organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-[(1H-Benzimidazol-2-yl)sulfan­yl]-1-phenyl­ethanone

aDepartment of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, PO Box 2457, Riyadh 11451, Saudi Arabia, and bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 21 June 2012; accepted 25 June 2012; online 30 June 2012)

The title compound, C15H12N2OS, adopts a twisted V-shape, with the S atom as the pivot. The benzimidazole ring system [maximum deviation = 0.015 (1) Å] makes a dihedral angle of 78.56 (7)° with the phenyl ring. The O atom of the ketone group is close to coplanar with its adjacent ring [O—C—C—C torsion angle = 11.0 (2)°]. In the crystal, mol­ecules are linked by N—H⋯N hydrogen bonds into an infinite chain along [001]. The crystal packing also features a C—H⋯π inter­action.

Related literature

For a related structure. see: Abdel-Aziz et al. (2011[Abdel-Aziz, H. A., Ng, S. W. & Tiekink, E. R. T. (2011). Acta Cryst. E67, o2639.]). For the synthesis, see: D'Amico et al. (1964[D'Amico, J. J., Campbell, R. H. & Guinn, E. C. (1964). J. Org. Chem. 29, 865-869.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]). For standard bond lengths, see: Allen et al. (1987)[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.].

[Scheme 1]

Experimental

Crystal data
  • C15H12N2OS

  • Mr = 268.33

  • Monoclinic, P 21 /c

  • a = 14.7849 (13) Å

  • b = 9.2643 (8) Å

  • c = 9.7859 (8) Å

  • β = 106.792 (1)°

  • V = 1283.24 (19) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 100 K

  • 0.32 × 0.11 × 0.07 mm

Data collection
  • Bruker APEX DUO CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.927, Tmax = 0.983

  • 13644 measured reflections

  • 3722 independent reflections

  • 3094 reflections with I > 2σ(I)'

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.096

  • S = 1.05

  • 3722 reflections

  • 176 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.51 e Å−3

  • Δρmin = −0.41 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the N1/N2/C1/C6/C7 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H1N2⋯N1i 0.880 (19) 1.95 (2) 2.8250 (16) 175.8 (18)
C4—H4ACg1ii 0.93 2.82 3.4175 (15) 123
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

In continuation to our reports on the chemistry and the biological activity of benzimidazoles (Abdel-Aziz et al., 2011), we report herein the crystal structure of the title compound.

The asymmetric unit of the title compound is shown in Fig. 1. The molecule adopts a twisted V shape with S atom as the pivot, which is identical to a related structure (Abdel-Aziz et al., 2011). The benzimidazole ring system (N1/N2/C1–C7) is essentially planar [maximum deviation = 0.015 (1) Å at atom C1] and makes a dihedral angle of 78.56 (7)° with the terminal C10–C15 benzene ring. The ketone group (C9O1) is almost coplanar with the C10–C15 benzene ring as indicated by the O1—C9—C10—C11 torsion angle of 11.0 (2)°. Bond lengths (Allen et al., 1987) and angles are within normal ranges.

In the crystal (Fig. 2), molecules are linked by N2—H1N2···N1 hydrogen bond into an infinite chain along the c-axis. The crystal packing is further stabilized by C—H···π interaction (Table 1), involving Cg1, which is the centroid of N1/N2/C1/C6/C7 ring.

Related literature top

For a related structure. see: Abdel-Aziz et al. (2011). For the synthesis, see: D'Amico et al. (1964). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986). For standard bond lengths, see: Allen et al. (1987).

Experimental top

The title compound was prepared by the reaction of 1H-benzo[d]imidazole-2-thiol and 2-bromo-1-phenylethanone in ethanol in the presence of potassium hydroxide (D'Amico et al., 1964). Colourless needles were crystallised from ethanol solution.

Refinement top

The atom H1N2 was located in a difference fourier map and refined freely [N2—H1N2 = 0.880 (19) Å]. The remaining H atoms were positioned geometrically [C—H = 0.93 and 0.97 Å] and refined using a riding model with Uiso(H) = 1.2Ueq(C).

Structure description top

In continuation to our reports on the chemistry and the biological activity of benzimidazoles (Abdel-Aziz et al., 2011), we report herein the crystal structure of the title compound.

The asymmetric unit of the title compound is shown in Fig. 1. The molecule adopts a twisted V shape with S atom as the pivot, which is identical to a related structure (Abdel-Aziz et al., 2011). The benzimidazole ring system (N1/N2/C1–C7) is essentially planar [maximum deviation = 0.015 (1) Å at atom C1] and makes a dihedral angle of 78.56 (7)° with the terminal C10–C15 benzene ring. The ketone group (C9O1) is almost coplanar with the C10–C15 benzene ring as indicated by the O1—C9—C10—C11 torsion angle of 11.0 (2)°. Bond lengths (Allen et al., 1987) and angles are within normal ranges.

In the crystal (Fig. 2), molecules are linked by N2—H1N2···N1 hydrogen bond into an infinite chain along the c-axis. The crystal packing is further stabilized by C—H···π interaction (Table 1), involving Cg1, which is the centroid of N1/N2/C1/C6/C7 ring.

For a related structure. see: Abdel-Aziz et al. (2011). For the synthesis, see: D'Amico et al. (1964). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986). For standard bond lengths, see: Allen et al. (1987).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. The crystal packing of the title compound. The dashed lines represent the hydrogen bonds. For clarity sake, hydrogen atoms not involved in hydrogen bonding have been omitted.
2-[(1H-Benzimidazol-2-yl)sulfanyl]-1-phenylethanone top
Crystal data top
C15H12N2OSF(000) = 560
Mr = 268.33Dx = 1.389 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5435 reflections
a = 14.7849 (13) Åθ = 2.6–30.0°
b = 9.2643 (8) ŵ = 0.24 mm1
c = 9.7859 (8) ÅT = 100 K
β = 106.792 (1)°Needle, colourless
V = 1283.24 (19) Å30.32 × 0.11 × 0.07 mm
Z = 4
Data collection top
Bruker APEX DUO CCD
diffractometer
3722 independent reflections
Radiation source: fine-focus sealed tube3094 reflections with I > 2σ(I)'
Graphite monochromatorRint = 0.027
φ and ω scansθmax = 30.0°, θmin = 1.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 2020
Tmin = 0.927, Tmax = 0.983k = 1013
13644 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.096H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0361P)2 + 0.7649P]
where P = (Fo2 + 2Fc2)/3
3722 reflections(Δ/σ)max = 0.001
176 parametersΔρmax = 0.51 e Å3
0 restraintsΔρmin = 0.41 e Å3
Crystal data top
C15H12N2OSV = 1283.24 (19) Å3
Mr = 268.33Z = 4
Monoclinic, P21/cMo Kα radiation
a = 14.7849 (13) ŵ = 0.24 mm1
b = 9.2643 (8) ÅT = 100 K
c = 9.7859 (8) Å0.32 × 0.11 × 0.07 mm
β = 106.792 (1)°
Data collection top
Bruker APEX DUO CCD
diffractometer
3722 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3094 reflections with I > 2σ(I)'
Tmin = 0.927, Tmax = 0.983Rint = 0.027
13644 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.096H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.51 e Å3
3722 reflectionsΔρmin = 0.41 e Å3
176 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.27768 (2)0.54949 (4)0.10069 (4)0.02057 (9)
O10.12453 (8)0.75548 (13)0.11153 (13)0.0336 (3)
N10.33134 (8)0.80747 (12)0.01048 (12)0.0170 (2)
N20.34377 (8)0.79475 (12)0.24453 (12)0.0159 (2)
C10.36703 (9)0.93757 (14)0.07565 (14)0.0155 (2)
C20.39488 (9)1.06192 (15)0.01768 (15)0.0195 (3)
H2A0.38921.06860.07930.023*
C30.43124 (10)1.17483 (15)0.10989 (15)0.0209 (3)
H3A0.45041.25870.07390.025*
C40.43994 (9)1.16595 (15)0.25666 (15)0.0198 (3)
H4A0.46491.24390.31540.024*
C50.41217 (9)1.04368 (14)0.31575 (14)0.0179 (3)
H5A0.41751.03780.41260.021*
C60.37587 (8)0.93011 (13)0.22273 (14)0.0149 (2)
C70.31869 (9)0.72789 (14)0.11564 (14)0.0163 (2)
C80.16524 (10)0.57212 (15)0.03317 (16)0.0224 (3)
H8A0.17670.60380.12120.027*
H8B0.13400.47900.05130.027*
C90.09888 (10)0.67930 (16)0.00635 (16)0.0229 (3)
C100.00060 (10)0.69134 (16)0.09324 (16)0.0224 (3)
C110.05419 (11)0.80839 (17)0.07551 (18)0.0277 (3)
H11A0.02920.87540.00380.033*
C120.14568 (12)0.82596 (19)0.1637 (2)0.0335 (4)
H12A0.18140.90510.15200.040*
C130.18359 (11)0.7248 (2)0.26939 (19)0.0340 (4)
H13A0.24480.73640.32900.041*
C140.13037 (11)0.6066 (2)0.28627 (18)0.0327 (4)
H14A0.15650.53800.35590.039*
C150.03793 (11)0.58989 (18)0.19947 (17)0.0271 (3)
H15A0.00200.51140.21230.033*
H1N20.3370 (13)0.761 (2)0.325 (2)0.030 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.02627 (17)0.01719 (15)0.01866 (18)0.00276 (12)0.00714 (13)0.00024 (13)
O10.0277 (5)0.0396 (6)0.0327 (7)0.0016 (5)0.0075 (5)0.0181 (5)
N10.0216 (5)0.0182 (5)0.0112 (5)0.0013 (4)0.0048 (4)0.0010 (4)
N20.0204 (5)0.0178 (5)0.0098 (5)0.0002 (4)0.0050 (4)0.0009 (4)
C10.0172 (5)0.0176 (6)0.0114 (6)0.0005 (4)0.0036 (4)0.0004 (5)
C20.0236 (6)0.0214 (6)0.0132 (6)0.0005 (5)0.0048 (5)0.0026 (5)
C30.0249 (6)0.0177 (6)0.0199 (7)0.0014 (5)0.0062 (5)0.0023 (5)
C40.0213 (6)0.0187 (6)0.0185 (7)0.0007 (5)0.0044 (5)0.0042 (5)
C50.0205 (6)0.0209 (6)0.0116 (6)0.0007 (5)0.0037 (5)0.0018 (5)
C60.0154 (5)0.0165 (5)0.0126 (6)0.0012 (4)0.0038 (4)0.0011 (5)
C70.0182 (6)0.0180 (6)0.0128 (6)0.0003 (5)0.0046 (5)0.0003 (5)
C80.0242 (6)0.0234 (6)0.0202 (7)0.0050 (5)0.0072 (5)0.0067 (6)
C90.0242 (6)0.0237 (6)0.0222 (7)0.0046 (5)0.0093 (6)0.0047 (6)
C100.0237 (6)0.0253 (7)0.0200 (7)0.0053 (5)0.0091 (5)0.0006 (6)
C110.0300 (7)0.0249 (7)0.0291 (8)0.0027 (6)0.0101 (6)0.0002 (6)
C120.0302 (8)0.0341 (8)0.0376 (10)0.0035 (7)0.0120 (7)0.0092 (7)
C130.0247 (7)0.0469 (10)0.0290 (9)0.0046 (7)0.0056 (6)0.0120 (8)
C140.0301 (7)0.0440 (9)0.0229 (8)0.0120 (7)0.0056 (6)0.0025 (7)
C150.0271 (7)0.0316 (8)0.0233 (8)0.0059 (6)0.0084 (6)0.0044 (6)
Geometric parameters (Å, º) top
S1—C71.7519 (13)C5—H5A0.9300
S1—C81.8070 (15)C8—C91.5222 (19)
O1—C91.2148 (18)C8—H8A0.9700
N1—C71.3224 (17)C8—H8B0.9700
N1—C11.3941 (16)C9—C101.502 (2)
N2—C71.3571 (17)C10—C111.394 (2)
N2—C61.3790 (16)C10—C151.395 (2)
N2—H1N20.880 (19)C11—C121.388 (2)
C1—C21.3977 (18)C11—H11A0.9300
C1—C61.4088 (18)C12—C131.388 (3)
C2—C31.3846 (19)C12—H12A0.9300
C2—H2A0.9300C13—C141.386 (3)
C3—C41.407 (2)C13—H13A0.9300
C3—H3A0.9300C14—C151.394 (2)
C4—C51.3869 (19)C14—H14A0.9300
C4—H4A0.9300C15—H15A0.9300
C5—C61.3934 (18)
C7—S1—C8100.07 (6)C9—C8—H8A108.6
C7—N1—C1104.24 (11)S1—C8—H8A108.6
C7—N2—C6106.56 (11)C9—C8—H8B108.6
C7—N2—H1N2126.9 (12)S1—C8—H8B108.6
C6—N2—H1N2126.3 (12)H8A—C8—H8B107.6
N1—C1—C2130.08 (12)O1—C9—C10120.88 (13)
N1—C1—C6109.64 (11)O1—C9—C8121.87 (13)
C2—C1—C6120.26 (12)C10—C9—C8117.22 (12)
C3—C2—C1117.56 (12)C11—C10—C15119.34 (14)
C3—C2—H2A121.2C11—C10—C9117.71 (13)
C1—C2—H2A121.2C15—C10—C9122.94 (13)
C2—C3—C4121.66 (12)C12—C11—C10120.72 (15)
C2—C3—H3A119.2C12—C11—H11A119.6
C4—C3—H3A119.2C10—C11—H11A119.6
C5—C4—C3121.51 (13)C11—C12—C13119.69 (16)
C5—C4—H4A119.2C11—C12—H12A120.2
C3—C4—H4A119.2C13—C12—H12A120.2
C4—C5—C6116.68 (12)C14—C13—C12120.09 (15)
C4—C5—H5A121.7C14—C13—H13A120.0
C6—C5—H5A121.7C12—C13—H13A120.0
N2—C6—C5132.10 (12)C13—C14—C15120.36 (16)
N2—C6—C1105.56 (11)C13—C14—H14A119.8
C5—C6—C1122.34 (12)C15—C14—H14A119.8
N1—C7—N2114.00 (12)C14—C15—C10119.79 (15)
N1—C7—S1125.75 (10)C14—C15—H15A120.1
N2—C7—S1120.22 (10)C10—C15—H15A120.1
C9—C8—S1114.65 (10)
C7—N1—C1—C2179.02 (13)C6—N2—C7—S1177.86 (9)
C7—N1—C1—C60.78 (14)C8—S1—C7—N157.99 (13)
N1—C1—C2—C3177.79 (13)C8—S1—C7—N2124.34 (11)
C6—C1—C2—C30.30 (19)C7—S1—C8—C957.82 (11)
C1—C2—C3—C40.1 (2)S1—C8—C9—O18.48 (19)
C2—C3—C4—C50.2 (2)S1—C8—C9—C10173.67 (10)
C3—C4—C5—C60.38 (19)O1—C9—C10—C1111.0 (2)
C7—N2—C6—C5178.49 (13)C8—C9—C10—C11166.86 (13)
C7—N2—C6—C10.55 (13)O1—C9—C10—C15167.78 (15)
C4—C5—C6—N2178.68 (13)C8—C9—C10—C1514.4 (2)
C4—C5—C6—C10.22 (19)C15—C10—C11—C121.0 (2)
N1—C1—C6—N20.83 (14)C9—C10—C11—C12179.88 (14)
C2—C1—C6—N2179.28 (11)C10—C11—C12—C130.9 (2)
N1—C1—C6—C5178.32 (11)C11—C12—C13—C140.3 (2)
C2—C1—C6—C50.12 (19)C12—C13—C14—C151.4 (2)
C1—N1—C7—N20.44 (15)C13—C14—C15—C101.2 (2)
C1—N1—C7—S1178.24 (10)C11—C10—C15—C140.0 (2)
C6—N2—C7—N10.07 (15)C9—C10—C15—C14178.74 (14)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the N1/N2/C1/C6/C7 ring.
D—H···AD—HH···AD···AD—H···A
N2—H1N2···N1i0.880 (19)1.95 (2)2.8250 (16)175.8 (18)
C4—H4A···Cg1ii0.932.823.4175 (15)123
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC15H12N2OS
Mr268.33
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)14.7849 (13), 9.2643 (8), 9.7859 (8)
β (°) 106.792 (1)
V3)1283.24 (19)
Z4
Radiation typeMo Kα
µ (mm1)0.24
Crystal size (mm)0.32 × 0.11 × 0.07
Data collection
DiffractometerBruker APEX DUO CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.927, 0.983
No. of measured, independent and
observed [I > 2σ(I)'] reflections
13644, 3722, 3094
Rint0.027
(sin θ/λ)max1)0.704
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.096, 1.05
No. of reflections3722
No. of parameters176
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.51, 0.41

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the N1/N2/C1/C6/C7 ring.
D—H···AD—HH···AD···AD—H···A
N2—H1N2···N1i0.880 (19)1.95 (2)2.8250 (16)175.8 (18)
C4—H4A···Cg1ii0.932.823.4175 (15)123
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x+1, y+1/2, z+1/2.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

HKF and TSC thank Universiti Sains Malaysia (USM) for the Research University Grant (1001/PFIZIK/811160). TSC also thanks the Malaysian Government and USM for the award of a research fellowship. The authors thank the Deanship of Scientific Research and the Research Center, College of Pharmacy, King Saud University.

References

First citationAbdel-Aziz, H. A., Ng, S. W. & Tiekink, E. R. T. (2011). Acta Cryst. E67, o2639.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationD'Amico, J. J., Campbell, R. H. & Guinn, E. C. (1964). J. Org. Chem. 29, 865–869.  CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds