organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(2E)-N′-[(E)-Benzyl­­idene]-3-phenyl­prop-2-enohydrazide from synchrotron radiation

aFioCruz-Fundação Oswaldo Cruz, Instituto de Tecnologia em Fármacos-Farmanguinhos, Rua Sizenando Nabuco, 100, Manguinhos, 21041-250 Rio de Janeiro, RJ, Brazil, bPrograma de Pós-Graduação em Química, Instituto de Química, Universidade Federal do Rio de Janeiro, 21949-900 Rio de Janeiro, RJ, Brazil, cLaboratório de Avaliação e Síntese de Substâncias Bioativas, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, PO Box 68023, 21941-902 Rio de Janeiro, RJ, Brazil, dCHEMSOL, 1 Harcourt Road, Aberdeen AB15 5NY, Scotland, eCentro de Desenvolvimento Tecnológico em Saúde (CDTS), Fundação Oswaldo Cruz (FIOCRUZ), Casa Amarela, Campus de Manguinhos, Av. Brasil 4365, 21040-900 Rio de Janeiro, RJ, Brazil, and fDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 18 June 2012; accepted 23 June 2012; online 30 June 2012)

In the title compound, C16H14N2O, the dihedral angle between the phenyl rings is 25.48 (12)°. An E conformation is found for each of the imine [1.269 (3) Å] and ethyl­ene [1.313 (3) Å] bonds. In the crystal, mol­ecules are linked by N—H⋯O hydrogen bonds, leading to zigzag chains along [010]. Supra­molecular layers in the ab plane are formed, whereby the chains are linked by C—H⋯N and C—H⋯π inter­actions.

Related literature

For the biological activity of (E)-cinnamoylhydrazone derivatives against Chagas' disease, see: Carvalho et al. (2012b[Carvalho, S. A., Feitosa, L. O., Soares, M., Costa, T. E. M. M., Henriques, M. G., Salomão, K., de Castro, S. L., Kaiser, M., Brun, R., Wardell, J. L., Wardell, S. M. S. V., Trossini, G. H. G., Andricopulo, A. D., da Silva, E. F. & Fraga, C. A. M. (2012b). Bioorg. Med. Chem. DOI:10.1016/j.ejmech.2012.05.041.]). For background to Chagas' disease, see: Rassi et al. (2010[Rassi, A. Jr, Rassi, A. & Marin-Neto, J. A. (2010). Lancet, 375, 1388-1402.]); Soeiro & de Castro (2011[Soeiro, M. N. C. & de Castro, S. L. (2011). Open Med. Chem. J. 5, 21-30.]). For related structural studies, see: Carvalho et al. (2009[Carvalho, S. A., Silva, E. F. da, Tiekink, E. R. T., Wardell, J. L. & Wardell, S. M. S. V. (2009). Acta Cryst. E65, o3118.], 2010a[Carvalho, S. A., Silva, E. F. da, Souza, M. V. N. de, Tiekink, E. R. T., Wardell, J. L. & Wardell, S. M. S. V. (2010a). Acta Cryst. E66, o150-o151.],b[Carvalho, S. A., Silva, E. F. da, Fraga, C. A. M., Wardell, S. M. S. V., Wardell, J. L. & Tiekink, E. R. T. (2010b). Acta Cryst. E66, o2410-o2411.], 2012a[Carvalho, S. A., Silva, E. F. da, Fraga, C. A. M., Wardell, S. M. S. V., Wardell, J. L. & Tiekink, E. R. T. (2012a). Acta Cryst. E68, o2253-o2254.]).

[Scheme 1]

Experimental

Crystal data
  • C16H14N2O

  • Mr = 250.30

  • Orthorhombic, P b c a

  • a = 11.473 (19) Å

  • b = 7.507 (13) Å

  • c = 30.50 (5) Å

  • V = 2627 (8) Å3

  • Z = 8

  • Synchrotron radiation

  • λ = 0.6943 Å

  • μ = 0.04 mm−1

  • T = 120 K

  • 0.12 × 0.03 × 0.02 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • 14542 measured reflections

  • 1876 independent reflections

  • 1442 reflections with I > 2σ(I)

  • Rint = 0.084

  • θmax = 22.7°

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.140

  • S = 1.05

  • 1876 reflections

  • 175 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C1–C6 benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2n⋯O1i 0.88 (2) 1.93 (2) 2.816 (6) 175 (2)
C5—H5⋯N1ii 0.95 2.57 3.433 (7) 151
C3—H3⋯Cg1iii 0.95 2.92 3.618 (7) 131
C6—H6⋯Cg1iv 0.95 2.75 3.645 (7) 158
Symmetry codes: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (ii) [x-{\script{1\over 2}}, y, -z+{\script{3\over 2}}]; (iii) [x, -y-{\script{3\over 2}}, z-{\script{1\over 2}}]; (iv) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

(E)-Cinnamoylhydrazone derivatives have recently been shown to be agents against Chagas' disease (CD) (Carvalho et al., 2012b), caused by the parasite Trypanosoma cruzi. CD is the major cause of infectious cardiopathy and represents an important public health problem. It affects approximately eight million people in Latin America (Rassi et al., 2010). Neither the two established drugs, Nifurtimox and Benznidazole, is ideal because they present variable results depending on the phase of the disease, the dose and duration of the treatment, the patient's age and endemic region, as well as showing undesirable secondary side-effects (Soeiro & de Castro, 2011). The ArCH CHCONHNCHAr' compounds used in the trypanocidal study (Carvalho et al., 2012b) indicated considerable biological potential. Following on from our structural studies on (E)-PhCHCH-CONHNHPh (Carvalho et al., 2009), (E)-4-O2NC6H4CHCH-CONHNHCOPh (Carvalho et al., 2010a) and (E)-PhCHCH-CONHN CHC6H4Cl-4.monohydrate (Carvalho et al., 2010b), we now wish to report the crystal structure of one of the compounds from the trypanocidal study, namely the title compound, (I).

In (I), Fig. 1, there is a twist in the molecule as seen in the dihedral angle between the phenyl rings of 25.48 (12)°. The greatest deviation from a planar torsion angle is found for C2—C1—C7—N1 of 14.0 (3)°. The conformation about each of the imine [N1C7 = 1.269 (3) Å] and ethylene [C9C10 = 1.313 (3) Å] bonds is E. In the structure of the 4-chlorobenzylidene derivative (Carvalho et al., 2010b), a decidedly more planar arrangement was noted (r.m.s. deviation of the 20 non-H atoms = 0.172 Å). However, a more twisted arrangement was found in the 2-hydroxyl derivative (Carvalho et al., 2012a) where the dihedral angle between the benzene rings is 16.67 (8)°.

In the crystal of (I), the molecules are linked by N—H···O hydrogen bonds (Table 1), resulting in zigzag chains along the b axis. The chains are linked into a supramolecular layer in the ab plane by C—H···N and C—H···π interactions, Fig. 3 and Table 1; the layers inter-digitate along the c axis, Fig. 4.

Related literature top

For the biological activity of (E)-cinnamoylhydrazone derivatives against Chagas' disease, see: Carvalho et al. (2012b). For background to Chagas' disease, see: Rassi et al. (2010); Soeiro & de Castro (2011). For related structural studies, see: Carvalho et al. (2009, 2010a,b, 2012a).

Experimental top

The title compound was prepared as reported (Carvalho et al., 2012b). The sample used in the crystallographic study was grown from its EtOH solution in the form of small colourless needles.

Refinement top

The C-bound H atoms were geometrically placed (C—H = 0.95 Å) and refined as riding with Uiso(H) = 1.2Ueq(C). The O– and N-bound H atoms were located from a difference map and refined with the distance restraints O—H = 0.84±0.01 and N—H = 0.88±0.01 Å, and with Uiso(H) = zUeq(carrier atom); z = 1.5 for O and z = 1.2 for N.

Structure description top

(E)-Cinnamoylhydrazone derivatives have recently been shown to be agents against Chagas' disease (CD) (Carvalho et al., 2012b), caused by the parasite Trypanosoma cruzi. CD is the major cause of infectious cardiopathy and represents an important public health problem. It affects approximately eight million people in Latin America (Rassi et al., 2010). Neither the two established drugs, Nifurtimox and Benznidazole, is ideal because they present variable results depending on the phase of the disease, the dose and duration of the treatment, the patient's age and endemic region, as well as showing undesirable secondary side-effects (Soeiro & de Castro, 2011). The ArCH CHCONHNCHAr' compounds used in the trypanocidal study (Carvalho et al., 2012b) indicated considerable biological potential. Following on from our structural studies on (E)-PhCHCH-CONHNHPh (Carvalho et al., 2009), (E)-4-O2NC6H4CHCH-CONHNHCOPh (Carvalho et al., 2010a) and (E)-PhCHCH-CONHN CHC6H4Cl-4.monohydrate (Carvalho et al., 2010b), we now wish to report the crystal structure of one of the compounds from the trypanocidal study, namely the title compound, (I).

In (I), Fig. 1, there is a twist in the molecule as seen in the dihedral angle between the phenyl rings of 25.48 (12)°. The greatest deviation from a planar torsion angle is found for C2—C1—C7—N1 of 14.0 (3)°. The conformation about each of the imine [N1C7 = 1.269 (3) Å] and ethylene [C9C10 = 1.313 (3) Å] bonds is E. In the structure of the 4-chlorobenzylidene derivative (Carvalho et al., 2010b), a decidedly more planar arrangement was noted (r.m.s. deviation of the 20 non-H atoms = 0.172 Å). However, a more twisted arrangement was found in the 2-hydroxyl derivative (Carvalho et al., 2012a) where the dihedral angle between the benzene rings is 16.67 (8)°.

In the crystal of (I), the molecules are linked by N—H···O hydrogen bonds (Table 1), resulting in zigzag chains along the b axis. The chains are linked into a supramolecular layer in the ab plane by C—H···N and C—H···π interactions, Fig. 3 and Table 1; the layers inter-digitate along the c axis, Fig. 4.

For the biological activity of (E)-cinnamoylhydrazone derivatives against Chagas' disease, see: Carvalho et al. (2012b). For background to Chagas' disease, see: Rassi et al. (2010); Soeiro & de Castro (2011). For related structural studies, see: Carvalho et al. (2009, 2010a,b, 2012a).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. A view of the supramolecular zigzag chain along the b axis in (I). The N—H···O hydrogen bonds are shown as blue dashed lines.
[Figure 3] Fig. 3. A view of the supramolecular layer in the ab plane in (I) sustained by N—H···O, C—H···N and C—H···π interactions, shown as blue, orange and purple dashed lines, respectively.
[Figure 4] Fig. 4. A view in projection down the b axis of the unit-cell contents for (I) showing the inter-digitation of layers. The N—H···O, C—H···N and C—H···π interactions, shown as blue, orange and purple dashed lines, respectively.
(2E)-N'-[(E)-Benzylidene]-3-phenylprop-2-enohydrazide top
Crystal data top
C16H14N2OF(000) = 1056
Mr = 250.30Dx = 1.266 Mg m3
Orthorhombic, PbcaSynchrotron radiation, λ = 0.6943 Å
Hall symbol: -P 2ybcCell parameters from 996 reflections
a = 11.473 (19) Åθ = 3.2–25.1°
b = 7.507 (13) ŵ = 0.04 mm1
c = 30.50 (5) ÅT = 120 K
V = 2627 (8) Å3Needle, colourless
Z = 80.12 × 0.03 × 0.02 mm
Data collection top
Bruker SMART APEXII CCD
diffractometer
1442 reflections with I > 2σ(I)
Radiation source: Daresbury SRS station 9.8Rint = 0.084
Silicon 111 monochromatorθmax = 22.7°, θmin = 2.6°
fine–slice ω scansh = 1212
14542 measured reflectionsk = 88
1876 independent reflectionsl = 3333
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.140H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0776P)2 + 0.9415P]
where P = (Fo2 + 2Fc2)/3
1876 reflections(Δ/σ)max < 0.001
175 parametersΔρmax = 0.18 e Å3
1 restraintΔρmin = 0.20 e Å3
Crystal data top
C16H14N2OV = 2627 (8) Å3
Mr = 250.30Z = 8
Orthorhombic, PbcaSynchrotron radiation, λ = 0.6943 Å
a = 11.473 (19) ŵ = 0.04 mm1
b = 7.507 (13) ÅT = 120 K
c = 30.50 (5) Å0.12 × 0.03 × 0.02 mm
Data collection top
Bruker SMART APEXII CCD
diffractometer
1442 reflections with I > 2σ(I)
14542 measured reflectionsRint = 0.084
1876 independent reflectionsθmax = 22.7°
Refinement top
R[F2 > 2σ(F2)] = 0.0491 restraint
wR(F2) = 0.140H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.18 e Å3
1876 reflectionsΔρmin = 0.20 e Å3
175 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.38302 (13)0.0885 (2)0.60236 (5)0.0381 (5)
N10.23795 (16)0.2057 (3)0.66603 (6)0.0349 (5)
N20.25029 (17)0.2886 (3)0.62606 (6)0.0371 (5)
H2N0.209 (2)0.385 (2)0.6201 (8)0.045*
C10.14001 (19)0.2034 (3)0.73493 (7)0.0338 (6)
C20.21991 (19)0.0947 (3)0.75586 (7)0.0373 (6)
H20.28860.05880.74090.045*
C30.2010 (2)0.0384 (3)0.79800 (7)0.0403 (6)
H30.25540.03920.81170.048*
C40.1040 (2)0.0931 (3)0.82057 (8)0.0413 (7)
H40.09240.05590.85000.050*
C50.0236 (2)0.2021 (4)0.80048 (8)0.0412 (7)
H50.04420.23890.81590.049*
C60.0418 (2)0.2580 (3)0.75771 (8)0.0386 (6)
H60.01340.33410.74390.046*
C70.15938 (19)0.2706 (3)0.69056 (7)0.0353 (6)
H70.11210.36490.67990.042*
C80.3245 (2)0.2246 (3)0.59613 (7)0.0357 (6)
C90.32566 (19)0.3248 (3)0.55473 (7)0.0344 (6)
H90.27850.42820.55180.041*
C100.3909 (2)0.2735 (3)0.52168 (7)0.0374 (6)
H100.43990.17360.52680.045*
C110.39690 (19)0.3527 (3)0.47781 (7)0.0366 (6)
C120.3407 (2)0.5093 (4)0.46697 (8)0.0447 (7)
H120.29720.57100.48870.054*
C130.3468 (2)0.5770 (4)0.42517 (9)0.0501 (7)
H130.30790.68510.41810.060*
C140.4090 (2)0.4885 (4)0.39369 (8)0.0505 (7)
H140.41340.53540.36480.061*
C150.4645 (2)0.3332 (4)0.40364 (8)0.0498 (7)
H150.50690.27160.38160.060*
C160.4593 (2)0.2651 (4)0.44565 (8)0.0437 (7)
H160.49880.15740.45250.052*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0345 (9)0.0435 (10)0.0362 (9)0.0027 (8)0.0002 (7)0.0019 (8)
N10.0314 (10)0.0474 (13)0.0258 (10)0.0017 (9)0.0002 (8)0.0017 (9)
N20.0373 (11)0.0464 (14)0.0276 (10)0.0004 (9)0.0001 (9)0.0051 (9)
C10.0332 (12)0.0437 (14)0.0246 (12)0.0079 (11)0.0008 (10)0.0013 (10)
C20.0323 (13)0.0443 (14)0.0353 (13)0.0027 (11)0.0020 (10)0.0037 (11)
C30.0409 (14)0.0453 (16)0.0345 (13)0.0002 (12)0.0052 (11)0.0027 (11)
C40.0493 (16)0.0497 (16)0.0249 (12)0.0115 (13)0.0027 (11)0.0007 (11)
C50.0339 (13)0.0536 (17)0.0362 (14)0.0068 (12)0.0071 (11)0.0074 (12)
C60.0351 (13)0.0428 (14)0.0379 (14)0.0004 (11)0.0053 (11)0.0002 (11)
C70.0324 (13)0.0423 (15)0.0311 (13)0.0003 (11)0.0039 (10)0.0005 (10)
C80.0314 (12)0.0457 (16)0.0301 (13)0.0062 (12)0.0013 (10)0.0023 (11)
C90.0322 (12)0.0411 (14)0.0297 (12)0.0003 (10)0.0021 (10)0.0020 (10)
C100.0353 (13)0.0439 (15)0.0330 (13)0.0003 (11)0.0017 (11)0.0015 (11)
C110.0315 (12)0.0504 (16)0.0279 (12)0.0045 (12)0.0002 (10)0.0028 (11)
C120.0419 (14)0.0579 (17)0.0344 (14)0.0029 (13)0.0071 (11)0.0013 (13)
C130.0423 (15)0.0629 (19)0.0449 (16)0.0034 (13)0.0023 (12)0.0127 (14)
C140.0398 (14)0.081 (2)0.0312 (14)0.0062 (14)0.0015 (11)0.0134 (14)
C150.0394 (14)0.077 (2)0.0332 (14)0.0000 (14)0.0081 (11)0.0064 (14)
C160.0389 (14)0.0530 (16)0.0391 (15)0.0035 (12)0.0008 (11)0.0019 (12)
Geometric parameters (Å, º) top
O1—C81.238 (3)C7—H70.9500
N1—C71.269 (3)C8—C91.470 (4)
N1—N21.376 (3)C9—C101.313 (3)
N2—C81.338 (3)C9—H90.9500
N2—H2N0.886 (10)C10—C111.466 (4)
C1—C21.383 (3)C10—H100.9500
C1—C61.386 (4)C11—C121.381 (4)
C1—C71.461 (4)C11—C161.381 (4)
C2—C31.370 (4)C12—C131.374 (4)
C2—H20.9500C12—H120.9500
C3—C41.371 (4)C13—C141.368 (4)
C3—H30.9500C13—H130.9500
C4—C51.377 (4)C14—C151.363 (4)
C4—H40.9500C14—H140.9500
C5—C61.386 (4)C15—C161.381 (4)
C5—H50.9500C15—H150.9500
C6—H60.9500C16—H160.9500
C7—N1—N2115.0 (2)O1—C8—C9123.4 (2)
C8—N2—N1120.5 (2)N2—C8—C9114.1 (2)
C8—N2—H2N119.7 (17)C10—C9—C8120.9 (2)
N1—N2—H2N119.8 (17)C10—C9—H9119.5
C2—C1—C6118.8 (2)C8—C9—H9119.5
C2—C1—C7122.0 (2)C9—C10—C11127.5 (3)
C6—C1—C7119.1 (2)C9—C10—H10116.3
C3—C2—C1120.6 (2)C11—C10—H10116.3
C3—C2—H2119.7C12—C11—C16118.5 (2)
C1—C2—H2119.7C12—C11—C10122.8 (2)
C2—C3—C4120.5 (2)C16—C11—C10118.7 (3)
C2—C3—H3119.8C13—C12—C11120.9 (2)
C4—C3—H3119.8C13—C12—H12119.6
C3—C4—C5119.9 (2)C11—C12—H12119.6
C3—C4—H4120.1C14—C13—C12119.8 (3)
C5—C4—H4120.1C14—C13—H13120.1
C4—C5—C6119.8 (2)C12—C13—H13120.1
C4—C5—H5120.1C15—C14—C13120.2 (3)
C6—C5—H5120.1C15—C14—H14119.9
C1—C6—C5120.3 (2)C13—C14—H14119.9
C1—C6—H6119.8C14—C15—C16120.2 (3)
C5—C6—H6119.8C14—C15—H15119.9
N1—C7—C1121.5 (2)C16—C15—H15119.9
N1—C7—H7119.3C15—C16—C11120.3 (3)
C1—C7—H7119.3C15—C16—H16119.8
O1—C8—N2122.5 (2)C11—C16—H16119.8
C7—N1—N2—C8175.3 (2)O1—C8—C9—C100.3 (4)
C6—C1—C2—C31.6 (4)N2—C8—C9—C10177.4 (2)
C7—C1—C2—C3178.0 (2)C8—C9—C10—C11176.4 (2)
C1—C2—C3—C41.9 (4)C9—C10—C11—C127.2 (4)
C2—C3—C4—C51.6 (4)C9—C10—C11—C16171.3 (2)
C3—C4—C5—C60.9 (4)C16—C11—C12—C130.2 (4)
C2—C1—C6—C50.9 (3)C10—C11—C12—C13178.7 (2)
C7—C1—C6—C5177.4 (2)C11—C12—C13—C140.2 (4)
C4—C5—C6—C10.6 (4)C12—C13—C14—C150.2 (4)
N2—N1—C7—C1176.63 (19)C13—C14—C15—C160.6 (4)
C2—C1—C7—N114.0 (3)C14—C15—C16—C110.6 (4)
C6—C1—C7—N1169.6 (2)C12—C11—C16—C150.2 (4)
N1—N2—C8—O11.4 (3)C10—C11—C16—C15178.4 (2)
N1—N2—C8—C9178.50 (19)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 benzene ring.
D—H···AD—HH···AD···AD—H···A
N2—H2n···O1i0.88 (2)1.93 (2)2.816 (6)175 (2)
C5—H5···N1ii0.952.573.433 (7)151
C3—H3···Cg1iii0.952.923.618 (7)131
C6—H6···Cg1iv0.952.753.645 (7)158
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x1/2, y, z+3/2; (iii) x, y3/2, z1/2; (iv) x+1/2, y+1/2, z+1.

Experimental details

Crystal data
Chemical formulaC16H14N2O
Mr250.30
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)120
a, b, c (Å)11.473 (19), 7.507 (13), 30.50 (5)
V3)2627 (8)
Z8
Radiation typeSynchrotron, λ = 0.6943 Å
µ (mm1)0.04
Crystal size (mm)0.12 × 0.03 × 0.02
Data collection
DiffractometerBruker SMART APEXII CCD
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
14542, 1876, 1442
Rint0.084
θmax (°)22.7
(sin θ/λ)max1)0.556
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.140, 1.05
No. of reflections1876
No. of parameters175
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.18, 0.20

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 benzene ring.
D—H···AD—HH···AD···AD—H···A
N2—H2n···O1i0.884 (18)1.934 (19)2.816 (6)175 (2)
C5—H5···N1ii0.952.573.433 (7)151
C3—H3···Cg1iii0.952.923.618 (7)131
C6—H6···Cg1iv0.952.753.645 (7)158
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x1/2, y, z+3/2; (iii) x, y3/2, z1/2; (iv) x+1/2, y+1/2, z+1.
 

Footnotes

Additional correspondence author, e-mail: j.wardell@abdn.ac.uk.

Acknowledgements

This work was supported by grants from CAPES, CNPq, FAPERJ and FIOCRUZ (Brazil). We thank Professor W. Clegg and the synchrotron component, based at Daresbury, of the EPSRC National Crystallographic Service, University of Southampton, for the data collection. Structural studies are supported by the Ministry of Higher Education (Malaysia) through the High-Impact Research scheme (UM.C/HIR/MOHE/SC/12).

References

First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCarvalho, S. A., Silva, E. F. da, Souza, M. V. N. de, Tiekink, E. R. T., Wardell, J. L. & Wardell, S. M. S. V. (2010a). Acta Cryst. E66, o150–o151.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCarvalho, S. A., Silva, E. F. da, Fraga, C. A. M., Wardell, S. M. S. V., Wardell, J. L. & Tiekink, E. R. T. (2012a). Acta Cryst. E68, o2253–o2254.  CrossRef IUCr Journals Google Scholar
First citationCarvalho, S. A., Silva, E. F. da, Fraga, C. A. M., Wardell, S. M. S. V., Wardell, J. L. & Tiekink, E. R. T. (2010b). Acta Cryst. E66, o2410–o2411.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCarvalho, S. A., Silva, E. F. da, Tiekink, E. R. T., Wardell, J. L. & Wardell, S. M. S. V. (2009). Acta Cryst. E65, o3118.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCarvalho, S. A., Feitosa, L. O., Soares, M., Costa, T. E. M. M., Henriques, M. G., Salomão, K., de Castro, S. L., Kaiser, M., Brun, R., Wardell, J. L., Wardell, S. M. S. V., Trossini, G. H. G., Andricopulo, A. D., da Silva, E. F. & Fraga, C. A. M. (2012b). Bioorg. Med. Chem. DOI:10.1016/j.ejmech.2012.05.041.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationRassi, A. Jr, Rassi, A. & Marin-Neto, J. A. (2010). Lancet, 375, 1388–1402.  CrossRef PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSoeiro, M. N. C. & de Castro, S. L. (2011). Open Med. Chem. J. 5, 21–30.  CrossRef CAS PubMed Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds