organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-{2-[(E)-(2-Benzoyl­hydrazin-1-yl­­idene)meth­yl]phen­­oxy}acetic acid

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bDepartment of Pharmaceutical Chemistry, College of Pharmacy, Salman Bin Abdulaziz University, PO Box 173, Alkharj 11942, Saudi Arabia, and cDepartment of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, PO Box 2457, Riyadh 11451, Saudi Arabia
*Correspondence e-mail: hkfun@usm.my

(Received 21 June 2012; accepted 25 June 2012; online 30 June 2012)

In the title compound, C16H14N2O4, the dihedral angle between the aromatic rings is 12.45 (6)°. The central C(=O)—N—N=C bridge is roughly planar (r.m.s. deviation = 0.0346 Å) and makes dihedral angles of 13.01 (7) and 0.56 (7)° with the attached phenyl and benzene rings, respectively. The acetic acid unit (r.m.s. deviation = 0.0066 Å) is twisted from its attached benzene ring [dihedral angle = 19.48 (6)°]. In the crystal, mol­ecules are linked by O—H⋯(O,N), N—H⋯O and C—H⋯O hydrogen bonds into sheets lying parallel to the bc plane. A weak aromatic ππ stacking inter­action is also observed [centroid–centroid distance = 3.7330 (7) Å].

Related literature

For background to the biological activity of hydrazones, see: Abdel-Aziz & Mekawey (2009[Abdel-Aziz, H. A. & Mekawey, A. A. I. (2009). Eur. J. Med. Chem. 44, 4985-4997.]). For a related structure, see: Rassem et al. (2012[Rassem, H. H., Salhin, A., Bin Salleh, B., Rosli, M. M. & Fun, H.-K. (2012). Acta Cryst. E68, o1832.]). For further synthetic details, see: Desai et al. (2000[Desai, N. C., Dave, D., Shah, M. D. & Vyas, G. D. (2000). Indian J. Chem. Sect. B, 39, 277-282.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C16H14N2O4

  • Mr = 298.29

  • Monoclinic, P 21 /c

  • a = 12.2173 (7) Å

  • b = 7.8523 (5) Å

  • c = 15.6025 (9) Å

  • β = 108.577 (1)°

  • V = 1418.82 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 100 K

  • 0.32 × 0.21 × 0.14 mm

Data collection
  • Bruker APEX DUO CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.969, Tmax = 0.986

  • 14301 measured reflections

  • 4122 independent reflections

  • 3463 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.124

  • S = 1.07

  • 4122 reflections

  • 203 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H1O3⋯O1i 0.88 1.99 2.7194 (14) 139
O3—H1O3⋯N2i 0.88 2.30 3.0464 (12) 142
N1—H1N1⋯O4ii 0.925 (17) 2.009 (16) 2.9131 (13) 165.4 (16)
C5—H5A⋯O4ii 0.93 2.55 3.4058 (16) 153
C11—H11A⋯O1iii 0.93 2.51 3.3791 (13) 155
C15—H15A⋯O1iv 0.97 2.59 3.5434 (15) 167
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [-x+1, y-{\script{1\over 2}}, -z-{\script{1\over 2}}]; (iii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) -x+1, -y+1, -z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

In continuation to our interest in the chemistry and biological activities of hydrazones (Abdel-Aziz et al., 2009), we now report herein the crystal structure of the title compound.

The asymmetric unit of the title compound is shown in Fig. 1. The C1–C6 and C9–C14 benzene rings are slightly twisted from each other as indicated by the dihedral angle of 12.45 (6)°. The central C7(O1)—N1—N2C8 bridge is nearly planar [r.m.s. deviation = 0.0346 Å], extended in a zigzag conformation and makes dihedral angles of 13.01 (7) and 0.56 (7)° with the C1–C6 and C9–C14 benzene rings, respectively. The acetic acid unit [C15/C16/O3/O4; r.m.s. deviation = 0.0066 Å] is twisted from its attached C9–C14 benzene ring with dihedral angle of 19.48 (6)°. Bond lengths and angles are comparable to those in a related structure (Rassem et al., 2012).

In the crystal (Fig. 2), molecules are linked by O3—H1O3···O1, O3—H1O3···N2, N1—H1N1···O4, C5—H5A···O4, C11—H11A···O1 and C15—H15A···O1 hydrogen bonds (Table 1) into two-dimensional networks parallel to bc plane. π-π interaction is also observed with Cg1···Cg2 distance of 3.7330 (7) Å [symmentry operator = 1 - x,-y,-z], where Cg1 and Cg2 are the centroids of C1–C6 and C9–C14 rings, respectively.

Related literature top

For background to the biological activity of hydrazones, see: Abdel-Aziz et al. (2009). For a related structure, see: Rassem et al. (2012). For further synthetic details, see: Desai et al. (2000). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

The title compound was prepared by heating 2-(2-formylphenoxy)acetic acid with benzohydrazide in absolute ethanol for 4 h (Desai et al., 2000). Colourless blocks were obtained by slow evaporation from EtOH/DMF.

Refinement top

The atoms H1O3 and H1N1 were located in a difference fourier map. Atom H1O3 was then fixed at its found location [O3—H1O3 = 0.8843 Å] and refined using a riding model with Uiso(H) = 1.2Ueq(O), whereas the atom H1N1 was refined freely [N1—H1N1 = 0.924 (17) Å]. The remaining H atoms were positioned geometrically [C—H = 0.93 and 0.97 Å] and refined with Uiso(H) = 1.2Ueq(C).

Structure description top

In continuation to our interest in the chemistry and biological activities of hydrazones (Abdel-Aziz et al., 2009), we now report herein the crystal structure of the title compound.

The asymmetric unit of the title compound is shown in Fig. 1. The C1–C6 and C9–C14 benzene rings are slightly twisted from each other as indicated by the dihedral angle of 12.45 (6)°. The central C7(O1)—N1—N2C8 bridge is nearly planar [r.m.s. deviation = 0.0346 Å], extended in a zigzag conformation and makes dihedral angles of 13.01 (7) and 0.56 (7)° with the C1–C6 and C9–C14 benzene rings, respectively. The acetic acid unit [C15/C16/O3/O4; r.m.s. deviation = 0.0066 Å] is twisted from its attached C9–C14 benzene ring with dihedral angle of 19.48 (6)°. Bond lengths and angles are comparable to those in a related structure (Rassem et al., 2012).

In the crystal (Fig. 2), molecules are linked by O3—H1O3···O1, O3—H1O3···N2, N1—H1N1···O4, C5—H5A···O4, C11—H11A···O1 and C15—H15A···O1 hydrogen bonds (Table 1) into two-dimensional networks parallel to bc plane. π-π interaction is also observed with Cg1···Cg2 distance of 3.7330 (7) Å [symmentry operator = 1 - x,-y,-z], where Cg1 and Cg2 are the centroids of C1–C6 and C9–C14 rings, respectively.

For background to the biological activity of hydrazones, see: Abdel-Aziz et al. (2009). For a related structure, see: Rassem et al. (2012). For further synthetic details, see: Desai et al. (2000). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008 and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. The crystal packing of the title compound. The dashed lines represent the hydrogen bonds. For clarity sake, hydrogen atoms not involved in hydrogen bonding have been omitted.
2-{2-[(E)-(2-Benzoylhydrazin-1-ylidene)methyl]phenoxy}acetic acid top
Crystal data top
C16H14N2O4F(000) = 624
Mr = 298.29Dx = 1.396 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5671 reflections
a = 12.2173 (7) Åθ = 2.8–30.1°
b = 7.8523 (5) ŵ = 0.10 mm1
c = 15.6025 (9) ÅT = 100 K
β = 108.577 (1)°Block, colourless
V = 1418.82 (15) Å30.32 × 0.21 × 0.14 mm
Z = 4
Data collection top
Bruker APEX DUO CCD
diffractometer
4122 independent reflections
Radiation source: fine-focus sealed tube3463 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
φ and ω scansθmax = 30.1°, θmin = 2.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1716
Tmin = 0.969, Tmax = 0.986k = 1110
14301 measured reflectionsl = 2222
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.124H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0673P)2 + 0.394P]
where P = (Fo2 + 2Fc2)/3
4122 reflections(Δ/σ)max < 0.001
203 parametersΔρmax = 0.42 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C16H14N2O4V = 1418.82 (15) Å3
Mr = 298.29Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.2173 (7) ŵ = 0.10 mm1
b = 7.8523 (5) ÅT = 100 K
c = 15.6025 (9) Å0.32 × 0.21 × 0.14 mm
β = 108.577 (1)°
Data collection top
Bruker APEX DUO CCD
diffractometer
4122 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3463 reflections with I > 2σ(I)
Tmin = 0.969, Tmax = 0.986Rint = 0.024
14301 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.124H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.42 e Å3
4122 reflectionsΔρmin = 0.25 e Å3
203 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.70132 (7)0.06520 (12)0.21655 (5)0.0260 (2)
O20.35596 (7)0.38508 (10)0.16701 (5)0.01834 (17)
O30.48909 (8)0.40025 (12)0.26386 (6)0.0273 (2)
H1O30.53410.40880.29820.033*
O40.35806 (9)0.53387 (12)0.37939 (6)0.0305 (2)
N10.64695 (7)0.09189 (11)0.06501 (6)0.01427 (18)
N20.55352 (7)0.18816 (11)0.06821 (6)0.01471 (18)
C10.88465 (10)0.14596 (14)0.22331 (7)0.0202 (2)
H1A0.85870.14040.27320.024*
C20.98417 (10)0.23668 (15)0.22871 (9)0.0262 (2)
H2A1.02390.29350.28180.031*
C31.02450 (10)0.24288 (17)0.15531 (10)0.0304 (3)
H3A1.09200.30180.15940.036*
C40.96375 (11)0.16065 (17)0.07552 (10)0.0299 (3)
H4A0.99070.16540.02610.036*
C50.86271 (10)0.07092 (15)0.06869 (8)0.0221 (2)
H5A0.82200.01700.01490.027*
C60.82339 (9)0.06286 (13)0.14308 (7)0.0162 (2)
C70.71940 (9)0.03547 (13)0.14467 (7)0.01526 (19)
C80.49302 (8)0.25514 (13)0.00687 (6)0.01392 (19)
H8A0.51280.23710.05900.017*
C90.39275 (8)0.36004 (13)0.01025 (6)0.01350 (19)
C100.36525 (9)0.40247 (14)0.06745 (7)0.0177 (2)
H10A0.41140.36190.12330.021*
C110.27065 (10)0.50378 (15)0.06311 (7)0.0220 (2)
H11A0.25420.53220.11560.026*
C120.20069 (10)0.56235 (15)0.02047 (7)0.0206 (2)
H12A0.13600.62780.02390.025*
C130.22630 (9)0.52432 (14)0.09895 (7)0.0169 (2)
H13A0.17930.56430.15460.020*
C140.32297 (8)0.42582 (13)0.09354 (6)0.01383 (19)
C150.31286 (9)0.48856 (14)0.24511 (7)0.0180 (2)
H15A0.30960.60620.22720.022*
H15B0.23520.45280.27920.022*
C160.38970 (10)0.47431 (14)0.30367 (7)0.0196 (2)
H1N10.6582 (14)0.066 (2)0.0106 (11)0.030 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0283 (4)0.0379 (5)0.0125 (3)0.0126 (4)0.0072 (3)0.0028 (3)
O20.0218 (4)0.0241 (4)0.0112 (3)0.0062 (3)0.0082 (3)0.0036 (3)
O30.0275 (4)0.0309 (5)0.0311 (4)0.0042 (4)0.0200 (4)0.0053 (4)
O40.0533 (6)0.0261 (4)0.0172 (4)0.0037 (4)0.0184 (4)0.0046 (3)
N10.0150 (4)0.0165 (4)0.0117 (4)0.0012 (3)0.0048 (3)0.0007 (3)
N20.0143 (4)0.0158 (4)0.0141 (4)0.0005 (3)0.0046 (3)0.0013 (3)
C10.0198 (5)0.0167 (5)0.0203 (5)0.0007 (4)0.0010 (4)0.0014 (4)
C20.0198 (5)0.0185 (5)0.0328 (6)0.0023 (4)0.0023 (4)0.0009 (4)
C30.0182 (5)0.0232 (6)0.0491 (8)0.0042 (4)0.0097 (5)0.0008 (5)
C40.0269 (6)0.0282 (6)0.0414 (7)0.0040 (5)0.0202 (5)0.0003 (5)
C50.0216 (5)0.0227 (5)0.0247 (5)0.0018 (4)0.0111 (4)0.0008 (4)
C60.0143 (4)0.0145 (4)0.0187 (5)0.0008 (4)0.0037 (4)0.0016 (4)
C70.0160 (4)0.0160 (4)0.0138 (4)0.0006 (4)0.0047 (3)0.0003 (3)
C80.0153 (4)0.0142 (4)0.0128 (4)0.0021 (3)0.0051 (3)0.0007 (3)
C90.0147 (4)0.0133 (4)0.0127 (4)0.0022 (3)0.0047 (3)0.0007 (3)
C100.0218 (5)0.0194 (5)0.0122 (4)0.0003 (4)0.0055 (4)0.0000 (4)
C110.0273 (5)0.0247 (5)0.0170 (5)0.0037 (4)0.0114 (4)0.0021 (4)
C120.0206 (5)0.0225 (5)0.0214 (5)0.0044 (4)0.0103 (4)0.0003 (4)
C130.0164 (4)0.0188 (5)0.0157 (4)0.0015 (4)0.0051 (4)0.0018 (4)
C140.0159 (4)0.0152 (4)0.0115 (4)0.0017 (3)0.0059 (3)0.0007 (3)
C150.0187 (5)0.0234 (5)0.0120 (4)0.0017 (4)0.0050 (4)0.0040 (4)
C160.0289 (6)0.0170 (5)0.0160 (4)0.0020 (4)0.0117 (4)0.0007 (4)
Geometric parameters (Å, º) top
O1—C71.2325 (12)C5—C61.3918 (15)
O2—C141.3686 (11)C5—H5A0.9300
O2—C151.4191 (12)C6—C71.4936 (14)
O3—C161.3107 (15)C8—C91.4631 (14)
O3—H1O30.8843C8—H8A0.9300
O4—C161.2136 (13)C9—C101.3975 (13)
N1—C71.3504 (13)C9—C141.4059 (13)
N1—N21.3831 (11)C10—C111.3869 (15)
N1—H1N10.924 (17)C10—H10A0.9300
N2—C81.2821 (13)C11—C121.3901 (16)
C1—C21.3884 (16)C11—H11A0.9300
C1—C61.3985 (15)C12—C131.3895 (14)
C1—H1A0.9300C12—H12A0.9300
C2—C31.3843 (19)C13—C141.3916 (14)
C2—H2A0.9300C13—H13A0.9300
C3—C41.389 (2)C15—C161.5084 (14)
C3—H3A0.9300C15—H15A0.9700
C4—C51.3956 (16)C15—H15B0.9700
C4—H4A0.9300
C14—O2—C15117.23 (8)C9—C8—H8A120.1
C16—O3—H1O3109.9C10—C9—C14118.14 (9)
C7—N1—N2116.90 (8)C10—C9—C8122.20 (9)
C7—N1—H1N1121.8 (10)C14—C9—C8119.62 (8)
N2—N1—H1N1121.3 (10)C11—C10—C9121.42 (9)
C8—N2—N1115.68 (8)C11—C10—H10A119.3
C2—C1—C6120.16 (11)C9—C10—H10A119.3
C2—C1—H1A119.9C10—C11—C12119.29 (9)
C6—C1—H1A119.9C10—C11—H11A120.4
C3—C2—C1120.23 (11)C12—C11—H11A120.4
C3—C2—H2A119.9C13—C12—C11120.79 (10)
C1—C2—H2A119.9C13—C12—H12A119.6
C2—C3—C4119.72 (11)C11—C12—H12A119.6
C2—C3—H3A120.1C12—C13—C14119.41 (9)
C4—C3—H3A120.1C12—C13—H13A120.3
C3—C4—C5120.67 (12)C14—C13—H13A120.3
C3—C4—H4A119.7O2—C14—C13123.35 (9)
C5—C4—H4A119.7O2—C14—C9115.76 (9)
C6—C5—C4119.43 (11)C13—C14—C9120.88 (9)
C6—C5—H5A120.3O2—C15—C16110.21 (9)
C4—C5—H5A120.3O2—C15—H15A109.6
C5—C6—C1119.78 (10)C16—C15—H15A109.6
C5—C6—C7123.97 (9)O2—C15—H15B109.6
C1—C6—C7116.22 (9)C16—C15—H15B109.6
O1—C7—N1121.36 (9)H15A—C15—H15B108.1
O1—C7—C6120.86 (9)O4—C16—O3126.30 (10)
N1—C7—C6117.77 (9)O4—C16—C15119.63 (11)
N2—C8—C9119.75 (8)O3—C16—C15114.03 (9)
N2—C8—H8A120.1
C7—N1—N2—C8172.93 (9)N2—C8—C9—C14176.62 (9)
C6—C1—C2—C31.17 (17)C14—C9—C10—C111.25 (16)
C1—C2—C3—C41.25 (19)C8—C9—C10—C11179.21 (10)
C2—C3—C4—C50.4 (2)C9—C10—C11—C120.95 (17)
C3—C4—C5—C60.59 (19)C10—C11—C12—C131.72 (18)
C4—C5—C6—C10.67 (17)C11—C12—C13—C140.25 (17)
C4—C5—C6—C7177.28 (11)C15—O2—C14—C1320.08 (14)
C2—C1—C6—C50.20 (16)C15—O2—C14—C9160.56 (9)
C2—C1—C6—C7178.31 (10)C12—C13—C14—O2178.65 (10)
N2—N1—C7—O11.68 (15)C12—C13—C14—C92.02 (16)
N2—N1—C7—C6177.63 (8)C10—C9—C14—O2177.88 (9)
C5—C6—C7—O1165.87 (11)C8—C9—C14—O20.13 (14)
C1—C6—C7—O112.14 (15)C10—C9—C14—C132.74 (15)
C5—C6—C7—N113.44 (16)C8—C9—C14—C13179.25 (9)
C1—C6—C7—N1168.54 (9)C14—O2—C15—C16157.84 (9)
N1—N2—C8—C9179.66 (8)O2—C15—C16—O4169.40 (10)
N2—C8—C9—C105.46 (15)O2—C15—C16—O312.74 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H1O3···O1i0.881.992.7194 (14)139
O3—H1O3···N2i0.882.303.0464 (12)142
N1—H1N1···O4ii0.925 (17)2.009 (16)2.9131 (13)165.4 (16)
C5—H5A···O4ii0.932.553.4058 (16)153
C11—H11A···O1iii0.932.513.3791 (13)155
C15—H15A···O1iv0.972.593.5434 (15)167
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+1, y1/2, z1/2; (iii) x+1, y+1/2, z+1/2; (iv) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC16H14N2O4
Mr298.29
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)12.2173 (7), 7.8523 (5), 15.6025 (9)
β (°) 108.577 (1)
V3)1418.82 (15)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.32 × 0.21 × 0.14
Data collection
DiffractometerBruker APEX DUO CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.969, 0.986
No. of measured, independent and
observed [I > 2σ(I)] reflections
14301, 4122, 3463
Rint0.024
(sin θ/λ)max1)0.706
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.124, 1.07
No. of reflections4122
No. of parameters203
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.42, 0.25

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008), SHELXTL (Sheldrick, 2008 and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H1O3···O1i0.881.992.7194 (14)139
O3—H1O3···N2i0.882.303.0464 (12)142
N1—H1N1···O4ii0.925 (17)2.009 (16)2.9131 (13)165.4 (16)
C5—H5A···O4ii0.932.553.4058 (16)153
C11—H11A···O1iii0.932.513.3791 (13)155
C15—H15A···O1iv0.972.593.5434 (15)167
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+1, y1/2, z1/2; (iii) x+1, y+1/2, z+1/2; (iv) x+1, y+1, z.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

HKF and TSC thank Universiti Sains Malaysia (USM) for the Research University Grant (1001/PFIZIK/811160). TSC also thanks the Malaysian Government and USM for the award of a research fellowship. The authors thank the Deanship of Scientific Research and the Research Center, College of Pharmacy, King Saud University.

References

First citationAbdel-Aziz, H. A. & Mekawey, A. A. I. (2009). Eur. J. Med. Chem. 44, 4985–4997.  Web of Science PubMed CAS Google Scholar
First citationBruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationDesai, N. C., Dave, D., Shah, M. D. & Vyas, G. D. (2000). Indian J. Chem. Sect. B, 39, 277–282.  Google Scholar
First citationRassem, H. H., Salhin, A., Bin Salleh, B., Rosli, M. M. & Fun, H.-K. (2012). Acta Cryst. E68, o1832.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds