organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-Chloro-1-[(Z)-2-phenyl­hydrazin-1-yl­­idene]propan-2-one

aDepartment of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, PO Box 2457, Riyadh 11451, Saudi Arabia, and bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 22 June 2012; accepted 25 June 2012; online 30 June 2012)

The title compound, C9H9ClN2O, is close to planar (r.m.s. deviation for the non-H atoms = 0.0446 Å); it exists in a cis conformation with respect to the C=N double bond. In the crystal, the ketone O atom accepts both N—H⋯O and C—H⋯O hydrogen bonds, which leads to [010] infinite chains incorporating R21(6) loops. The crystal structure also features a C—H⋯π inter­action.

Related literature

For synthetic applications of hydrazonoyl chlorides, see: Abdel-Aziz & Mekawey (2009[Abdel-Aziz, H. A. & Mekawey, A. A. I. (2009). Eur. J. Med. Chem. 44, 4985-4997.]). For graph-set descriptors of hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For related structures. see: Asiri et al. (2011a[Asiri, A. M., Al-Youbi, A. O., Zayed, M. E. M. & Ng, S. W. (2011a). Acta Cryst. E67, o1961.],b[Asiri, A. M., Al-Youbi, A. O., Zayed, M. E. M. & Ng, S. W. (2011b). Acta Cryst. E67, o1963.]). For a historical perspective on the synthesis, see: Dieckmann & Platz (1905[Dieckmann, W. & Platz, L. (1905). Ber. Dtsch Chem. Ges. 38, 2986-2990.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C9H9ClN2O

  • Mr = 196.63

  • Monoclinic, P 21 /c

  • a = 7.2681 (14) Å

  • b = 12.361 (2) Å

  • c = 10.704 (2) Å

  • β = 101.158 (3)°

  • V = 943.5 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.36 mm−1

  • T = 100 K

  • 0.37 × 0.21 × 0.10 mm

Data collection
  • Bruker APEX DUO CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.877, Tmax = 0.963

  • 8906 measured reflections

  • 2722 independent reflections

  • 2225 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.148

  • S = 1.06

  • 2722 reflections

  • 124 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.86 e Å−3

  • Δρmin = −0.37 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N1⋯O1i 0.99 (3) 2.01 (3) 2.948 (2) 157 (2)
C1—H1A⋯O1i 0.95 2.45 3.237 (3) 140
C9—H9BCg1ii 0.98 2.68 3.560 (2) 149
Symmetry codes: (i) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) -x+1, -y, -z+1.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

As part of our ongoing studies of the synthetic chemistry of hydrazonoyl chlorides (Abdel-Aziz & Mekawey, 2009), the title compound was prepared and its crystal structure is now reported.

The asymmetric unit of the title compound is shown in Fig. 1. All of the non-H atoms lie nearly on a plane with r.m.s. deviation of 0.0446 Å. The molecule exists in cis configuration with respect to the C7N2 double bond. Bond lengths and angles are comparable to those in related structures (Asiri et al., 2011a,b).

In the crystal (Fig. 2), molecules are linked by N1—H1N1···O1 and C1—H1A···O1 hydrogen bonds (Table 1), generating R21(6) loops (Bernstein et al., 1995) and forming infinite wave-like chains along [010]. The packing also features a C—H···π interaction (Table 1), involving Cg1, which is the centroid of C1–C6 ring.

Related literature top

For synthetic applications of hydrazonoyl chlorides, see: Abdel-Aziz & Mekawey (2009). For graph-set descriptors of hydrogen-bond motifs, see: Bernstein et al. (1995). For related structures. see: Asiri et al. (2011a,b). For a historical perspective on the synthesis, see: Dieckmann & Platz (1905). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

The title compound was prepared by the coupling reaction of 3-chloro-2,4-pentanedione and the diazonium salt of aniline at 0–5 °C (Dieckmann & Platz, 1905). Yellow blocks were recrystallised from ethanol solution.

Refinement top

The atom H1N1 was located in a difference fourier map and refined freely [N1—H1N1 = 1.00 (3) Å]. The remaining H atoms were positioned geometrically [C—H = 0.95 and 0.98 Å] and refined using a riding model with Uiso(H) = 1.2 or 1.5Ueq(C). A rotating group model was applied to the methyl group. Five outliers, (102), (213), (113), (315) and (011) were omitted in the final refinement.

Structure description top

As part of our ongoing studies of the synthetic chemistry of hydrazonoyl chlorides (Abdel-Aziz & Mekawey, 2009), the title compound was prepared and its crystal structure is now reported.

The asymmetric unit of the title compound is shown in Fig. 1. All of the non-H atoms lie nearly on a plane with r.m.s. deviation of 0.0446 Å. The molecule exists in cis configuration with respect to the C7N2 double bond. Bond lengths and angles are comparable to those in related structures (Asiri et al., 2011a,b).

In the crystal (Fig. 2), molecules are linked by N1—H1N1···O1 and C1—H1A···O1 hydrogen bonds (Table 1), generating R21(6) loops (Bernstein et al., 1995) and forming infinite wave-like chains along [010]. The packing also features a C—H···π interaction (Table 1), involving Cg1, which is the centroid of C1–C6 ring.

For synthetic applications of hydrazonoyl chlorides, see: Abdel-Aziz & Mekawey (2009). For graph-set descriptors of hydrogen-bond motifs, see: Bernstein et al. (1995). For related structures. see: Asiri et al. (2011a,b). For a historical perspective on the synthesis, see: Dieckmann & Platz (1905). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. The crystal packing of the title compound. The dashed lines represent the hydrogen bonds. For clarity sake, hydrogen atoms not involved in hydrogen bonding have been omitted.
1-Chloro-1-[(Z)-2-phenylhydrazin-1-ylidene]propan-2-one top
Crystal data top
C9H9ClN2OF(000) = 408
Mr = 196.63Dx = 1.384 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3613 reflections
a = 7.2681 (14) Åθ = 2.5–30.0°
b = 12.361 (2) ŵ = 0.36 mm1
c = 10.704 (2) ÅT = 100 K
β = 101.158 (3)°Block, yellow
V = 943.5 (3) Å30.37 × 0.21 × 0.10 mm
Z = 4
Data collection top
Bruker APEX DUO CCD
diffractometer
2722 independent reflections
Radiation source: fine-focus sealed tube2225 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
φ and ω scansθmax = 30.0°, θmin = 2.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1010
Tmin = 0.877, Tmax = 0.963k = 1714
8906 measured reflectionsl = 1513
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.049H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.148 w = 1/[σ2(Fo2) + (0.0802P)2 + 0.7657P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
2722 reflectionsΔρmax = 0.86 e Å3
124 parametersΔρmin = 0.37 e Å3
0 restraintsExtinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.008 (3)
Crystal data top
C9H9ClN2OV = 943.5 (3) Å3
Mr = 196.63Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.2681 (14) ŵ = 0.36 mm1
b = 12.361 (2) ÅT = 100 K
c = 10.704 (2) Å0.37 × 0.21 × 0.10 mm
β = 101.158 (3)°
Data collection top
Bruker APEX DUO CCD
diffractometer
2722 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2225 reflections with I > 2σ(I)
Tmin = 0.877, Tmax = 0.963Rint = 0.030
8906 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.148H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.86 e Å3
2722 reflectionsΔρmin = 0.37 e Å3
124 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.00357 (7)0.01567 (4)0.18248 (4)0.02310 (16)
O10.0096 (2)0.24567 (12)0.25220 (13)0.0275 (3)
N10.1947 (2)0.08946 (14)0.41978 (16)0.0235 (4)
N20.1820 (2)0.01726 (13)0.42826 (16)0.0220 (3)
C10.2872 (3)0.26204 (17)0.51547 (19)0.0230 (4)
H1A0.22430.29620.43970.028*
C20.3780 (3)0.32397 (18)0.6175 (2)0.0265 (4)
H2A0.37690.40060.61120.032*
C30.4705 (3)0.27448 (19)0.72882 (19)0.0278 (4)
H3A0.53210.31690.79850.033*
C40.4715 (3)0.16205 (19)0.7370 (2)0.0277 (4)
H4A0.53490.12810.81280.033*
C50.3816 (3)0.09862 (18)0.63614 (19)0.0250 (4)
H5A0.38310.02200.64280.030*
C60.2890 (3)0.14930 (17)0.52499 (18)0.0216 (4)
C70.0985 (3)0.07370 (17)0.33405 (18)0.0225 (4)
C80.0876 (3)0.19245 (16)0.34351 (18)0.0221 (4)
C90.1800 (3)0.24284 (17)0.46791 (19)0.0256 (4)
H9A0.14710.31970.46780.038*
H9B0.31640.23530.47870.038*
H9C0.13670.20630.53820.038*
H1N10.129 (4)0.130 (2)0.344 (3)0.032 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0330 (3)0.0140 (2)0.0192 (2)0.00383 (16)0.00273 (17)0.00116 (15)
O10.0323 (8)0.0238 (7)0.0241 (7)0.0020 (6)0.0001 (6)0.0020 (6)
N10.0275 (8)0.0211 (8)0.0202 (8)0.0017 (6)0.0006 (6)0.0010 (6)
N20.0214 (7)0.0211 (8)0.0235 (8)0.0000 (6)0.0040 (6)0.0013 (6)
C10.0220 (9)0.0246 (10)0.0210 (8)0.0009 (7)0.0010 (7)0.0004 (7)
C20.0271 (9)0.0252 (10)0.0268 (10)0.0011 (8)0.0041 (8)0.0040 (8)
C30.0270 (10)0.0324 (11)0.0222 (9)0.0008 (8)0.0000 (7)0.0064 (8)
C40.0280 (10)0.0326 (11)0.0206 (9)0.0028 (8)0.0005 (7)0.0000 (8)
C50.0274 (9)0.0234 (10)0.0234 (9)0.0017 (7)0.0027 (7)0.0002 (7)
C60.0207 (8)0.0234 (9)0.0208 (9)0.0004 (7)0.0040 (7)0.0035 (7)
C70.0237 (9)0.0233 (10)0.0196 (8)0.0003 (7)0.0019 (7)0.0002 (7)
C80.0211 (8)0.0240 (10)0.0212 (9)0.0000 (7)0.0039 (7)0.0005 (7)
C90.0283 (10)0.0240 (10)0.0227 (9)0.0004 (7)0.0002 (7)0.0018 (7)
Geometric parameters (Å, º) top
Cl1—C71.798 (2)C3—C41.392 (3)
O1—C81.223 (2)C3—H3A0.9500
N1—N21.327 (2)C4—C51.391 (3)
N1—C61.409 (2)C4—H4A0.9500
N1—H1N11.00 (3)C5—C61.397 (3)
N2—C71.279 (3)C5—H5A0.9500
C1—C21.392 (3)C7—C81.475 (3)
C1—C61.397 (3)C8—C91.505 (3)
C1—H1A0.9500C9—H9A0.9800
C2—C31.391 (3)C9—H9B0.9800
C2—H2A0.9500C9—H9C0.9800
N2—N1—C6119.79 (17)C4—C5—H5A120.5
N2—N1—H1N1121.9 (15)C6—C5—H5A120.5
C6—N1—H1N1118.0 (15)C5—C6—C1120.37 (18)
C7—N2—N1121.15 (18)C5—C6—N1121.67 (18)
C2—C1—C6119.68 (19)C1—C6—N1117.96 (18)
C2—C1—H1A120.2N2—C7—C8120.84 (18)
C6—C1—H1A120.2N2—C7—Cl1122.96 (16)
C3—C2—C1120.5 (2)C8—C7—Cl1116.16 (14)
C3—C2—H2A119.8O1—C8—C7120.24 (18)
C1—C2—H2A119.8O1—C8—C9122.88 (19)
C2—C3—C4119.25 (19)C7—C8—C9116.87 (17)
C2—C3—H3A120.4C8—C9—H9A109.5
C4—C3—H3A120.4C8—C9—H9B109.5
C5—C4—C3121.2 (2)H9A—C9—H9B109.5
C5—C4—H4A119.4C8—C9—H9C109.5
C3—C4—H4A119.4H9A—C9—H9C109.5
C4—C5—C6119.0 (2)H9B—C9—H9C109.5
C6—N1—N2—C7179.46 (17)N2—N1—C6—C54.6 (3)
C6—C1—C2—C30.0 (3)N2—N1—C6—C1175.28 (17)
C1—C2—C3—C40.1 (3)N1—N2—C7—C8178.98 (17)
C2—C3—C4—C50.2 (3)N1—N2—C7—Cl11.3 (3)
C3—C4—C5—C60.1 (3)N2—C7—C8—O1179.02 (17)
C4—C5—C6—C10.1 (3)Cl1—C7—C8—O11.2 (2)
C4—C5—C6—N1179.75 (18)N2—C7—C8—C90.5 (3)
C2—C1—C6—C50.1 (3)Cl1—C7—C8—C9177.33 (13)
C2—C1—C6—N1179.73 (17)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
N1—H1N1···O1i0.99 (3)2.01 (3)2.948 (2)157 (2)
C1—H1A···O1i0.952.453.237 (3)140
C9—H9B···Cg1ii0.982.683.560 (2)149
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC9H9ClN2O
Mr196.63
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)7.2681 (14), 12.361 (2), 10.704 (2)
β (°) 101.158 (3)
V3)943.5 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.36
Crystal size (mm)0.37 × 0.21 × 0.10
Data collection
DiffractometerBruker APEX DUO CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.877, 0.963
No. of measured, independent and
observed [I > 2σ(I)] reflections
8906, 2722, 2225
Rint0.030
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.148, 1.06
No. of reflections2722
No. of parameters124
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.86, 0.37

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
N1—H1N1···O1i0.99 (3)2.01 (3)2.948 (2)157 (2)
C1—H1A···O1i0.952.453.237 (3)140
C9—H9B···Cg1ii0.982.683.560 (2)149
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x+1, y, z+1.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

HKF and TSC thank Universiti Sains Malaysia (USM) for the Research University Grant (1001/PFIZIK/811160). TSC also thanks the Malaysian Government and USM for the award of a research fellowship. The authors thank the Deanship of Scientific Research and the Research Center, College of Pharmacy, King Saud University.

References

First citationAbdel-Aziz, H. A. & Mekawey, A. A. I. (2009). Eur. J. Med. Chem. 44, 4985–4997.  Web of Science PubMed CAS Google Scholar
First citationAsiri, A. M., Al-Youbi, A. O., Zayed, M. E. M. & Ng, S. W. (2011a). Acta Cryst. E67, o1961.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAsiri, A. M., Al-Youbi, A. O., Zayed, M. E. M. & Ng, S. W. (2011b). Acta Cryst. E67, o1963.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationDieckmann, W. & Platz, L. (1905). Ber. Dtsch Chem. Ges. 38, 2986–2990.  CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds