metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

[1,2-Bis(di­phenyl­phosphan­yl)ethane-κ2P,P′]di­chloridopalladium(II) di­methyl sulfoxide monosolvate

aDepartment of Chemistry, College of Science, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia, bDepartment of Physics and Astronomy, College of Science, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia, cElectronics, Communications and Photonics Program, King Abdulaziz City for Science and Technology, PO Box 6086, Riyadh 11442, Saudi Arabia, and dH.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
*Correspondence e-mail: dr.sammer.yousuf@gmail.com

(Received 19 June 2012; accepted 22 June 2012; online 30 June 2012)

In the title compound, [PdCl2(C26H24P2)]·C2H6OS, the PdII atom adopts a distorted cis-PdCl2P2 square-planar coordination geometry. The five-membered chelate ring adopts an envelope conformation with a methyl­ene C atom in the flap position. The S and C atoms of the dimethyl sulfoxide (DMSO) solvent mol­ecule are disordered over two sets of sites in a 0.8976 (18):0.1024 (18) ratio. The DMSO O atom accepts three C—H⋯O hydrogen bonds from an adjacent complex mol­ecule.

Related literature

For the previous reports of crystal structures of this metal complex (unsolvated or with other solvents), see: Xu et al. (2008[Xu, J., Qiu, X.-L. & Qing, F.-L. (2008). Beilstein J. Org. Chem. 4, 1-5.]); Batsanov et al. (2001[Batsanov, A. S., Howard, J. A. K., Robertson, G. S. & Kilner, M. (2001). Acta Cryst. E57, m301-m304.]); Steffen & Palenik (1976[Steffen, W. L. & Palenik, G. J. (1976). Inorg. Chem. 15, 2433-2439.]); Singh et al. (1995[Singh, S., Jha, N. K., Narula, P. & Singh, T. P. (1995). Acta Cryst. C51, 593-595.]).

[Scheme 1]

Experimental

Crystal data
  • [PdCl2(C26H24P2)]·C2H6OS

  • Mr = 653.82

  • Triclinic, [P \overline 1]

  • a = 8.4091 (3) Å

  • b = 11.4745 (4) Å

  • c = 16.8098 (6) Å

  • α = 73.674 (1)°

  • β = 79.066 (1)°

  • γ = 68.634 (1)°

  • V = 1442.67 (9) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.03 mm−1

  • T = 293 K

  • 0.30 × 0.23 × 0.11 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.747, Tmax = 0.895

  • 19016 measured reflections

  • 6610 independent reflections

  • 5863 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.069

  • S = 1.03

  • 6610 reflections

  • 326 parameters

  • 3 restraints

  • H-atom parameters constrained

  • Δρmax = 0.50 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Selected bond lengths (Å)

Pd1—P2 2.2336 (5)
Pd1—P1 2.2355 (5)
Pd1—Cl1 2.3481 (6)
Pd1—Cl2 2.3613 (5)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O1 0.93 2.49 3.348 (4) 153
C20—H20⋯O1 0.93 2.59 3.495 (4) 165
C26—H26A⋯O1 0.97 2.44 3.410 (3) 174

Data collection: SMART (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Metal complexes containing chelating diphosphines as ligands have been employed in numerous catalytic processes. A major advantage of these ligands is variation in their potential catalytic reactivity by varying the molecular properties of the phosphine. The title compound was synthesized as a part of our ongoing research to study the properties of metal complexes with chelating ligands.

The crystal structure of title compound, [PdCl2C26H24P2)].C6H6SO, consists of a bidentate diphenyl phosphine ligand and two chloride atoms coordinated with Pd(II) to adapt a distorted square planner geometry, along with an independent molecule of dimethyl sulfoxide (DMSO) as solvent (Fig. 1). The five membered metallocycle (Pd1/P1/P2/C25—C26) adopts an envelop conformation [Q= 0.466 (19) Å and φ = 301.14 (17)°] with maximum deviation of 0.318 (2) Å for C26 atom from the least square plane. The Structural report of the compound is similar to many previously published reports with the difference that it has a DMSO solvate (Xu et al. 2008, Batsanov et al. 2001,Steffen & Palenik, 1976, Singh et al. 1995). The coordination environment around the Pd(II) ion is such that the two phosphorous atoms of the bidentate diphenyl phosphine ligand [Pd1–P1 = 2.2355 (5) Å, Pd1–P2 = 2.2336 (5) Å] and two chloride atoms [Pd1–Cl1= 2.3481 (6) Å, Pd1–Cl2= 2.3613 (5) Å] are assembled at four corners of square to adapt square pyramidal arrangement. The S1, C28 and C29 atoms of DMSO molecule are disordered at two positions,with relative occupancies of 0.89 (18):0.10 (18) for the isotropically refined major (S1/C27/C28) and minor (S1'/C27'/C28') components, respectively. All bond lengths are in agreement with the previously reported crystal structures (Xu et al. 2008, Batsanov et al. 2001, Steffen & Palenik, 1976, Singh et al. 1995). The oxygen atom of DMSO playing an important role in the crystal structure by forming C2—H2···O1, C20—H20···O1 and C26—H26A···O1 hydrogen bonds (Table 2, Fig. 2).

The compound was evaluated for its b-glucoronidase inhibiton activity against D-saccharic acid as standard (IC50 45.75 ± 2.16 mM) and found as weak inhibitor (IC50 197.3 ± 12.2 mM)

Related literature top

For the previous reports of crystal structures of this metal complex, (unsolvated or with other solvents), see: Xu et al. (2008); Batsanov et al. (2001); Steffen & Palenik (1976); Singh et al. (1995).

Experimental top

Equimolar amounts of dichlorobis(acetonitrile) palladium(II) (0.10 g, 0.26 mmol) was dissolved in 10 ml dry dichloromethane and mixed with equivalent amount of 1,2-ethanediylbis(diphenylphosphine) (0.11 g, 0.27 mmol). The resultant mixture was stirred under inert atmosphere (Ar) for about one hour. The solution was concentrated under reduced pressure to 1 ml volume. The product was precipitated by the addition of 30 ml of hexane. Then filtered off, washed with 40 ml of diethyl ether and dried under vacuum to obtained 0.12 g of title compound I (yield 78%). 20 mg of the product was dissolved in 5 ml of dry DMSO for crystallization. After one week, light orange color crystals were obtained which were found to be suitable for X-ray diffraction data collection. All chemicals were purchased from Acros (Belgium).

Refinement top

H Atoms on methyl, methylene and methine were positioned geometrically with C—H = 0.96 Å, 0.97 Å and 0.93 Å respectively, and constrained to ride on their parent atoms with Uiso(H)= 1.2Ueq (CH2, CH) and 1.5Ueq(CH3).

Structure description top

Metal complexes containing chelating diphosphines as ligands have been employed in numerous catalytic processes. A major advantage of these ligands is variation in their potential catalytic reactivity by varying the molecular properties of the phosphine. The title compound was synthesized as a part of our ongoing research to study the properties of metal complexes with chelating ligands.

The crystal structure of title compound, [PdCl2C26H24P2)].C6H6SO, consists of a bidentate diphenyl phosphine ligand and two chloride atoms coordinated with Pd(II) to adapt a distorted square planner geometry, along with an independent molecule of dimethyl sulfoxide (DMSO) as solvent (Fig. 1). The five membered metallocycle (Pd1/P1/P2/C25—C26) adopts an envelop conformation [Q= 0.466 (19) Å and φ = 301.14 (17)°] with maximum deviation of 0.318 (2) Å for C26 atom from the least square plane. The Structural report of the compound is similar to many previously published reports with the difference that it has a DMSO solvate (Xu et al. 2008, Batsanov et al. 2001,Steffen & Palenik, 1976, Singh et al. 1995). The coordination environment around the Pd(II) ion is such that the two phosphorous atoms of the bidentate diphenyl phosphine ligand [Pd1–P1 = 2.2355 (5) Å, Pd1–P2 = 2.2336 (5) Å] and two chloride atoms [Pd1–Cl1= 2.3481 (6) Å, Pd1–Cl2= 2.3613 (5) Å] are assembled at four corners of square to adapt square pyramidal arrangement. The S1, C28 and C29 atoms of DMSO molecule are disordered at two positions,with relative occupancies of 0.89 (18):0.10 (18) for the isotropically refined major (S1/C27/C28) and minor (S1'/C27'/C28') components, respectively. All bond lengths are in agreement with the previously reported crystal structures (Xu et al. 2008, Batsanov et al. 2001, Steffen & Palenik, 1976, Singh et al. 1995). The oxygen atom of DMSO playing an important role in the crystal structure by forming C2—H2···O1, C20—H20···O1 and C26—H26A···O1 hydrogen bonds (Table 2, Fig. 2).

The compound was evaluated for its b-glucoronidase inhibiton activity against D-saccharic acid as standard (IC50 45.75 ± 2.16 mM) and found as weak inhibitor (IC50 197.3 ± 12.2 mM)

For the previous reports of crystal structures of this metal complex, (unsolvated or with other solvents), see: Xu et al. (2008); Batsanov et al. (2001); Steffen & Palenik (1976); Singh et al. (1995).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), PARST (Nardelli, 1995) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with displacement ellipsoids drawn at 30% probability level.
[Figure 2] Fig. 2. The crystal packing of the title compound I. Only hydrogen atoms involved in hydrogen bonding are shown.
[1,2-Bis(diphenylphosphanyl)ethane- κ2P,P']dichloridopalladium(II) dimethyl sulfoxide monosolvate top
Crystal data top
[PdCl2(C26H24P2)]·C2H6OSZ = 2
Mr = 653.82F(000) = 664
Triclinic, P1Dx = 1.505 Mg m3
a = 8.4091 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.4745 (4) ÅCell parameters from 8463 reflections
c = 16.8098 (6) Åθ = 2.5–28.3°
α = 73.674 (1)°µ = 1.03 mm1
β = 79.066 (1)°T = 293 K
γ = 68.634 (1)°Block, orange
V = 1442.67 (9) Å30.30 × 0.23 × 0.11 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
6610 independent reflections
Radiation source: fine-focus sealed tube5863 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
ω scanθmax = 27.5°, θmin = 1.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1010
Tmin = 0.747, Tmax = 0.895k = 1414
19016 measured reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.069H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0363P)2 + 0.3766P]
where P = (Fo2 + 2Fc2)/3
6610 reflections(Δ/σ)max = 0.003
326 parametersΔρmax = 0.50 e Å3
3 restraintsΔρmin = 0.32 e Å3
Crystal data top
[PdCl2(C26H24P2)]·C2H6OSγ = 68.634 (1)°
Mr = 653.82V = 1442.67 (9) Å3
Triclinic, P1Z = 2
a = 8.4091 (3) ÅMo Kα radiation
b = 11.4745 (4) ŵ = 1.03 mm1
c = 16.8098 (6) ÅT = 293 K
α = 73.674 (1)°0.30 × 0.23 × 0.11 mm
β = 79.066 (1)°
Data collection top
Bruker SMART APEX CCD
diffractometer
6610 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
5863 reflections with I > 2σ(I)
Tmin = 0.747, Tmax = 0.895Rint = 0.022
19016 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0273 restraints
wR(F2) = 0.069H-atom parameters constrained
S = 1.03Δρmax = 0.50 e Å3
6610 reflectionsΔρmin = 0.32 e Å3
326 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Pd10.505146 (17)0.668916 (13)0.771823 (8)0.02941 (5)
Cl10.25945 (8)0.81046 (6)0.82912 (5)0.06129 (17)
Cl20.34922 (7)0.55828 (5)0.73749 (4)0.04605 (13)
P10.74985 (6)0.53495 (5)0.72429 (3)0.03260 (11)
P20.67020 (6)0.76776 (5)0.79571 (3)0.03221 (11)
C10.7524 (3)0.5243 (2)0.61872 (13)0.0396 (5)
C20.7793 (3)0.6212 (3)0.55295 (15)0.0558 (6)
H20.80280.68870.56300.067*
C30.7714 (4)0.6179 (3)0.47218 (17)0.0725 (8)
H30.78940.68340.42810.087*
C40.7375 (3)0.5199 (4)0.45682 (18)0.0749 (9)
H40.73090.51890.40240.090*
C50.7133 (4)0.4230 (3)0.5210 (2)0.0759 (9)
H50.69210.35520.50990.091*
C60.7196 (3)0.4237 (3)0.60288 (17)0.0587 (6)
H60.70200.35750.64650.070*
C70.8124 (3)0.37111 (19)0.78653 (14)0.0411 (5)
C80.9678 (4)0.2825 (2)0.76568 (18)0.0645 (7)
H81.03810.30680.71890.077*
C91.0188 (4)0.1582 (3)0.8140 (2)0.0783 (9)
H91.12290.09910.79950.094*
C100.9171 (5)0.1225 (3)0.8827 (2)0.0771 (9)
H100.95040.03830.91430.093*
C110.7664 (4)0.2098 (3)0.9054 (2)0.0791 (9)
H110.69950.18580.95370.095*
C120.7125 (3)0.3341 (2)0.85681 (17)0.0583 (6)
H120.60830.39250.87190.070*
C130.7402 (3)0.7045 (2)0.89926 (12)0.0377 (4)
C140.8598 (3)0.7441 (3)0.92091 (17)0.0590 (6)
H140.90460.80270.88210.071*
C150.9125 (4)0.6965 (4)1.0000 (2)0.0791 (10)
H150.99290.72301.01470.095*
C160.8465 (4)0.6107 (3)1.05672 (18)0.0801 (10)
H160.88030.58051.11040.096*
C170.7318 (4)0.5686 (3)1.03572 (16)0.0731 (9)
H170.69120.50731.07430.088*
C180.6754 (3)0.6170 (2)0.95701 (14)0.0533 (6)
H180.59420.59050.94320.064*
C190.5851 (3)0.9401 (2)0.78165 (15)0.0441 (5)
C200.5855 (4)1.0192 (2)0.70303 (19)0.0670 (7)
H200.62910.98420.65660.080*
C210.5198 (5)1.1521 (3)0.6938 (3)0.0915 (11)
H210.52151.20560.64080.110*
C220.4539 (5)1.2048 (3)0.7599 (3)0.0980 (13)
H220.41091.29380.75240.118*
C230.4503 (5)1.1276 (3)0.8380 (3)0.0906 (11)
H230.40421.16410.88360.109*
C240.5150 (4)0.9944 (3)0.8497 (2)0.0661 (7)
H240.51130.94200.90300.079*
C250.9282 (3)0.5915 (2)0.72475 (14)0.0420 (5)
H25A0.98770.54250.77390.050*
H25B1.00910.57650.67620.050*
C260.8655 (3)0.7338 (2)0.72412 (13)0.0398 (5)
H26A0.84170.78500.66830.048*
H26B0.95290.75520.74160.048*
O10.8108 (4)0.9128 (2)0.52539 (14)0.1089 (9)
S10.76772 (16)0.97151 (11)0.43853 (6)0.0890 (3)0.8976 (18)
C270.9635 (7)0.9661 (6)0.3762 (3)0.1181 (18)0.8976 (18)
H27A1.02590.87930.37160.177*0.8976 (18)
H27B1.03040.99570.40150.177*0.8976 (18)
H27C0.94051.02040.32180.177*0.8976 (18)
C280.6941 (10)1.1385 (4)0.4309 (3)0.173 (3)0.8976 (18)
H28A0.58391.16270.46210.259*0.8976 (18)
H28B0.68441.18330.37350.259*0.8976 (18)
H28C0.77391.16050.45290.259*0.8976 (18)
S1'0.8125 (14)1.0323 (6)0.4620 (5)0.0890 (3)0.1024 (18)
C27'0.880 (7)0.957 (6)0.378 (3)0.1181 (18)0.1024 (18)
H27D1.00070.90930.37770.177*0.1024 (18)
H27E0.85941.02120.32640.177*0.1024 (18)
H27F0.81760.89960.38300.177*0.1024 (18)
C28'0.622 (4)1.075 (5)0.416 (3)0.173 (3)0.1024 (18)
H28D0.52921.13020.44540.259*0.1024 (18)
H28E0.59660.99870.41880.259*0.1024 (18)
H28F0.63551.11930.35890.259*0.1024 (18)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pd10.02598 (8)0.02756 (8)0.03349 (9)0.00798 (6)0.00470 (5)0.00518 (6)
Cl10.0388 (3)0.0489 (3)0.0917 (5)0.0079 (2)0.0116 (3)0.0302 (3)
Cl20.0400 (3)0.0497 (3)0.0574 (3)0.0209 (2)0.0106 (2)0.0140 (2)
P10.0292 (2)0.0319 (2)0.0360 (3)0.0073 (2)0.00501 (19)0.0095 (2)
P20.0341 (3)0.0296 (2)0.0341 (3)0.0124 (2)0.0048 (2)0.0057 (2)
C10.0316 (10)0.0470 (12)0.0391 (11)0.0070 (9)0.0028 (8)0.0168 (9)
C20.0657 (16)0.0572 (15)0.0435 (13)0.0190 (12)0.0054 (11)0.0119 (11)
C30.076 (2)0.094 (2)0.0397 (14)0.0225 (17)0.0052 (13)0.0122 (14)
C40.0483 (15)0.125 (3)0.0518 (16)0.0118 (16)0.0026 (12)0.0455 (18)
C50.0706 (19)0.100 (2)0.081 (2)0.0303 (18)0.0044 (16)0.056 (2)
C60.0609 (16)0.0675 (17)0.0606 (15)0.0280 (13)0.0019 (12)0.0280 (13)
C70.0420 (11)0.0322 (10)0.0478 (12)0.0070 (9)0.0131 (9)0.0085 (9)
C80.0594 (16)0.0461 (14)0.0703 (17)0.0026 (12)0.0053 (13)0.0137 (13)
C90.078 (2)0.0410 (15)0.101 (2)0.0086 (14)0.0300 (18)0.0182 (15)
C100.094 (2)0.0361 (13)0.100 (2)0.0154 (15)0.052 (2)0.0062 (15)
C110.084 (2)0.0604 (18)0.081 (2)0.0317 (17)0.0205 (17)0.0196 (16)
C120.0531 (15)0.0455 (13)0.0656 (16)0.0131 (11)0.0091 (12)0.0014 (12)
C130.0366 (11)0.0408 (11)0.0351 (10)0.0087 (9)0.0056 (8)0.0117 (8)
C140.0565 (15)0.0703 (17)0.0601 (15)0.0226 (13)0.0163 (12)0.0210 (13)
C150.0661 (19)0.104 (3)0.076 (2)0.0095 (18)0.0327 (16)0.043 (2)
C160.071 (2)0.102 (3)0.0429 (15)0.0130 (18)0.0222 (14)0.0224 (16)
C170.0649 (18)0.086 (2)0.0373 (13)0.0029 (15)0.0014 (12)0.0021 (13)
C180.0480 (13)0.0631 (15)0.0407 (12)0.0158 (12)0.0032 (10)0.0036 (11)
C190.0403 (11)0.0307 (10)0.0646 (14)0.0139 (9)0.0121 (10)0.0085 (10)
C200.0733 (18)0.0414 (13)0.0762 (19)0.0169 (13)0.0125 (15)0.0028 (13)
C210.089 (2)0.0416 (16)0.124 (3)0.0207 (16)0.023 (2)0.0172 (18)
C220.075 (2)0.0347 (15)0.183 (4)0.0124 (15)0.031 (3)0.019 (2)
C230.084 (2)0.0547 (18)0.140 (3)0.0040 (16)0.019 (2)0.054 (2)
C240.0710 (18)0.0453 (14)0.0830 (19)0.0094 (13)0.0119 (15)0.0267 (14)
C250.0282 (10)0.0505 (12)0.0492 (12)0.0116 (9)0.0042 (9)0.0158 (10)
C260.0379 (11)0.0453 (12)0.0392 (11)0.0205 (9)0.0014 (8)0.0070 (9)
O10.171 (3)0.0846 (16)0.0628 (14)0.0520 (18)0.0197 (15)0.0146 (12)
S10.1244 (9)0.0899 (7)0.0686 (6)0.0583 (7)0.0235 (6)0.0026 (5)
C270.119 (4)0.164 (5)0.083 (3)0.062 (4)0.002 (3)0.033 (3)
C280.277 (8)0.071 (3)0.097 (4)0.021 (4)0.036 (4)0.000 (3)
S1'0.1244 (9)0.0899 (7)0.0686 (6)0.0583 (7)0.0235 (6)0.0026 (5)
C27'0.119 (4)0.164 (5)0.083 (3)0.062 (4)0.002 (3)0.033 (3)
C28'0.277 (8)0.071 (3)0.097 (4)0.021 (4)0.036 (4)0.000 (3)
Geometric parameters (Å, º) top
Pd1—P22.2336 (5)C16—H160.9300
Pd1—P12.2355 (5)C17—C181.384 (3)
Pd1—Cl12.3481 (6)C17—H170.9300
Pd1—Cl22.3613 (5)C18—H180.9300
P1—C11.808 (2)C19—C201.377 (3)
P1—C71.813 (2)C19—C241.387 (4)
P1—C251.840 (2)C20—C211.394 (4)
P2—C191.802 (2)C20—H200.9300
P2—C131.808 (2)C21—C221.344 (5)
P2—C261.829 (2)C21—H210.9300
C1—C21.381 (3)C22—C231.364 (5)
C1—C61.382 (3)C22—H220.9300
C2—C31.384 (4)C23—C241.391 (4)
C2—H20.9300C23—H230.9300
C3—C41.355 (5)C24—H240.9300
C3—H30.9300C25—C261.520 (3)
C4—C51.360 (5)C25—H25A0.9700
C4—H40.9300C25—H25B0.9700
C5—C61.390 (4)C26—H26A0.9700
C5—H50.9300C26—H26B0.9700
C6—H60.9300O1—S11.479 (2)
C7—C121.373 (3)O1—S1'1.484 (2)
C7—C81.386 (3)S1—C281.760 (5)
C8—C91.383 (4)S1—C271.766 (5)
C8—H80.9300C27—H27A0.9600
C9—C101.359 (5)C27—H27B0.9600
C9—H90.9300C27—H27C0.9600
C10—C111.365 (5)C28—H28A0.9600
C10—H100.9300C28—H28B0.9600
C11—C121.386 (4)C28—H28C0.9600
C11—H110.9300S1'—C28'1.759 (5)
C12—H120.9300S1'—C27'1.762 (5)
C13—C181.377 (3)C27'—H27D0.9600
C13—C141.384 (3)C27'—H27E0.9600
C14—C151.380 (4)C27'—H27F0.9600
C14—H140.9300C28'—H28D0.9600
C15—C161.362 (5)C28'—H28E0.9600
C15—H150.9300C28'—H28F0.9600
C16—C171.362 (5)
P2—Pd1—P185.603 (19)C16—C17—H17120.0
P2—Pd1—Cl190.93 (2)C18—C17—H17120.0
P1—Pd1—Cl1175.75 (2)C13—C18—C17119.7 (3)
P2—Pd1—Cl2175.049 (19)C13—C18—H18120.1
P1—Pd1—Cl289.95 (2)C17—C18—H18120.1
Cl1—Pd1—Cl293.61 (2)C20—C19—C24119.3 (2)
C1—P1—C7106.37 (10)C20—C19—P2120.4 (2)
C1—P1—C25106.61 (10)C24—C19—P2120.34 (19)
C7—P1—C25104.57 (10)C19—C20—C21119.3 (3)
C1—P1—Pd1114.01 (7)C19—C20—H20120.4
C7—P1—Pd1115.28 (8)C21—C20—H20120.4
C25—P1—Pd1109.25 (7)C22—C21—C20121.4 (3)
C19—P2—C13106.06 (10)C22—C21—H21119.3
C19—P2—C26106.39 (10)C20—C21—H21119.3
C13—P2—C26105.79 (10)C21—C22—C23119.9 (3)
C19—P2—Pd1118.01 (7)C21—C22—H22120.1
C13—P2—Pd1112.48 (7)C23—C22—H22120.1
C26—P2—Pd1107.32 (7)C22—C23—C24120.4 (3)
C2—C1—C6119.4 (2)C22—C23—H23119.8
C2—C1—P1119.55 (17)C24—C23—H23119.8
C6—C1—P1121.01 (18)C19—C24—C23119.7 (3)
C1—C2—C3120.1 (3)C19—C24—H24120.1
C1—C2—H2120.0C23—C24—H24120.1
C3—C2—H2120.0C26—C25—P1111.70 (14)
C4—C3—C2120.5 (3)C26—C25—H25A109.3
C4—C3—H3119.7P1—C25—H25A109.3
C2—C3—H3119.7C26—C25—H25B109.3
C3—C4—C5120.0 (3)P1—C25—H25B109.3
C3—C4—H4120.0H25A—C25—H25B107.9
C5—C4—H4120.0C25—C26—P2108.28 (14)
C4—C5—C6120.9 (3)C25—C26—H26A110.0
C4—C5—H5119.5P2—C26—H26A110.0
C6—C5—H5119.5C25—C26—H26B110.0
C1—C6—C5119.2 (3)P2—C26—H26B110.0
C1—C6—H6120.4H26A—C26—H26B108.4
C5—C6—H6120.4S1—O1—S1'43.2 (4)
C12—C7—C8118.8 (2)O1—S1—C28104.8 (2)
C12—C7—P1121.18 (17)O1—S1—C27106.6 (2)
C8—C7—P1119.89 (19)C28—S1—C2795.9 (3)
C9—C8—C7120.3 (3)S1—C27—H27A109.5
C9—C8—H8119.8S1—C27—H27B109.5
C7—C8—H8119.8H27A—C27—H27B109.5
C10—C9—C8120.1 (3)S1—C27—H27C109.5
C10—C9—H9120.0H27A—C27—H27C109.5
C8—C9—H9120.0H27B—C27—H27C109.5
C9—C10—C11120.2 (3)S1—C28—H28A109.5
C9—C10—H10119.9S1—C28—H28B109.5
C11—C10—H10119.9H28A—C28—H28B109.5
C10—C11—C12120.3 (3)S1—C28—H28C109.5
C10—C11—H11119.9H28A—C28—H28C109.5
C12—C11—H11119.9H28B—C28—H28C109.5
C7—C12—C11120.2 (3)O1—S1'—C28'102.2 (18)
C7—C12—H12119.9O1—S1'—C27'95 (2)
C11—C12—H12119.9C28'—S1'—C27'77 (3)
C18—C13—C14119.5 (2)S1'—C27'—H27D109.5
C18—C13—P2120.55 (17)S1'—C27'—H27E109.5
C14—C13—P2119.91 (18)H27D—C27'—H27E109.5
C15—C14—C13120.0 (3)S1'—C27'—H27F109.5
C15—C14—H14120.0H27D—C27'—H27F109.5
C13—C14—H14120.0H27E—C27'—H27F109.5
C16—C15—C14119.8 (3)S1'—C28'—H28D109.5
C16—C15—H15120.1S1'—C28'—H28E109.5
C14—C15—H15120.1H28D—C28'—H28E109.5
C17—C16—C15120.8 (3)S1'—C28'—H28F109.5
C17—C16—H16119.6H28D—C28'—H28F109.5
C15—C16—H16119.6H28E—C28'—H28F109.5
C16—C17—C18120.0 (3)
P2—Pd1—P1—C1123.79 (8)C8—C7—C12—C110.5 (4)
Cl1—Pd1—P1—C1159.1 (3)P1—C7—C12—C11177.2 (2)
Cl2—Pd1—P1—C154.04 (8)C10—C11—C12—C71.6 (5)
P2—Pd1—P1—C7112.73 (8)C19—P2—C13—C18122.64 (19)
Cl1—Pd1—P1—C777.5 (3)C26—P2—C13—C18124.61 (19)
Cl2—Pd1—P1—C769.44 (8)Pd1—P2—C13—C187.8 (2)
P2—Pd1—P1—C254.64 (8)C19—P2—C13—C1457.4 (2)
Cl1—Pd1—P1—C2539.9 (3)C26—P2—C13—C1455.4 (2)
Cl2—Pd1—P1—C25173.19 (8)Pd1—P2—C13—C14172.25 (17)
P1—Pd1—P2—C19145.15 (9)C18—C13—C14—C150.4 (4)
Cl1—Pd1—P2—C1937.30 (9)P2—C13—C14—C15179.6 (2)
Cl2—Pd1—P2—C19119.1 (2)C13—C14—C15—C160.0 (4)
P1—Pd1—P2—C1390.85 (7)C14—C15—C16—C171.6 (5)
Cl1—Pd1—P2—C1386.70 (7)C15—C16—C17—C182.6 (5)
Cl2—Pd1—P2—C13116.9 (2)C14—C13—C18—C170.6 (4)
P1—Pd1—P2—C2625.10 (8)P2—C13—C18—C17179.4 (2)
Cl1—Pd1—P2—C26157.35 (8)C16—C17—C18—C132.2 (4)
Cl2—Pd1—P2—C260.9 (2)C13—P2—C19—C20153.5 (2)
C7—P1—C1—C2153.83 (19)C26—P2—C19—C2041.2 (2)
C25—P1—C1—C242.6 (2)Pd1—P2—C19—C2079.3 (2)
Pd1—P1—C1—C277.99 (19)C13—P2—C19—C2428.0 (2)
C7—P1—C1—C629.3 (2)C26—P2—C19—C24140.3 (2)
C25—P1—C1—C6140.52 (19)Pd1—P2—C19—C2499.2 (2)
Pd1—P1—C1—C698.85 (19)C24—C19—C20—C211.8 (4)
C6—C1—C2—C30.8 (4)P2—C19—C20—C21179.7 (2)
P1—C1—C2—C3176.1 (2)C19—C20—C21—C220.9 (5)
C1—C2—C3—C40.1 (4)C20—C21—C22—C230.1 (6)
C2—C3—C4—C50.8 (5)C21—C22—C23—C240.3 (6)
C3—C4—C5—C61.2 (5)C20—C19—C24—C231.7 (4)
C2—C1—C6—C50.4 (4)P2—C19—C24—C23179.8 (2)
P1—C1—C6—C5176.4 (2)C22—C23—C24—C190.6 (5)
C4—C5—C6—C10.5 (4)C1—P1—C25—C26101.86 (16)
C1—P1—C7—C12126.3 (2)C7—P1—C25—C26145.72 (15)
C25—P1—C7—C12121.1 (2)Pd1—P1—C25—C2621.79 (17)
Pd1—P1—C7—C121.1 (2)P1—C25—C26—P242.01 (18)
C1—P1—C7—C856.9 (2)C19—P2—C26—C25172.09 (14)
C25—P1—C7—C855.7 (2)C13—P2—C26—C2575.39 (16)
Pd1—P1—C7—C8175.66 (18)Pd1—P2—C26—C2544.90 (15)
C12—C7—C8—C91.4 (4)S1'—O1—S1—C2831.7 (7)
P1—C7—C8—C9178.3 (2)S1'—O1—S1—C2769.2 (7)
C7—C8—C9—C100.4 (5)S1—O1—S1'—C28'40.1 (19)
C8—C9—C10—C111.7 (5)S1—O1—S1'—C27'37.4 (18)
C9—C10—C11—C122.6 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O10.932.493.348 (4)153
C20—H20···O10.932.593.495 (4)165
C26—H26A···O10.972.443.410 (3)174

Experimental details

Crystal data
Chemical formula[PdCl2(C26H24P2)]·C2H6OS
Mr653.82
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)8.4091 (3), 11.4745 (4), 16.8098 (6)
α, β, γ (°)73.674 (1), 79.066 (1), 68.634 (1)
V3)1442.67 (9)
Z2
Radiation typeMo Kα
µ (mm1)1.03
Crystal size (mm)0.30 × 0.23 × 0.11
Data collection
DiffractometerBruker SMART APEX CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.747, 0.895
No. of measured, independent and
observed [I > 2σ(I)] reflections
19016, 6610, 5863
Rint0.022
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.069, 1.03
No. of reflections6610
No. of parameters326
No. of restraints3
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.50, 0.32

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), PARST (Nardelli, 1995) and PLATON (Spek, 2009).

Selected bond lengths (Å) top
Pd1—P22.2336 (5)Pd1—Cl12.3481 (6)
Pd1—P12.2355 (5)Pd1—Cl22.3613 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O10.932.493.348 (4)153
C20—H20···O10.932.593.495 (4)165
C26—H26A···O10.972.443.410 (3)174
 

Acknowledgements

The project was supported by King Saud University, Deanship of Scientific Research, College of Science Research Center. MIC and SY gratefully acknowledges the Pakistan Academy of Sciences for funding the project entitled `Study of mol­ecular structures and drugability potential of new inhibitors of β-glucuronidase by single-crystal X-ray diffraction and NMR spectroscopic techniques'.

References

First citationBatsanov, A. S., Howard, J. A. K., Robertson, G. S. & Kilner, M. (2001). Acta Cryst. E57, m301–m304.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSingh, S., Jha, N. K., Narula, P. & Singh, T. P. (1995). Acta Cryst. C51, 593–595.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSteffen, W. L. & Palenik, G. J. (1976). Inorg. Chem. 15, 2433–2439.  CSD CrossRef Web of Science Google Scholar
First citationXu, J., Qiu, X.-L. & Qing, F.-L. (2008). Beilstein J. Org. Chem. 4, 1–5.  Web of Science CSD CrossRef PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds