.0005 (6)0.0007 (6)0.0029 (7)
C80.0159 (7)0.0166 (8)0.0143 (8)0.0010 (6)0.0009 (6)0.0013 (7)
C90.0167 (7)0.0174 (8)0.0141 (7)0.0008 (6)0.0010 (6)0.0024 (7)
C100.0175 (8)0.0176 (8)0.0158 (8)0.0015 (6)0.0009 (7)0.0018 (7)
C110.0148 (7)0.0148 (7)0.0180 (8)0.0017 (6)0.0028 (7)0.0019 (7)
C120.0212 (8)0.0180 (8)0.0217 (9)0.0004 (6)0.0004 (7)0.0039 (7)
C130.0207 (9)0.0160 (8)0.0312 (10)0.0016 (6)0.0038 (8)0.0015 (8)
C140.0175 (8)0.0189 (8)0.0311 (11)0.0004 (7)0.0009 (7)0.0060 (8)
C150.0178 (8)0.0230 (9)0.0223 (9)0.0025 (7)0.0015 (7)0.0046 (8)
C160.0173 (7)0.0174 (8)0.0182 (8)0.0010 (6)0.0030 (7)0.0001 (7)
Geometric parameters (Å, º) top
O1—C11.361 (2)C7—H70.9500
O1—H1O0.848 (10)C8—C91.485 (2)
O2—C81.224 (2)C9—C101.335 (2)
N1—C71.286 (2)C9—H90.9500
N1—N21.3727 (19)C10—C111.463 (2)
N2—C81.367 (2)C10—H100.9500
N2—H2N0.879 (10)C11—C121.399 (2)
C1—C61.393 (2)C11—C161.406 (2)
C1—C21.413 (3)C12—C131.390 (3)
C2—C31.400 (2)C12—H120.9500
C2—C71.452 (2)C13—C141.385 (3)
C3—C41.385 (2)C13—H130.9500
C3—H30.9500C14—C151.388 (3)
C4—C51.389 (3)C14—H140.9500
C4—H40.9500C15—C161.386 (2)
C5—C61.385 (3)C15—H150.9500
C5—H50.9500C16—H160.9500
C6—H60.9500
C1—O1—H1O108.1 (18)O2—C8—C9124.15 (16)
C7—N1—N2116.09 (15)N2—C8—C9112.36 (15)
C8—N2—N1120.28 (15)C10—C9—C8120.06 (16)
C8—N2—H2N122.0 (15)C10—C9—H9120.0
N1—N2—H2N117.1 (15)C8—C9—H9120.0
O1—C1—C6118.13 (17)C9—C10—C11126.95 (16)
O1—C1—C2121.73 (15)C9—C10—H10116.5
C6—C1—C2120.14 (17)C11—C10—H10116.5
C3—C2—C1118.36 (15)C12—C11—C16118.26 (16)
C3—C2—C7119.64 (16)C12—C11—C10119.17 (16)
C1—C2—C7121.99 (16)C16—C11—C10122.55 (16)
C4—C3—C2121.36 (17)C13—C12—C11120.80 (18)
C4—C3—H3119.3C13—C12—H12119.6
C2—C3—H3119.3C11—C12—H12119.6
C3—C4—C5119.33 (17)C14—C13—C12120.23 (18)
C3—C4—H4120.3C14—C13—H13119.9
C5—C4—H4120.3C12—C13—H13119.9
C6—C5—C4120.84 (17)C13—C14—C15119.73 (17)
C6—C5—H5119.6C13—C14—H14120.1
C4—C5—H5119.6C15—C14—H14120.1
C5—C6—C1119.96 (17)C16—C15—C14120.44 (17)
C5—C6—H6120.0C16—C15—H15119.8
C1—C6—H6120.0C14—C15—H15119.8
N1—C7—C2120.60 (16)C15—C16—C11120.54 (17)
N1—C7—H7119.7C15—C16—H16119.7
C2—C7—H7119.7C11—C16—H16119.7
O2—C8—N2123.43 (16)
C7—N1—N2—C8178.71 (15)N1—N2—C8—O21.8 (3)
O1—C1—C2—C3179.07 (15)N1—N2—C8—C9175.41 (14)
C6—C1—C2—C31.0 (2)O2—C8—C9—C103.3 (3)
O1—C1—C2—C70.0 (2)N2—C8—C9—C10179.52 (15)
C6—C1—C2—C7179.97 (16)C8—C9—C10—C11172.84 (16)
C1—C2—C3—C40.2 (2)C9—C10—C11—C12173.45 (17)
C7—C2—C3—C4179.29 (15)C9—C10—C11—C168.4 (3)
C2—C3—C4—C50.8 (3)C16—C11—C12—C130.4 (3)
C3—C4—C5—C61.1 (3)C10—C11—C12—C13178.64 (16)
C4—C5—C6—C10.4 (3)C11—C12—C13—C140.1 (3)
O1—C1—C6—C5179.34 (15)C12—C13—C14—C150.4 (3)
C2—C1—C6—C50.7 (3)C13—C14—C15—C160.4 (3)
N2—N1—C7—C2179.55 (14)C14—C15—C16—C110.1 (3)
C3—C2—C7—N1176.11 (15)C12—C11—C16—C150.3 (2)
C1—C2—C7—N12.9 (2)C10—C11—C16—C15178.50 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1o···N10.85 (2)1.86 (2)2.6080 (19)147 (2)
N2—H2n···O1i0.88 (1)2.05 (1)2.9070 (19)165 (2)
C3—H3···O2ii0.952.543.215 (2)128
C7—H7···O2ii0.952.473.174 (2)131
Symmetry codes: (i) x+3/2, y+1/2, z+1/2; (ii) x+3/2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC16H14N2O2
Mr266.29
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)100
a, b, c (Å)24.2707 (17), 5.1322 (2), 10.5192 (4)
V3)1310.29 (12)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.19 × 0.09 × 0.03
Data collection
DiffractometerRigaku Saturn724+
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2011)
Tmin, Tmax0.878, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
5871, 1575, 1504
Rint0.022
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.075, 0.93
No. of reflections1575
No. of parameters181
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.20, 0.15
Absolute structureNd

Computer programs: CrystalClear (Rigaku, 2011), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1o···N10.848 (19)1.86 (2)2.6080 (19)147.2 (19)
N2—H2n···O1i0.879 (11)2.050 (12)2.9070 (19)164.6 (19)
C3—H3···O2ii0.952.543.215 (2)128
C7—H7···O2ii0.952.473.174 (2)131
Symmetry codes: (i) x+3/2, y+1/2, z+1/2; (ii) x+3/2, y1/2, z+1/2.
 

Footnotes

Additional correspondence author, e-mail: j.wardell@abdn.ac.uk.

Acknowledgements

The use of the EPSRC X-ray crystallographic service at the University of Southampton, England, and the valuable assistance of the staff there is gratefully acknowledged. JLW acknowledges support from CAPES (Brazil). Structural studies are supported by the Ministry of Higher Education (Malaysia) through the High-Impact Research scheme (UM.C/HIR/MOHE/SC/3).

References

First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationCarvalho, S. A., Silva, E. F. da, Fraga, C. A. M., Wardell, S. M. S. V., Wardell, J. L. & Tiekink, E. R. T. (2012a). Acta Cryst. E68, o2255–o2256.  CrossRef IUCr Journals Google Scholar
First citationCarvalho, S. A., Feitosa, L. O., Soares, M., Costa, T. E. M. M., Henriques, M. G., Salomão, K., de Castro, S. L., Kaiser, M., Brun, R., Wardell, J. L., Wardell, S. M. S. V., Trossini, G. H. G., Andricopulo, A. D., da Silva, E. F. & Fraga, C. A. M. (2012b). Bioorg. Med. Chem. DOI:10.1016/j.ejmech.2012.05.041.  Google Scholar
First citationColes, S. J. & Gale, P. A. (2012). Chem. Sci. 3, 683–689.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationRigaku (2011). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds