metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bromido({2-[2-(di­phenyl­phosphan­yl)benzyl­­idene]hydrazin-1-yl­­idene}(4-meth­­oxy­anilino)methane­thiol­ato)palladium(II) acetone monosolvate

aDepartment of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor, Malaysia, bIbnu Sina Institute for Fundamental Science Studies, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor, Malaysia, and cX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 21 June 2012; accepted 25 June 2012; online 30 June 2012)

In the title compound, [PdBr(C27H23N3OPS)]·C3H6O, the coordination geometry about the PdII atom is distorted square-planar, arising from the attached Br, S, P and N atoms (N and Br are trans), the maximum deviation from the plane being 0.2053 (4) Å for the N atom. The three benzene rings attached to the P atom make dihedral angles of 69.78 (7), 87.05 (7) and 77.50 (7)° with each other. An intra­molecular C—H⋯N hydrogen bond forms an S(6) ring motif. In the crystal, the complex mol­ecules form infinite chains along the a-axis direction through C—H⋯Br inter­actions, and a C—H⋯O inter­action links the main mol­ecule with the acetone solvent mol­ecule.

Related literature

For the properties of palladium(II)–imino­phosphine complexes, see: Mahamo et al. (2012[Mahamo, T., Mogorosi, M. M., Moss, J. R., Mapolie, S. F., Slootweg, J. C., Lammertsma, K. & Smith, G. S. (2012). J. Organomet. Chem. 703, 34-42.]); Nobre & Monteiro (2009[Nobre, S. M. & Monteiro, A. L. (2009). J. Mol. Catal. A Chem. 313, 65-73.]); Scrivanti et al. (2009[Scrivanti, A., Bertoldini, M., Matteoli, U., Antonaroli, S. & Crociani, B. (2009). Tetrahedron, 65, 7611-7615.]); Sánchez et al. (2010[Sánchez, G., García, J., Serrano, J. L., García, L., Pérez, J. & López, G. (2010). Inorg. Chim. Acta, 363, 1084-1091.]); Mogorosi et al. (2011[Mogorosi, M. M., Mahamo, T., Moss, J. R., Mapolie, S. F., Slootweg, J. C., Lammertsma, K. & Smith, G. S. (2011). J. Organomet. Chem. 696, 3585-3592.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • [PdBr(C27H23N3OPS)]·C3H6O

  • Mr = 712.90

  • Monoclinic, P 21 /c

  • a = 9.7594 (1) Å

  • b = 13.7946 (2) Å

  • c = 21.8681 (3) Å

  • β = 104.092 (1)°

  • V = 2855.44 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.21 mm−1

  • T = 100 K

  • 0.34 × 0.29 × 0.28 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.519, Tmax = 0.581

  • 39886 measured reflections

  • 10415 independent reflections

  • 8861 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.023

  • wR(F2) = 0.055

  • S = 1.04

  • 10415 reflections

  • 359 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.57 e Å−3

  • Δρmin = −0.51 e Å−3

Table 1
Selected geometric parameters (Å, °)

Pd1—N1 2.0243 (12)
Pd1—P1 2.2470 (4)
Pd1—S1 2.3260 (4)
Pd1—Br1 2.4202 (2)
N1—Pd1—P1 90.13 (3)
N1—Pd1—S1 83.90 (3)
P1—Pd1—S1 165.537 (15)
N1—Pd1—Br1 173.90 (3)
P1—Pd1—Br1 93.172 (10)
S1—Pd1—Br1 94.023 (10)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C26—H26A⋯N2 0.95 2.29 2.890 (2) 121
C3—H3A⋯Br1i 0.95 2.87 3.5520 (14) 129
C9—H9A⋯O2ii 0.95 2.58 3.318 (2) 135
Symmetry codes: (i) x+1, y, z; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Iminophosphines containing heteroatoms such as nitrogen, oxygen or sulfur have attracted considerable attention with the expectation that the functionality could participate in the chemistry. These functionalized ligands may act as chelating ligands, using phosphorus and other atom(s), for example, the nitrogen, oxygen or sulfur as donor atoms. Interest in the metal complexes of these hemilabile ligands and their applications in catalysis have been steadily growing as the different features associated with each donor atom offer properties unique to their metal. In particular, the palladium(II)-iminophosphine complexes have shown great potential as catalysts for the formation of new C—C bonds in organic synthesis (Mahamo et al., 2012, Nobre et al., 2009, Scrivanti et al., 2009, Sánchez et al., 2010) and in oligomerization reactions (Mogorosi et al., 2011).

All parameters in (I), are within normal ranges. The coordination environment around PdII atom is in a distorted square-planar configuration, formed by Br1, S1, P1 and N1 atoms with maximum deviation from the plane form by these atoms being 0.2053 (4) Å for the N1 atom. The coordination bond distances between PdII with Br1, S1, P1 and N1 atoms are 2.42015 (17), 2.3260 (4), 2.2470 (4) and 2.0243 (12) Å, respectively with angles 93.17 (1)° for Br1—Pd1—P1, 94.02 (1)° for Br1—Pd1—S1, 83.9 (3)° for S1—Pd1—N1 and 90.13 (3) for P1—Pd1—N1. The three benzene rings attached to the P1 atom make dihedral angles of 69.78 (7)° (C2—C7 and C8—C13), 87.05 (7)° (C2—C7 and C14—C19) and 77.50 (7)° (C8—C13 and C14—C19). These three benzene rings make dihedral angles of 21.99 (7)°, 86.06 (7)° and 75.78 (7)° with the C21—C26 benzene ring.

In the molecule, an intramolecular hydrogen bond of C26—H26A···N2 (Table 1) forms an S(6) hydrogen ring motif (Bernstein et al., 1995).In the crystal structure, the main molecules form infinite chains along the a-direction through the intermolecular interaction of C3—H3A···Br1i whereas the C9—H9A···O2ii bond links the main molecule with the acetone (Fig. 2).

Related literature top

For the properties of palladium(II)–iminophosphine complexes, see: Mahamo et al. (2012); Nobre & Monteiro (2009); Scrivanti et al. (2009); Sánchez et al. (2010); Mogorosi et al. (2011). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

The title complex was prepared by a metathesis reaction of the chlorido({2-[2-(diphenylphosphanyl)benzylidene]hydrazin-1-ylidene}(4-methoxyanilino)methanethiolato)palladium(II) complex. Potassium bromide (70 mg, 0.57 mmol) was added to a solution of the chloropalladium(II) complex (30 mg, 0.06 mmol) in acetone (6 ml). The reaction mixture was allowed to stand at room temperature for 20 h. Orange blocks of the title compound, which precipitated out were filtered off, washed with cold methanol and dried in vacuo (yield: 80%). Melting point: 157–159 °C.

Refinement top

N bound H atom were located from a difference Fourier map and freely refined. The remaining H atoms were positioned geometrically and refined using a riding model with C—H = 0.95–0.98 Å and Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C) for methyl H atoms. A rotating group model was applied to the methyl group.

Structure description top

Iminophosphines containing heteroatoms such as nitrogen, oxygen or sulfur have attracted considerable attention with the expectation that the functionality could participate in the chemistry. These functionalized ligands may act as chelating ligands, using phosphorus and other atom(s), for example, the nitrogen, oxygen or sulfur as donor atoms. Interest in the metal complexes of these hemilabile ligands and their applications in catalysis have been steadily growing as the different features associated with each donor atom offer properties unique to their metal. In particular, the palladium(II)-iminophosphine complexes have shown great potential as catalysts for the formation of new C—C bonds in organic synthesis (Mahamo et al., 2012, Nobre et al., 2009, Scrivanti et al., 2009, Sánchez et al., 2010) and in oligomerization reactions (Mogorosi et al., 2011).

All parameters in (I), are within normal ranges. The coordination environment around PdII atom is in a distorted square-planar configuration, formed by Br1, S1, P1 and N1 atoms with maximum deviation from the plane form by these atoms being 0.2053 (4) Å for the N1 atom. The coordination bond distances between PdII with Br1, S1, P1 and N1 atoms are 2.42015 (17), 2.3260 (4), 2.2470 (4) and 2.0243 (12) Å, respectively with angles 93.17 (1)° for Br1—Pd1—P1, 94.02 (1)° for Br1—Pd1—S1, 83.9 (3)° for S1—Pd1—N1 and 90.13 (3) for P1—Pd1—N1. The three benzene rings attached to the P1 atom make dihedral angles of 69.78 (7)° (C2—C7 and C8—C13), 87.05 (7)° (C2—C7 and C14—C19) and 77.50 (7)° (C8—C13 and C14—C19). These three benzene rings make dihedral angles of 21.99 (7)°, 86.06 (7)° and 75.78 (7)° with the C21—C26 benzene ring.

In the molecule, an intramolecular hydrogen bond of C26—H26A···N2 (Table 1) forms an S(6) hydrogen ring motif (Bernstein et al., 1995).In the crystal structure, the main molecules form infinite chains along the a-direction through the intermolecular interaction of C3—H3A···Br1i whereas the C9—H9A···O2ii bond links the main molecule with the acetone (Fig. 2).

For the properties of palladium(II)–iminophosphine complexes, see: Mahamo et al. (2012); Nobre & Monteiro (2009); Scrivanti et al. (2009); Sánchez et al. (2010); Mogorosi et al. (2011). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure, showing 50% probability displacement ellipsoids. Hydrogen atoms are shown as spheres of arbitrary radius.
[Figure 2] Fig. 2. The crystal packing of (I). Dashed lines indicate hydrogen bonds. H atoms not involved in the hydrogen bond interactions have been omitted for clarity.
Bromido({2-[2-(diphenylphosphanyl)benzylidene]hydrazin-1-ylidene}(4- methoxyanilino)methanethiolato)palladium(II) acetone monosolvate top
Crystal data top
[PdBr(C27H23N3OPS)]·C3H6OF(000) = 1432
Mr = 712.90Dx = 1.658 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9855 reflections
a = 9.7594 (1) Åθ = 2.6–32.7°
b = 13.7946 (2) ŵ = 2.21 mm1
c = 21.8681 (3) ÅT = 100 K
β = 104.092 (1)°Block, orange
V = 2855.44 (6) Å30.34 × 0.29 × 0.28 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD
diffractometer
10415 independent reflections
Radiation source: fine-focus sealed tube8861 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
φ and ω scansθmax = 32.7°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1413
Tmin = 0.519, Tmax = 0.581k = 2020
39886 measured reflectionsl = 3331
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.023Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.055H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0214P)2 + 1.9887P]
where P = (Fo2 + 2Fc2)/3
10415 reflections(Δ/σ)max = 0.003
359 parametersΔρmax = 0.57 e Å3
0 restraintsΔρmin = 0.51 e Å3
Crystal data top
[PdBr(C27H23N3OPS)]·C3H6OV = 2855.44 (6) Å3
Mr = 712.90Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.7594 (1) ŵ = 2.21 mm1
b = 13.7946 (2) ÅT = 100 K
c = 21.8681 (3) Å0.34 × 0.29 × 0.28 mm
β = 104.092 (1)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
10415 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
8861 reflections with I > 2σ(I)
Tmin = 0.519, Tmax = 0.581Rint = 0.020
39886 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0230 restraints
wR(F2) = 0.055H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.57 e Å3
10415 reflectionsΔρmin = 0.51 e Å3
359 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pd10.704790 (10)0.779680 (8)0.641136 (5)0.01125 (3)
Br10.488416 (14)0.688667 (11)0.631039 (7)0.01661 (3)
S10.60716 (4)0.88536 (3)0.559230 (18)0.01615 (7)
P10.80778 (4)0.71221 (3)0.734540 (17)0.01189 (6)
O11.14215 (11)1.29985 (8)0.48277 (6)0.0204 (2)
N10.88698 (12)0.84952 (9)0.64072 (5)0.0121 (2)
N20.88304 (12)0.93600 (9)0.60730 (6)0.0141 (2)
N30.74780 (13)1.03604 (9)0.53199 (6)0.0163 (2)
C11.01540 (14)0.82094 (11)0.66483 (7)0.0142 (3)
H1A1.08730.86130.65620.017*
C21.06536 (14)0.73545 (10)0.70334 (7)0.0132 (2)
C31.20598 (14)0.70940 (11)0.70649 (7)0.0156 (3)
H3A1.25970.74710.68440.019*
C41.26828 (15)0.62984 (11)0.74116 (7)0.0175 (3)
H4A1.36280.61250.74170.021*
C51.19220 (15)0.57571 (11)0.77498 (7)0.0183 (3)
H5A1.23480.52160.79910.022*
C61.05325 (15)0.60090 (11)0.77346 (7)0.0162 (3)
H6A1.00200.56420.79720.019*
C70.98815 (14)0.67937 (10)0.73746 (7)0.0133 (2)
C80.73152 (14)0.60811 (11)0.76440 (7)0.0139 (2)
C90.71690 (15)0.52162 (11)0.73022 (7)0.0173 (3)
H9A0.74380.51850.69130.021*
C100.66292 (16)0.44031 (11)0.75344 (8)0.0198 (3)
H10A0.65440.38100.73070.024*
C110.62110 (16)0.44505 (12)0.80996 (8)0.0216 (3)
H11A0.58450.38900.82570.026*
C120.63286 (16)0.53128 (12)0.84311 (8)0.0214 (3)
H12A0.60290.53480.88130.026*
C130.68869 (15)0.61310 (11)0.82056 (7)0.0176 (3)
H13A0.69750.67220.84350.021*
C140.81635 (14)0.80673 (10)0.79286 (7)0.0134 (2)
C150.69068 (15)0.85482 (11)0.79408 (7)0.0170 (3)
H15A0.60550.83830.76440.020*
C160.69001 (16)0.92636 (12)0.83842 (8)0.0195 (3)
H16A0.60440.95840.83940.023*
C170.81496 (17)0.95120 (12)0.88152 (8)0.0221 (3)
H17A0.81461.00020.91200.026*
C180.94000 (17)0.90461 (12)0.88012 (8)0.0225 (3)
H18A1.02520.92220.90950.027*
C190.94167 (15)0.83214 (11)0.83592 (7)0.0182 (3)
H19A1.02750.80030.83510.022*
C200.76103 (14)0.95539 (10)0.56883 (7)0.0137 (2)
C210.85096 (15)1.10329 (11)0.52262 (7)0.0148 (3)
C220.80186 (15)1.18361 (11)0.48507 (7)0.0181 (3)
H22A0.70311.19190.46870.022*
C230.89460 (16)1.25220 (12)0.47100 (7)0.0182 (3)
H23A0.85921.30710.44590.022*
C241.03915 (15)1.23961 (11)0.49406 (7)0.0166 (3)
C251.08861 (15)1.15945 (11)0.53156 (7)0.0166 (3)
H25A1.18751.15090.54720.020*
C260.99713 (15)1.09190 (11)0.54654 (7)0.0155 (3)
H26A1.03301.03820.57280.019*
C271.09781 (17)1.38688 (12)0.44904 (8)0.0215 (3)
H27A1.18081.42380.44490.032*
H27B1.04251.42570.47190.032*
H27C1.03951.37110.40700.032*
O20.28740 (16)0.89352 (14)0.89867 (9)0.0568 (5)
C280.5216 (2)0.88159 (18)0.96035 (10)0.0389 (5)
H28A0.52610.95200.95520.058*
H28B0.60470.85140.95060.058*
H28C0.52000.86651.00400.058*
C290.39116 (18)0.84330 (15)0.91678 (9)0.0294 (4)
C300.3951 (3)0.74038 (17)0.89679 (11)0.0439 (5)
H30A0.29840.71680.88040.066*
H30B0.44240.70090.93300.066*
H30C0.44710.73580.86380.066*
H1N30.666 (2)1.0483 (14)0.5108 (9)0.017 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pd10.01062 (4)0.01195 (5)0.01123 (5)0.00014 (3)0.00274 (3)0.00117 (4)
Br10.01181 (6)0.01856 (7)0.01935 (7)0.00098 (5)0.00360 (5)0.00368 (5)
S10.01293 (14)0.01705 (17)0.01712 (17)0.00071 (12)0.00104 (12)0.00493 (13)
P10.01176 (14)0.01188 (16)0.01216 (16)0.00036 (12)0.00319 (12)0.00106 (12)
O10.0186 (5)0.0174 (5)0.0254 (6)0.0022 (4)0.0054 (4)0.0058 (4)
N10.0139 (5)0.0115 (5)0.0110 (5)0.0003 (4)0.0030 (4)0.0009 (4)
N20.0157 (5)0.0117 (5)0.0148 (6)0.0009 (4)0.0033 (4)0.0027 (4)
N30.0141 (5)0.0155 (6)0.0180 (6)0.0006 (4)0.0013 (4)0.0060 (5)
C10.0138 (6)0.0146 (7)0.0147 (6)0.0011 (5)0.0046 (5)0.0007 (5)
C20.0127 (5)0.0138 (7)0.0131 (6)0.0000 (4)0.0029 (5)0.0006 (5)
C30.0132 (6)0.0168 (7)0.0170 (7)0.0001 (5)0.0041 (5)0.0005 (5)
C40.0144 (6)0.0186 (7)0.0197 (7)0.0023 (5)0.0044 (5)0.0011 (6)
C50.0181 (6)0.0169 (7)0.0201 (7)0.0043 (5)0.0048 (5)0.0036 (6)
C60.0163 (6)0.0158 (7)0.0168 (7)0.0013 (5)0.0046 (5)0.0031 (5)
C70.0127 (5)0.0140 (6)0.0132 (6)0.0002 (5)0.0034 (5)0.0007 (5)
C80.0122 (5)0.0148 (6)0.0137 (6)0.0007 (5)0.0014 (5)0.0037 (5)
C90.0176 (6)0.0163 (7)0.0174 (7)0.0004 (5)0.0033 (5)0.0015 (5)
C100.0194 (6)0.0141 (7)0.0242 (8)0.0020 (5)0.0018 (6)0.0013 (6)
C110.0179 (6)0.0192 (7)0.0264 (8)0.0049 (5)0.0027 (6)0.0076 (6)
C120.0211 (7)0.0246 (8)0.0190 (7)0.0037 (6)0.0060 (6)0.0050 (6)
C130.0191 (6)0.0178 (7)0.0161 (7)0.0019 (5)0.0048 (5)0.0010 (5)
C140.0152 (6)0.0130 (6)0.0124 (6)0.0003 (5)0.0044 (5)0.0008 (5)
C150.0163 (6)0.0181 (7)0.0165 (7)0.0015 (5)0.0039 (5)0.0002 (5)
C160.0215 (7)0.0180 (7)0.0204 (7)0.0028 (5)0.0075 (6)0.0020 (6)
C170.0252 (7)0.0190 (8)0.0218 (8)0.0008 (6)0.0052 (6)0.0047 (6)
C180.0210 (7)0.0227 (8)0.0212 (8)0.0006 (6)0.0002 (6)0.0057 (6)
C190.0163 (6)0.0183 (7)0.0189 (7)0.0007 (5)0.0024 (5)0.0020 (5)
C200.0158 (6)0.0129 (6)0.0134 (6)0.0001 (5)0.0053 (5)0.0001 (5)
C210.0160 (6)0.0135 (6)0.0148 (6)0.0000 (5)0.0032 (5)0.0014 (5)
C220.0162 (6)0.0178 (7)0.0190 (7)0.0008 (5)0.0018 (5)0.0032 (6)
C230.0202 (6)0.0152 (7)0.0184 (7)0.0008 (5)0.0033 (5)0.0043 (5)
C240.0186 (6)0.0155 (7)0.0158 (7)0.0019 (5)0.0046 (5)0.0001 (5)
C250.0157 (6)0.0172 (7)0.0162 (7)0.0000 (5)0.0026 (5)0.0010 (5)
C260.0174 (6)0.0133 (6)0.0151 (6)0.0007 (5)0.0028 (5)0.0024 (5)
C270.0247 (7)0.0168 (7)0.0222 (8)0.0033 (6)0.0044 (6)0.0047 (6)
O20.0318 (8)0.0650 (12)0.0747 (13)0.0166 (8)0.0149 (8)0.0380 (10)
C280.0411 (11)0.0494 (13)0.0270 (10)0.0042 (9)0.0097 (8)0.0033 (9)
C290.0239 (8)0.0400 (11)0.0266 (9)0.0040 (7)0.0105 (7)0.0133 (8)
C300.0570 (14)0.0432 (13)0.0313 (11)0.0085 (11)0.0107 (10)0.0021 (9)
Geometric parameters (Å, º) top
Pd1—N12.0243 (12)C12—C131.395 (2)
Pd1—P12.2470 (4)C12—H12A0.9500
Pd1—S12.3260 (4)C13—H13A0.9500
Pd1—Br12.4202 (2)C14—C191.394 (2)
S1—C201.7547 (14)C14—C151.400 (2)
P1—C71.8037 (14)C15—C161.385 (2)
P1—C81.8109 (15)C15—H15A0.9500
P1—C141.8115 (15)C16—C171.390 (2)
O1—C241.3722 (18)C16—H16A0.9500
O1—C271.4203 (19)C17—C181.386 (2)
N1—C11.2971 (17)C17—H17A0.9500
N1—N21.3945 (17)C18—C191.393 (2)
N2—C201.3075 (18)C18—H18A0.9500
N3—C201.3610 (19)C19—H19A0.9500
N3—C211.4202 (19)C21—C221.393 (2)
N3—H1N30.836 (19)C21—C261.4035 (19)
C1—C21.462 (2)C22—C231.394 (2)
C1—H1A0.9500C22—H22A0.9500
C2—C31.4040 (19)C23—C241.389 (2)
C2—C71.413 (2)C23—H23A0.9500
C3—C41.387 (2)C24—C251.391 (2)
C3—H3A0.9500C25—C261.384 (2)
C4—C51.387 (2)C25—H25A0.9500
C4—H4A0.9500C26—H26A0.9500
C5—C61.392 (2)C27—H27A0.9800
C5—H5A0.9500C27—H27B0.9800
C6—C71.397 (2)C27—H27C0.9800
C6—H6A0.9500O2—C291.211 (2)
C8—C131.392 (2)C28—C291.489 (3)
C8—C91.397 (2)C28—H28A0.9800
C9—C101.387 (2)C28—H28B0.9800
C9—H9A0.9500C28—H28C0.9800
C10—C111.394 (2)C29—C301.489 (3)
C10—H10A0.9500C30—H30A0.9800
C11—C121.383 (2)C30—H30B0.9800
C11—H11A0.9500C30—H30C0.9800
N1—Pd1—P190.13 (3)C19—C14—C15119.75 (14)
N1—Pd1—S183.90 (3)C19—C14—P1122.61 (11)
P1—Pd1—S1165.537 (15)C15—C14—P1117.64 (11)
N1—Pd1—Br1173.90 (3)C16—C15—C14120.30 (14)
P1—Pd1—Br193.172 (10)C16—C15—H15A119.9
S1—Pd1—Br194.023 (10)C14—C15—H15A119.9
C20—S1—Pd194.29 (5)C15—C16—C17119.83 (14)
C7—P1—C8105.74 (7)C15—C16—H16A120.1
C7—P1—C14106.17 (7)C17—C16—H16A120.1
C8—P1—C14105.63 (7)C18—C17—C16120.15 (15)
C7—P1—Pd1110.66 (5)C18—C17—H17A119.9
C8—P1—Pd1121.60 (5)C16—C17—H17A119.9
C14—P1—Pd1106.00 (5)C17—C18—C19120.47 (14)
C24—O1—C27117.48 (12)C17—C18—H18A119.8
C1—N1—N2111.94 (11)C19—C18—H18A119.8
C1—N1—Pd1128.05 (10)C18—C19—C14119.49 (14)
N2—N1—Pd1119.82 (8)C18—C19—H19A120.3
C20—N2—N1114.64 (12)C14—C19—H19A120.3
C20—N3—C21130.61 (12)N2—C20—N3119.24 (13)
C20—N3—H1N3115.7 (13)N2—C20—S1125.67 (11)
C21—N3—H1N3113.7 (13)N3—C20—S1115.09 (10)
N1—C1—C2129.27 (13)C22—C21—C26118.78 (13)
N1—C1—H1A115.4C22—C21—N3116.77 (13)
C2—C1—H1A115.4C26—C21—N3124.40 (13)
C3—C2—C7118.33 (13)C21—C22—C23121.41 (14)
C3—C2—C1114.81 (12)C21—C22—H22A119.3
C7—C2—C1126.86 (12)C23—C22—H22A119.3
C4—C3—C2121.49 (14)C24—C23—C22119.45 (14)
C4—C3—H3A119.3C24—C23—H23A120.3
C2—C3—H3A119.3C22—C23—H23A120.3
C5—C4—C3119.80 (13)O1—C24—C23125.66 (14)
C5—C4—H4A120.1O1—C24—C25115.03 (13)
C3—C4—H4A120.1C23—C24—C25119.31 (14)
C4—C5—C6119.85 (14)C26—C25—C24121.57 (13)
C4—C5—H5A120.1C26—C25—H25A119.2
C6—C5—H5A120.1C24—C25—H25A119.2
C5—C6—C7120.90 (14)C25—C26—C21119.47 (14)
C5—C6—H6A119.6C25—C26—H26A120.3
C7—C6—H6A119.6C21—C26—H26A120.3
C6—C7—C2119.60 (13)O1—C27—H27A109.5
C6—C7—P1121.37 (11)O1—C27—H27B109.5
C2—C7—P1119.02 (11)H27A—C27—H27B109.5
C13—C8—C9120.06 (14)O1—C27—H27C109.5
C13—C8—P1121.13 (12)H27A—C27—H27C109.5
C9—C8—P1118.81 (11)H27B—C27—H27C109.5
C10—C9—C8119.56 (14)C29—C28—H28A109.5
C10—C9—H9A120.2C29—C28—H28B109.5
C8—C9—H9A120.2H28A—C28—H28B109.5
C9—C10—C11120.39 (15)C29—C28—H28C109.5
C9—C10—H10A119.8H28A—C28—H28C109.5
C11—C10—H10A119.8H28B—C28—H28C109.5
C12—C11—C10120.00 (14)O2—C29—C30121.9 (2)
C12—C11—H11A120.0O2—C29—C28121.5 (2)
C10—C11—H11A120.0C30—C29—C28116.55 (18)
C11—C12—C13120.04 (15)C29—C30—H30A109.5
C11—C12—H12A120.0C29—C30—H30B109.5
C13—C12—H12A120.0H30A—C30—H30B109.5
C8—C13—C12119.93 (15)C29—C30—H30C109.5
C8—C13—H13A120.0H30A—C30—H30C109.5
C12—C13—H13A120.0H30B—C30—H30C109.5
N1—Pd1—S1—C208.51 (6)Pd1—P1—C8—C962.03 (12)
P1—Pd1—S1—C2057.59 (7)C13—C8—C9—C101.6 (2)
Br1—Pd1—S1—C20177.24 (5)P1—C8—C9—C10177.93 (11)
N1—Pd1—P1—C738.54 (6)C8—C9—C10—C111.1 (2)
S1—Pd1—P1—C7103.92 (7)C9—C10—C11—C120.2 (2)
Br1—Pd1—P1—C7136.33 (5)C10—C11—C12—C131.1 (2)
N1—Pd1—P1—C8163.47 (7)C9—C8—C13—C120.8 (2)
S1—Pd1—P1—C8131.15 (7)P1—C8—C13—C12178.73 (11)
Br1—Pd1—P1—C811.40 (6)C11—C12—C13—C80.5 (2)
N1—Pd1—P1—C1476.16 (6)C7—P1—C14—C199.13 (15)
S1—Pd1—P1—C1410.78 (8)C8—P1—C14—C19102.87 (13)
Br1—Pd1—P1—C14108.97 (5)Pd1—P1—C14—C19126.86 (12)
P1—Pd1—N1—C131.57 (12)C7—P1—C14—C15171.21 (11)
S1—Pd1—N1—C1161.62 (13)C8—P1—C14—C1576.79 (13)
P1—Pd1—N1—N2153.83 (10)Pd1—P1—C14—C1553.48 (12)
S1—Pd1—N1—N212.97 (9)C19—C14—C15—C161.0 (2)
C1—N1—N2—C20163.04 (13)P1—C14—C15—C16178.68 (12)
Pd1—N1—N2—C2012.37 (16)C14—C15—C16—C170.6 (2)
N2—N1—C1—C2179.29 (14)C15—C16—C17—C180.1 (3)
Pd1—N1—C1—C25.8 (2)C16—C17—C18—C190.4 (3)
N1—C1—C2—C3162.00 (15)C17—C18—C19—C140.1 (3)
N1—C1—C2—C719.1 (3)C15—C14—C19—C180.6 (2)
C7—C2—C3—C41.1 (2)P1—C14—C19—C18179.03 (12)
C1—C2—C3—C4179.93 (14)N1—N2—C20—N3177.19 (12)
C2—C3—C4—C51.7 (2)N1—N2—C20—S12.55 (19)
C3—C4—C5—C60.7 (2)C21—N3—C20—N26.7 (2)
C4—C5—C6—C71.0 (2)C21—N3—C20—S1173.09 (13)
C5—C6—C7—C21.6 (2)Pd1—S1—C20—N26.11 (13)
C5—C6—C7—P1179.50 (12)Pd1—S1—C20—N3174.14 (10)
C3—C2—C7—C60.6 (2)C20—N3—C21—C22175.16 (15)
C1—C2—C7—C6178.32 (14)C20—N3—C21—C267.3 (3)
C3—C2—C7—P1179.52 (11)C26—C21—C22—C230.0 (2)
C1—C2—C7—P10.6 (2)N3—C21—C22—C23177.65 (14)
C8—P1—C7—C616.37 (14)C21—C22—C23—C241.0 (2)
C14—P1—C7—C695.55 (13)C27—O1—C24—C235.6 (2)
Pd1—P1—C7—C6149.86 (11)C27—O1—C24—C25175.06 (14)
C8—P1—C7—C2164.69 (11)C22—C23—C24—O1178.40 (15)
C14—P1—C7—C283.39 (12)C22—C23—C24—C250.9 (2)
Pd1—P1—C7—C231.20 (13)O1—C24—C25—C26179.49 (14)
C7—P1—C8—C13114.45 (12)C23—C24—C25—C260.1 (2)
C14—P1—C8—C132.16 (13)C24—C25—C26—C211.1 (2)
Pd1—P1—C8—C13118.39 (11)C22—C21—C26—C251.0 (2)
C7—P1—C8—C965.12 (12)N3—C21—C26—C25176.44 (14)
C14—P1—C8—C9177.42 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C26—H26A···N20.952.292.890 (2)121
C3—H3A···Br1i0.952.873.5520 (14)129
C9—H9A···O2ii0.952.583.318 (2)135
Symmetry codes: (i) x+1, y, z; (ii) x+1, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formula[PdBr(C27H23N3OPS)]·C3H6O
Mr712.90
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)9.7594 (1), 13.7946 (2), 21.8681 (3)
β (°) 104.092 (1)
V3)2855.44 (6)
Z4
Radiation typeMo Kα
µ (mm1)2.21
Crystal size (mm)0.34 × 0.29 × 0.28
Data collection
DiffractometerBruker SMART APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.519, 0.581
No. of measured, independent and
observed [I > 2σ(I)] reflections
39886, 10415, 8861
Rint0.020
(sin θ/λ)max1)0.761
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.023, 0.055, 1.04
No. of reflections10415
No. of parameters359
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.57, 0.51

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Selected geometric parameters (Å, º) top
Pd1—N12.0243 (12)Pd1—S12.3260 (4)
Pd1—P12.2470 (4)Pd1—Br12.4202 (2)
N1—Pd1—P190.13 (3)N1—Pd1—Br1173.90 (3)
N1—Pd1—S183.90 (3)P1—Pd1—Br193.172 (10)
P1—Pd1—S1165.537 (15)S1—Pd1—Br194.023 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C26—H26A···N20.952.292.890 (2)121
C3—H3A···Br1i0.952.873.5520 (14)129
C9—H9A···O2ii0.952.583.318 (2)135
Symmetry codes: (i) x+1, y, z; (ii) x+1, y1/2, z+3/2.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

KAM and MS would like to thank Universiti Teknologi Malaysia (UTM) for the Research University Grant Q·J130000.7126.00H13. KAM also wishes to thank the Ministry of Higher Education, Malaysia, for financial support.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationMahamo, T., Mogorosi, M. M., Moss, J. R., Mapolie, S. F., Slootweg, J. C., Lammertsma, K. & Smith, G. S. (2012). J. Organomet. Chem. 703, 34–42.  Web of Science CSD CrossRef CAS Google Scholar
First citationMogorosi, M. M., Mahamo, T., Moss, J. R., Mapolie, S. F., Slootweg, J. C., Lammertsma, K. & Smith, G. S. (2011). J. Organomet. Chem. 696, 3585–3592.  Web of Science CrossRef CAS Google Scholar
First citationNobre, S. M. & Monteiro, A. L. (2009). J. Mol. Catal. A Chem. 313, 65–73.  Web of Science CSD CrossRef CAS Google Scholar
First citationSánchez, G., García, J., Serrano, J. L., García, L., Pérez, J. & López, G. (2010). Inorg. Chim. Acta, 363, 1084–1091.  Google Scholar
First citationScrivanti, A., Bertoldini, M., Matteoli, U., Antonaroli, S. & Crociani, B. (2009). Tetrahedron, 65, 7611–7615.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds