organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-Benz­yl­oxy-1H-benzotriazole

aDepartment of Physics, Sethupathy Government Arts College, Ramanathapuram 623 502, Tamilnadu, India, bDepartment of Chemistry, Popes College, Sawyerpuram 628 251, Tamilnadu, India, and cInstitut für Organische Chemie, Universität Mainz, Duesbergweg 10–14, 55099 Mainz, Germany
*Correspondence e-mail: b_ravidurai@yahoo.com

(Received 19 June 2012; accepted 22 June 2012; online 30 June 2012)

In the title compound, C13H11N3O, the dihedral angle between the benzotriazole ring system [maximum deviation = 0.027 (16) Å] and the benzene ring is 10.28 (9)°. The C—C—O—N bond adopts an anti conformation [torsion angle = −177.11 (16)°]. In the crystal, the mol­ecules inter­act via weak C—H⋯π inter­actions and aromatic ππ stacking [centroid-to-centroid distance = 3.731 (12) Å].

Related literature

For a related structure and background to benzotriazoles, see: Selvarathy Grace et al. (2012[Selvarathy Grace, P., Jebas, S. R., Ravindran Durai Nayagam, B. & Schollmeyer, D. (2012). Acta Cryst. E68, o1132.]).

[Scheme 1]

Experimental

Crystal data
  • C13H11N3O

  • Mr = 225.25

  • Orthorhombic, P b c a

  • a = 11.2417 (5) Å

  • b = 7.8381 (8) Å

  • c = 25.3933 (18) Å

  • V = 2237.5 (3) Å3

  • Z = 8

  • Cu Kα radiation

  • μ = 0.72 mm−1

  • T = 193 K

  • 0.51 × 0.45 × 0.13 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (CORINC; Wiehl & Schollmeyer, 1994[Wiehl, L. & Schollmeyer, D. (1994). CORINC. University of Mainz, Germany.]) Tmin = 0.84, Tmax = 0.99

  • 2125 measured reflections

  • 2125 independent reflections

  • 1867 reflections with I > 2σ(I)

  • Rint = 0.000

  • 3 standard reflections every 60 min intensity decay: 3%

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.163

  • S = 1.12

  • 2125 reflections

  • 155 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C12–C17 benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13⋯Cg1i 0.95 2.86 3.685 (2) 145
C16—H16⋯Cg1ii 0.95 2.99 3.691 (3) 132
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x-{\script{1\over 2}}, y-{\script{1\over 2}}, z].

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: CORINC (Wiehl & Schollmeyer, 1994[Wiehl, L. & Schollmeyer, D. (1994). CORINC. University of Mainz, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

As part of our ongoing studies of benzotriazole derivatives with possible biological activities (Selvarathy Grace et al., 2012) we now report the crystal structure of the title compound (I).

The benzotriazole ring is essentially planar with the maximum deviation from planarity being 0.027 (16) Å for atom N2. The mean plane of the benzotriazole ring (N1–N3/C4–C9 forms a dihedral angle of 10.28 (9)° with the mean plane of the phenyl ring (C12–C17).

The crystal packing features ππ stacking interactions with the centroid-centroid distance of 3.731 (12) Å [symmetry code: 1 - x, -y, 1 - z], together with weak C—H···π interactions. Molecules are stacked along the b axis (Fig 2).

Related literature top

For a related structure and background to benzotriazoles, see: Selvarathy Grace et al. (2012).

Experimental top

A mixture of sodium salt of 1-hydroxy benzotriazole (0.157 g, 1 mmol) and benzyl chloride (0.126 g, 1 mmol) in ethanol and water (10 ml), were heated at 333 K with stirring for 6 h. The mixture was kept aside for slow evaporation. After a week, colourless blocks were obtained.

Refinement top

H atoms were positioned geometrically [C—H = 0.95 (aromatic) or 0.99 Å (methylene)] and refined using a riding model, with Uiso(H) = 1.2Ueq(C).

Structure description top

As part of our ongoing studies of benzotriazole derivatives with possible biological activities (Selvarathy Grace et al., 2012) we now report the crystal structure of the title compound (I).

The benzotriazole ring is essentially planar with the maximum deviation from planarity being 0.027 (16) Å for atom N2. The mean plane of the benzotriazole ring (N1–N3/C4–C9 forms a dihedral angle of 10.28 (9)° with the mean plane of the phenyl ring (C12–C17).

The crystal packing features ππ stacking interactions with the centroid-centroid distance of 3.731 (12) Å [symmetry code: 1 - x, -y, 1 - z], together with weak C—H···π interactions. Molecules are stacked along the b axis (Fig 2).

For a related structure and background to benzotriazoles, see: Selvarathy Grace et al. (2012).

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: CORINC (Wiehl & Schollmeyer, 1994); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound, showing displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed along the c axis.
1-Benzyloxy-1H-benzotriazole top
Crystal data top
C13H11N3OF(000) = 944
Mr = 225.25Dx = 1.337 Mg m3
Orthorhombic, PbcaCu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ac 2abCell parameters from 25 reflections
a = 11.2417 (5) Åθ = 60–70°
b = 7.8381 (8) ŵ = 0.72 mm1
c = 25.3933 (18) ÅT = 193 K
V = 2237.5 (3) Å3Block, colourless
Z = 80.51 × 0.45 × 0.13 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
1867 reflections with I > 2σ(I)
Radiation source: rotating anodeRint = 0.000
Graphite monochromatorθmax = 70.0°, θmin = 3.5°
ω/2θ scansh = 013
Absorption correction: ψ scan
(CORINC; Wiehl & Schollmeyer, 1994)
k = 90
Tmin = 0.84, Tmax = 0.99l = 030
2125 measured reflections3 standard reflections every 60 min
2125 independent reflections intensity decay: 3%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.054H-atom parameters constrained
wR(F2) = 0.163 w = 1/[σ2(Fo2) + (0.0919P)2 + 0.968P]
where P = (Fo2 + 2Fc2)/3
S = 1.12(Δ/σ)max < 0.001
2125 reflectionsΔρmax = 0.26 e Å3
155 parametersΔρmin = 0.23 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0022 (5)
Crystal data top
C13H11N3OV = 2237.5 (3) Å3
Mr = 225.25Z = 8
Orthorhombic, PbcaCu Kα radiation
a = 11.2417 (5) ŵ = 0.72 mm1
b = 7.8381 (8) ÅT = 193 K
c = 25.3933 (18) Å0.51 × 0.45 × 0.13 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
1867 reflections with I > 2σ(I)
Absorption correction: ψ scan
(CORINC; Wiehl & Schollmeyer, 1994)
Rint = 0.000
Tmin = 0.84, Tmax = 0.993 standard reflections every 60 min
2125 measured reflections intensity decay: 3%
2125 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0540 restraints
wR(F2) = 0.163H-atom parameters constrained
S = 1.12Δρmax = 0.26 e Å3
2125 reflectionsΔρmin = 0.23 e Å3
155 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.59619 (14)0.1616 (2)0.41567 (6)0.0319 (4)
N20.69169 (16)0.0710 (2)0.40089 (7)0.0386 (5)
N30.74822 (17)0.0253 (3)0.44366 (6)0.0390 (5)
C40.68515 (16)0.0849 (3)0.48621 (7)0.0300 (4)
C50.70541 (19)0.0634 (3)0.54041 (8)0.0363 (5)
H50.77240.00200.55310.044*
C60.6242 (2)0.1348 (3)0.57406 (8)0.0395 (5)
H60.63480.12160.61100.047*
C70.5253 (2)0.2276 (3)0.55539 (8)0.0390 (5)
H70.47190.27670.58020.047*
C80.50350 (18)0.2493 (3)0.50265 (9)0.0342 (5)
H80.43660.31110.49000.041*
C90.58618 (17)0.1744 (2)0.46878 (7)0.0285 (4)
O100.51465 (12)0.21382 (19)0.37887 (5)0.0364 (4)
C110.56357 (18)0.3549 (3)0.34807 (8)0.0373 (5)
H11A0.63470.31710.32830.045*
H11B0.58670.45030.37150.045*
C120.46776 (17)0.4101 (3)0.31104 (7)0.0296 (5)
C130.47315 (18)0.3682 (3)0.25810 (8)0.0352 (5)
H130.53770.30180.24530.042*
C140.3853 (2)0.4220 (3)0.22357 (8)0.0400 (5)
H140.39010.39310.18730.048*
C150.29088 (19)0.5177 (3)0.24185 (9)0.0398 (5)
H150.23100.55510.21810.048*
C160.28349 (19)0.5589 (3)0.29457 (9)0.0403 (5)
H160.21770.62290.30730.048*
C170.37194 (18)0.5069 (3)0.32891 (8)0.0357 (5)
H170.36730.53740.36510.043*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0274 (8)0.0424 (9)0.0260 (8)0.0042 (7)0.0039 (6)0.0034 (7)
N20.0322 (9)0.0523 (11)0.0314 (9)0.0075 (8)0.0002 (7)0.0007 (8)
N30.0316 (9)0.0526 (11)0.0330 (9)0.0102 (8)0.0019 (7)0.0024 (8)
C40.0233 (9)0.0355 (10)0.0311 (10)0.0005 (8)0.0026 (7)0.0002 (8)
C50.0341 (10)0.0432 (11)0.0315 (10)0.0023 (9)0.0080 (8)0.0044 (8)
C60.0417 (12)0.0485 (12)0.0284 (10)0.0087 (10)0.0031 (9)0.0010 (9)
C70.0376 (11)0.0432 (12)0.0361 (11)0.0059 (9)0.0075 (9)0.0062 (9)
C80.0263 (9)0.0357 (10)0.0406 (10)0.0003 (8)0.0011 (8)0.0017 (8)
C90.0256 (9)0.0327 (9)0.0273 (9)0.0029 (8)0.0028 (7)0.0015 (7)
O100.0279 (7)0.0507 (9)0.0307 (7)0.0054 (6)0.0097 (5)0.0121 (6)
C110.0307 (10)0.0430 (11)0.0383 (11)0.0080 (9)0.0074 (8)0.0124 (9)
C120.0260 (9)0.0330 (10)0.0299 (9)0.0056 (8)0.0038 (7)0.0051 (7)
C130.0326 (11)0.0393 (11)0.0337 (11)0.0015 (8)0.0022 (8)0.0015 (8)
C140.0492 (13)0.0426 (11)0.0283 (10)0.0043 (10)0.0074 (9)0.0020 (8)
C150.0340 (11)0.0382 (11)0.0473 (13)0.0052 (9)0.0175 (9)0.0095 (9)
C160.0278 (10)0.0401 (11)0.0530 (13)0.0023 (9)0.0001 (9)0.0029 (10)
C170.0345 (11)0.0409 (11)0.0317 (10)0.0044 (9)0.0018 (8)0.0012 (8)
Geometric parameters (Å, º) top
N1—N21.341 (2)O10—C111.462 (2)
N1—C91.357 (2)C11—C121.494 (3)
N1—O101.3714 (19)C11—H11A0.9900
N2—N31.308 (2)C11—H11B0.9900
N3—C41.374 (3)C12—C131.385 (3)
C4—C91.388 (3)C12—C171.393 (3)
C4—C51.405 (3)C13—C141.386 (3)
C5—C61.370 (3)C13—H130.9500
C5—H50.9500C14—C151.380 (3)
C6—C71.411 (3)C14—H140.9500
C6—H60.9500C15—C161.380 (3)
C7—C81.372 (3)C15—H150.9500
C7—H70.9500C16—C171.384 (3)
C8—C91.396 (3)C16—H160.9500
C8—H80.9500C17—H170.9500
N2—N1—C9112.56 (15)O10—C11—C12106.54 (15)
N2—N1—O10120.16 (15)O10—C11—H11A110.4
C9—N1—O10126.85 (16)C12—C11—H11A110.4
N3—N2—N1107.55 (16)O10—C11—H11B110.4
N2—N3—C4108.00 (17)C12—C11—H11B110.4
N3—C4—C9109.55 (17)H11A—C11—H11B108.6
N3—C4—C5130.21 (19)C13—C12—C17118.63 (18)
C9—C4—C5120.21 (18)C13—C12—C11120.70 (19)
C6—C5—C4116.99 (19)C17—C12—C11120.66 (18)
C6—C5—H5121.5C12—C13—C14120.7 (2)
C4—C5—H5121.5C12—C13—H13119.7
C5—C6—C7121.75 (19)C14—C13—H13119.7
C5—C6—H6119.1C15—C14—C13120.04 (19)
C7—C6—H6119.1C15—C14—H14120.0
C8—C7—C6122.2 (2)C13—C14—H14120.0
C8—C7—H7118.9C16—C15—C14119.99 (19)
C6—C7—H7118.9C16—C15—H15120.0
C7—C8—C9115.53 (19)C14—C15—H15120.0
C7—C8—H8122.2C15—C16—C17119.9 (2)
C9—C8—H8122.2C15—C16—H16120.0
N1—C9—C4102.31 (16)C17—C16—H16120.0
N1—C9—C8134.33 (18)C16—C17—C12120.70 (19)
C4—C9—C8123.35 (18)C16—C17—H17119.7
N1—O10—C11109.80 (14)C12—C17—H17119.7
C9—N1—N2—N31.4 (2)C5—C4—C9—C81.0 (3)
O10—N1—N2—N3174.41 (17)C7—C8—C9—N1177.9 (2)
N1—N2—N3—C41.5 (2)C7—C8—C9—C40.6 (3)
N2—N3—C4—C91.2 (2)N2—N1—O10—C1174.3 (2)
N2—N3—C4—C5176.8 (2)C9—N1—O10—C11113.8 (2)
N3—C4—C5—C6178.2 (2)N1—O10—C11—C12177.11 (16)
C9—C4—C5—C60.3 (3)O10—C11—C12—C13104.8 (2)
C4—C5—C6—C70.7 (3)O10—C11—C12—C1776.1 (2)
C5—C6—C7—C81.1 (3)C17—C12—C13—C140.3 (3)
C6—C7—C8—C90.4 (3)C11—C12—C13—C14178.85 (19)
N2—N1—C9—C40.7 (2)C12—C13—C14—C150.4 (3)
O10—N1—C9—C4173.08 (18)C13—C14—C15—C160.4 (3)
N2—N1—C9—C8178.1 (2)C14—C15—C16—C171.2 (3)
O10—N1—C9—C85.7 (4)C15—C16—C17—C121.2 (3)
N3—C4—C9—N10.3 (2)C13—C12—C17—C160.5 (3)
C5—C4—C9—N1177.93 (19)C11—C12—C17—C16179.64 (19)
N3—C4—C9—C8179.28 (19)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C12–C17 benzene ring.
D—H···AD—HH···AD···AD—H···A
C13—H13···Cg1i0.952.863.685 (2)145
C16—H16···Cg1ii0.952.993.691 (3)132
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x1/2, y1/2, z.

Experimental details

Crystal data
Chemical formulaC13H11N3O
Mr225.25
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)193
a, b, c (Å)11.2417 (5), 7.8381 (8), 25.3933 (18)
V3)2237.5 (3)
Z8
Radiation typeCu Kα
µ (mm1)0.72
Crystal size (mm)0.51 × 0.45 × 0.13
Data collection
DiffractometerEnraf–Nonius CAD-4
Absorption correctionψ scan
(CORINC; Wiehl & Schollmeyer, 1994)
Tmin, Tmax0.84, 0.99
No. of measured, independent and
observed [I > 2σ(I)] reflections
2125, 2125, 1867
Rint0.000
(sin θ/λ)max1)0.609
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.163, 1.12
No. of reflections2125
No. of parameters155
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.23

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), CORINC (Wiehl & Schollmeyer, 1994), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C12–C17 benzene ring.
D—H···AD—HH···AD···AD—H···A
C13—H13···Cg1i0.952.863.685 (2)145
C16—H16···Cg1ii0.952.993.691 (3)132
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x1/2, y1/2, z.
 

References

First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationSelvarathy Grace, P., Jebas, S. R., Ravindran Durai Nayagam, B. & Schollmeyer, D. (2012). Acta Cryst. E68, o1132.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWiehl, L. & Schollmeyer, D. (1994). CORINC. University of Mainz, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds