organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(2-Chloro­benz­yl)-3,5-di­methyl-2,6-di­phenyl­piperidine

aCentre for Nanotechnology, Department of Chemistry, Kalasalingam University, Krishnankoil - 626 126, Tamilnadu, India, bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and cChemistry Department and Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 25 June 2012; accepted 27 June 2012; online 30 June 2012)

Two independent mol­ecules (A and B) comprise the asymmetric unit of the title compound, C26H28ClN, with the inverted form of B almost superimposable upon A. Each piperidine ring has a chair conformation and the chloro substituent is anti to the piperidine N atom. Each of two aromatic rings, the benzyl residue and one methyl group substituents occupies an equatorial position, and the second methyl substituent occupies an axial position. The dihedral angle formed between the chloro­benzene ring and the flanking phenyl rings in mol­ecule A are 84.24 (9) and 24.85 (8)°; the equivalent angles for mol­ecule B are 79.97 (9) and 28.33 (9)°. In the crystal, the A and B mol­ecules are connected by C—H⋯Cl and C—H⋯π inter­actions, forming a supra­molecular chain along [101].

Related literature

For the biological activity of piperidine derivatives, see: Ramalingan et al. (2004[Ramalingan, C., Balasubramanian, S., Kabilan, S. & Vasudevan, M. (2004). Eur. J. Med. Chem. 39, 527-533.]); Ramachandran et al. (2011[Ramachandran, R., Rani, M., Senthan, S., Jeong, Y.-T. & Kabilan, S. (2011). Eur. J. Med. Chem. 46, 1926-1934.]). For a related structure, see: Ramalingan et al. (2012[Ramalingan, C., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, o2300.]). For additional conformational analysis, see: Spek (2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

[Scheme 1]

Experimental

Crystal data
  • C26H28ClN

  • Mr = 389.94

  • Monoclinic, P 21 /c

  • a = 13.4940 (6) Å

  • b = 17.3005 (6) Å

  • c = 18.5078 (6) Å

  • β = 100.892 (4)°

  • V = 4242.9 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.19 mm−1

  • T = 100 K

  • 0.30 × 0.20 × 0.05 mm

Data collection
  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.718, Tmax = 1.000

  • 28999 measured reflections

  • 9798 independent reflections

  • 7163 reflections with I > 2σ(I)

  • Rint = 0.044

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.125

  • S = 1.04

  • 9798 reflections

  • 505 parameters

  • H-atom parameters constrained

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C35–C40 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C29—H29⋯Cl1 0.95 2.73 3.678 (2) 174
C24—H24⋯Cg1i 0.95 2.95 3.680 (2) 135
Symmetry code: (i) [x+1, -y-{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]), DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and QMol (Gans & Shalloway, 2001[Gans, J. & Shalloway, D. (2001). J. Mol. Graph. Model. 19, 557-559.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The crystal structure determination of the title compound was undertaken in order to establish conformational details for a molecule designed and synthesized for the evaluation of its biological properties. The motivation for the biological trial arises as piperidine derivatives are an important class of heterocyclic compounds with potent pharmacological/biological activities (Ramalingan et al., 2004; Ramachandran et al., 2011).

Two independent molecules comprise the asymmetric unit of (I), Fig. 1. The inverted molecule of the N2-containing molecule is virtually super-imposable upon that of the N1-containing molecule, Fig. 2. The r.m.s. bond and angle fits are 0.0045 Å and 0.617°, respectively (Spek, 2009). Each piperidine ring has a chair conformation and the two aromatic rings, the benzyl residue and one methyl substituent occupy equatorial positions, as found in a related structure lacking one C-bound methyl group (Ramalingan et al., 2012), with the additional methyl substituent occupying an axial position. The dihedral angle formed between the C1–C6 chlorobenzene ring and the flanking C9–C14 and C21–C26 phenyl rings are 84.24 (9) and 24.85 (8)°, respectively; the dihedral angle between the phenyl rings is 62.03 (9)°. The comparable values found for the second independent molecule are 79.97 (9), 28.33 (9) and 54.39 (8)°, respectively. The chloro substituent is anti to the piperidine-N atom in each independent molecule.

In the crystal, the independent molecules are connected to each other by C—H···Cl and C—H···π interactions, Table 1, to form a supramolecular chain along [101], Fig. 3. These assemble into the three-dimensional architecture without specific intermolecular interactions between them, Fig. 4.

Related literature top

For the biological activity of piperidine derivatives, see: Ramalingan et al. (2004); Ramachandran et al. (2011). For a related structure, see: Ramalingan et al. (2012). For additional conformational analysis, see: Spek (2009).

Experimental top

A starting material, 3,5-dimethyl-2,6-diphenylpiperidine, was synthesized from benzaldehyde, 2-butanone and ammonium acetate through a Mannich-type reaction (for a typical synthesis, see Ramalingan et al. (2004)) followed by standard Wolff-Kishner reduction using hydrazine hydrate in diethylene glycol. The title compound was then synthesized as follows. To a DMF solution (15 ml) of 3,5-dimethyl-2,6-diphenylpiperidine (1.33 g, 0.005 mol) was added potassium tert-butoxide (0.67 g, 0.006 mol). The mixture was stirred for 30 minutes and 2-chlorobenzyl bromide (0.78 ml, 0.006 mol) was added drop-wise. Stirring was continued overnight before aqueous work-up. Extraction with diethyl ether followed by column chromatography separation using n-hexane/ethyl acetate (100:4) as an eluent eventually provided the pure title compound as a white solid. Re-crystallization was performed by slow evaporation of its ethanolic solution which afforded colourless prisms. M.pt: 357–358 K. Yield: 79%.

Refinement top

Carbon-bound H-atoms were placed in calculated positions [C—H = 0.95–0.99 Å, Uiso(H) = 1.2–1.5Ueq(C)] and were included in the refinement in the riding model approximation. Owing to poor agreement, a reflection, i.e. (0 0 2), was omitted from the final refinement.

Structure description top

The crystal structure determination of the title compound was undertaken in order to establish conformational details for a molecule designed and synthesized for the evaluation of its biological properties. The motivation for the biological trial arises as piperidine derivatives are an important class of heterocyclic compounds with potent pharmacological/biological activities (Ramalingan et al., 2004; Ramachandran et al., 2011).

Two independent molecules comprise the asymmetric unit of (I), Fig. 1. The inverted molecule of the N2-containing molecule is virtually super-imposable upon that of the N1-containing molecule, Fig. 2. The r.m.s. bond and angle fits are 0.0045 Å and 0.617°, respectively (Spek, 2009). Each piperidine ring has a chair conformation and the two aromatic rings, the benzyl residue and one methyl substituent occupy equatorial positions, as found in a related structure lacking one C-bound methyl group (Ramalingan et al., 2012), with the additional methyl substituent occupying an axial position. The dihedral angle formed between the C1–C6 chlorobenzene ring and the flanking C9–C14 and C21–C26 phenyl rings are 84.24 (9) and 24.85 (8)°, respectively; the dihedral angle between the phenyl rings is 62.03 (9)°. The comparable values found for the second independent molecule are 79.97 (9), 28.33 (9) and 54.39 (8)°, respectively. The chloro substituent is anti to the piperidine-N atom in each independent molecule.

In the crystal, the independent molecules are connected to each other by C—H···Cl and C—H···π interactions, Table 1, to form a supramolecular chain along [101], Fig. 3. These assemble into the three-dimensional architecture without specific intermolecular interactions between them, Fig. 4.

For the biological activity of piperidine derivatives, see: Ramalingan et al. (2004); Ramachandran et al. (2011). For a related structure, see: Ramalingan et al. (2012). For additional conformational analysis, see: Spek (2009).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997), DIAMOND (Brandenburg, 2006) and QMol (Gans & Shalloway, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing displacement ellipsoids at the 70% probability level.
[Figure 2] Fig. 2. Superimposition of the two independent molecules in (I); the N2-containing molecule has been inverted. The ring-C,N,C-sequences have been superimposed, and the N1- and N2-containing molecules are shown as red and blue images, respectively.
[Figure 3] Fig. 3. A view of the supramolecular chain in (I) sustained by C—H···Cl and C—H···π interactions, shown as orange and purple dashed lines, respectively.
[Figure 4] Fig. 4. A view in projection down the a axis of the unit-cell contents for (I). The C—H···Cl and C—H···π interactions are shown as orange and purple dashed lines, respectively.
1-(2-Chlorobenzyl)-3,5-dimethyl-2,6-diphenylpiperidine top
Crystal data top
C26H28ClNF(000) = 1664
Mr = 389.94Dx = 1.221 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 7626 reflections
a = 13.4940 (6) Åθ = 2.2–27.5°
b = 17.3005 (6) ŵ = 0.19 mm1
c = 18.5078 (6) ÅT = 100 K
β = 100.892 (4)°Prism, colourless
V = 4242.9 (3) Å30.30 × 0.20 × 0.05 mm
Z = 8
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
9798 independent reflections
Radiation source: SuperNova (Mo) X-ray Source7163 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.044
Detector resolution: 10.4041 pixels mm-1θmax = 27.6°, θmin = 2.4°
ω scanh = 1712
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
k = 2122
Tmin = 0.718, Tmax = 1.000l = 2424
28999 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.125H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0462P)2 + 1.548P]
where P = (Fo2 + 2Fc2)/3
9798 reflections(Δ/σ)max = 0.001
505 parametersΔρmax = 0.40 e Å3
0 restraintsΔρmin = 0.34 e Å3
Crystal data top
C26H28ClNV = 4242.9 (3) Å3
Mr = 389.94Z = 8
Monoclinic, P21/cMo Kα radiation
a = 13.4940 (6) ŵ = 0.19 mm1
b = 17.3005 (6) ÅT = 100 K
c = 18.5078 (6) Å0.30 × 0.20 × 0.05 mm
β = 100.892 (4)°
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
9798 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
7163 reflections with I > 2σ(I)
Tmin = 0.718, Tmax = 1.000Rint = 0.044
28999 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.125H-atom parameters constrained
S = 1.04Δρmax = 0.40 e Å3
9798 reflectionsΔρmin = 0.34 e Å3
505 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.57702 (4)0.21027 (3)0.41914 (3)0.03073 (13)
Cl20.05909 (4)0.15772 (3)0.44476 (2)0.03019 (13)
N10.47668 (11)0.36054 (8)0.22226 (8)0.0175 (3)
N20.01535 (11)0.01975 (8)0.23992 (8)0.0170 (3)
C10.65192 (14)0.23531 (10)0.35521 (10)0.0207 (4)
C20.75323 (15)0.21679 (10)0.37297 (11)0.0262 (4)
H20.77940.19190.41830.031*
C30.81625 (15)0.23450 (11)0.32482 (11)0.0275 (4)
H30.88630.22340.33730.033*
C40.77627 (15)0.26874 (11)0.25795 (11)0.0264 (4)
H40.81860.27980.22370.032*
C50.67491 (14)0.28676 (10)0.24120 (10)0.0224 (4)
H50.64880.31040.19520.027*
C60.60939 (13)0.27155 (9)0.28941 (9)0.0181 (4)
C70.49834 (13)0.29035 (10)0.26858 (9)0.0192 (4)
H7A0.46290.24580.24170.023*
H7B0.47090.29760.31410.023*
C80.38071 (13)0.35121 (10)0.16845 (9)0.0188 (4)
H80.32520.34670.19720.023*
C90.37872 (14)0.27846 (10)0.12260 (9)0.0200 (4)
C100.45825 (15)0.25644 (11)0.08894 (10)0.0252 (4)
H100.51740.28740.09510.030*
C110.45250 (17)0.19001 (11)0.04664 (11)0.0315 (5)
H110.50750.17600.02410.038*
C120.36747 (17)0.14409 (11)0.03707 (11)0.0331 (5)
H120.36380.09850.00800.040*
C130.28759 (17)0.16479 (11)0.07005 (11)0.0318 (5)
H130.22870.13350.06370.038*
C140.29341 (15)0.23138 (11)0.11253 (10)0.0249 (4)
H140.23830.24510.13510.030*
C150.43715 (15)0.43839 (11)0.07032 (10)0.0279 (4)
H15A0.41900.48520.04100.042*
H15B0.43810.39410.03740.042*
H15C0.50410.44490.10120.042*
C160.35919 (14)0.42411 (10)0.11947 (10)0.0225 (4)
H160.29210.41680.08650.027*
C170.35038 (14)0.49333 (10)0.16897 (10)0.0239 (4)
H17A0.33860.54070.13850.029*
H17B0.29160.48590.19320.029*
C180.44526 (15)0.50369 (10)0.22750 (10)0.0224 (4)
H180.50280.51630.20260.027*
C190.43245 (17)0.56965 (11)0.27974 (11)0.0329 (5)
H19A0.41880.61780.25170.049*
H19B0.49440.57540.31670.049*
H19C0.37590.55810.30430.049*
C200.46965 (14)0.42816 (10)0.27099 (9)0.0180 (4)
H200.41260.41790.29720.022*
C210.56471 (14)0.43588 (9)0.32922 (9)0.0178 (4)
C220.65728 (14)0.45263 (10)0.30990 (10)0.0212 (4)
H220.66050.46180.25980.025*
C230.74484 (15)0.45603 (10)0.36293 (10)0.0245 (4)
H230.80750.46720.34900.029*
C240.74092 (15)0.44318 (10)0.43634 (10)0.0263 (4)
H240.80100.44420.47260.032*
C250.64913 (15)0.42898 (11)0.45631 (10)0.0265 (4)
H250.64570.42170.50670.032*
C260.56187 (15)0.42539 (10)0.40311 (10)0.0219 (4)
H260.49910.41560.41750.026*
C270.14146 (14)0.14577 (10)0.38294 (10)0.0216 (4)
C280.24042 (15)0.16987 (12)0.40676 (11)0.0306 (5)
H280.26100.19110.45460.037*
C290.30822 (16)0.16268 (12)0.36024 (12)0.0354 (5)
H290.37600.17920.37580.043*
C300.27767 (15)0.13137 (11)0.29056 (11)0.0305 (5)
H300.32440.12630.25840.037*
C310.17902 (14)0.10758 (10)0.26834 (10)0.0235 (4)
H310.15900.08640.22050.028*
C320.10767 (13)0.11353 (9)0.31353 (9)0.0176 (4)
C330.00109 (13)0.09102 (10)0.28530 (9)0.0175 (4)
H33A0.03470.08390.32800.021*
H33B0.03530.13430.25560.021*
C340.10840 (13)0.02830 (10)0.18282 (9)0.0196 (4)
H340.16560.03710.20920.024*
C350.10346 (14)0.09797 (10)0.13410 (9)0.0210 (4)
C360.01872 (15)0.11497 (11)0.10387 (10)0.0265 (4)
H360.03860.08210.11410.032*
C370.01681 (16)0.17884 (11)0.05930 (10)0.0296 (5)
H370.04170.18960.03940.036*
C380.09997 (16)0.22715 (12)0.04353 (10)0.0311 (5)
H380.09850.27130.01320.037*
C390.18465 (16)0.21079 (11)0.07201 (10)0.0289 (4)
H390.24240.24310.06050.035*
C400.18589 (14)0.14725 (10)0.11758 (10)0.0230 (4)
H400.24420.13730.13790.028*
C410.05959 (17)0.06385 (12)0.08492 (11)0.0325 (5)
H41A0.07990.11200.05830.049*
H41B0.00860.06970.11400.049*
H41C0.06030.02150.04960.049*
C420.13320 (15)0.04568 (11)0.13610 (10)0.0251 (4)
H420.20120.03790.10440.030*
C430.14212 (15)0.11296 (11)0.18682 (11)0.0285 (4)
H43A0.15490.16100.15750.034*
H43B0.20030.10430.21140.034*
C440.04682 (15)0.12267 (10)0.24478 (10)0.0243 (4)
H440.01090.13330.21940.029*
C450.05674 (17)0.18987 (11)0.29566 (12)0.0356 (5)
H45A0.06860.23770.26690.053*
H45B0.11360.18050.32050.053*
H45C0.00550.19480.33240.053*
C460.02524 (14)0.04680 (10)0.28885 (10)0.0196 (4)
H460.08470.03630.31250.024*
C470.06641 (13)0.05358 (9)0.34988 (9)0.0185 (4)
C480.16218 (14)0.06415 (10)0.33366 (10)0.0211 (4)
H480.17010.06670.28380.025*
C490.24588 (14)0.07102 (10)0.38926 (10)0.0240 (4)
H490.31080.07770.37740.029*
C500.23543 (15)0.06826 (10)0.46231 (10)0.0255 (4)
H500.29300.07310.50050.031*
C510.14104 (15)0.05841 (10)0.47917 (10)0.0262 (4)
H510.13350.05660.52910.031*
C520.05683 (14)0.05107 (10)0.42327 (10)0.0220 (4)
H520.00790.04430.43540.026*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0274 (3)0.0376 (3)0.0254 (2)0.0017 (2)0.0003 (2)0.0128 (2)
Cl20.0320 (3)0.0374 (3)0.0208 (2)0.0034 (2)0.0040 (2)0.0100 (2)
N10.0189 (8)0.0143 (7)0.0178 (7)0.0011 (6)0.0000 (6)0.0019 (6)
N20.0166 (8)0.0158 (7)0.0177 (7)0.0011 (6)0.0009 (6)0.0017 (6)
C10.0246 (10)0.0156 (8)0.0210 (9)0.0019 (7)0.0022 (7)0.0023 (7)
C20.0271 (11)0.0206 (9)0.0269 (10)0.0053 (8)0.0053 (8)0.0010 (8)
C30.0202 (10)0.0245 (10)0.0354 (11)0.0062 (8)0.0008 (8)0.0091 (9)
C40.0247 (11)0.0245 (10)0.0315 (10)0.0034 (8)0.0087 (8)0.0060 (8)
C50.0256 (11)0.0185 (9)0.0225 (9)0.0017 (7)0.0027 (8)0.0008 (7)
C60.0201 (10)0.0112 (8)0.0214 (9)0.0006 (7)0.0000 (7)0.0021 (7)
C70.0205 (10)0.0156 (8)0.0210 (9)0.0008 (7)0.0026 (7)0.0041 (7)
C80.0180 (9)0.0195 (9)0.0186 (8)0.0010 (7)0.0025 (7)0.0008 (7)
C90.0226 (10)0.0206 (9)0.0159 (8)0.0026 (7)0.0013 (7)0.0021 (7)
C100.0263 (11)0.0258 (10)0.0241 (9)0.0009 (8)0.0064 (8)0.0007 (8)
C110.0382 (13)0.0298 (11)0.0290 (10)0.0041 (9)0.0128 (9)0.0030 (9)
C120.0483 (14)0.0216 (10)0.0297 (11)0.0008 (9)0.0080 (10)0.0056 (8)
C130.0358 (13)0.0255 (10)0.0331 (11)0.0070 (9)0.0042 (9)0.0020 (9)
C140.0257 (11)0.0243 (9)0.0246 (9)0.0001 (8)0.0042 (8)0.0007 (8)
C150.0306 (12)0.0291 (10)0.0236 (10)0.0049 (8)0.0041 (8)0.0083 (8)
C160.0192 (10)0.0249 (9)0.0213 (9)0.0045 (7)0.0013 (7)0.0033 (8)
C170.0245 (11)0.0208 (9)0.0249 (9)0.0047 (8)0.0003 (8)0.0041 (8)
C180.0266 (11)0.0172 (9)0.0218 (9)0.0018 (7)0.0008 (8)0.0038 (7)
C190.0404 (13)0.0178 (9)0.0362 (11)0.0071 (9)0.0040 (10)0.0001 (9)
C200.0198 (10)0.0166 (8)0.0178 (8)0.0018 (7)0.0044 (7)0.0020 (7)
C210.0212 (10)0.0114 (8)0.0203 (9)0.0017 (7)0.0024 (7)0.0007 (7)
C220.0257 (10)0.0193 (9)0.0186 (9)0.0000 (7)0.0042 (7)0.0000 (7)
C230.0226 (10)0.0202 (9)0.0305 (10)0.0021 (8)0.0042 (8)0.0008 (8)
C240.0274 (11)0.0218 (9)0.0255 (10)0.0031 (8)0.0056 (8)0.0015 (8)
C250.0345 (12)0.0257 (10)0.0179 (9)0.0007 (8)0.0014 (8)0.0031 (8)
C260.0249 (10)0.0186 (9)0.0224 (9)0.0000 (7)0.0047 (8)0.0038 (7)
C270.0235 (10)0.0197 (9)0.0213 (9)0.0012 (7)0.0031 (8)0.0002 (7)
C280.0285 (12)0.0318 (11)0.0279 (10)0.0065 (9)0.0043 (9)0.0003 (9)
C290.0245 (12)0.0376 (12)0.0412 (12)0.0112 (9)0.0016 (9)0.0052 (10)
C300.0250 (11)0.0322 (11)0.0371 (11)0.0028 (9)0.0125 (9)0.0091 (9)
C310.0263 (11)0.0218 (9)0.0228 (9)0.0004 (8)0.0054 (8)0.0036 (8)
C320.0199 (9)0.0138 (8)0.0188 (8)0.0001 (7)0.0027 (7)0.0022 (7)
C330.0181 (9)0.0189 (8)0.0154 (8)0.0018 (7)0.0031 (7)0.0015 (7)
C340.0172 (9)0.0220 (9)0.0185 (8)0.0028 (7)0.0006 (7)0.0024 (7)
C350.0235 (10)0.0246 (9)0.0132 (8)0.0013 (8)0.0005 (7)0.0045 (7)
C360.0254 (11)0.0319 (10)0.0218 (9)0.0046 (8)0.0036 (8)0.0006 (8)
C370.0350 (12)0.0337 (11)0.0204 (9)0.0028 (9)0.0062 (8)0.0013 (8)
C380.0367 (13)0.0294 (10)0.0232 (10)0.0034 (9)0.0048 (9)0.0038 (8)
C390.0306 (12)0.0252 (10)0.0262 (10)0.0027 (8)0.0069 (9)0.0001 (8)
C400.0229 (10)0.0228 (9)0.0214 (9)0.0017 (8)0.0005 (8)0.0052 (8)
C410.0372 (13)0.0323 (11)0.0266 (10)0.0041 (9)0.0025 (9)0.0042 (9)
C420.0234 (10)0.0242 (9)0.0250 (9)0.0007 (8)0.0027 (8)0.0061 (8)
C430.0242 (11)0.0241 (10)0.0346 (11)0.0032 (8)0.0016 (9)0.0035 (9)
C440.0237 (10)0.0190 (9)0.0282 (10)0.0021 (7)0.0002 (8)0.0003 (8)
C450.0379 (13)0.0245 (10)0.0407 (12)0.0053 (9)0.0016 (10)0.0054 (9)
C460.0170 (9)0.0182 (9)0.0244 (9)0.0004 (7)0.0055 (7)0.0028 (7)
C470.0198 (10)0.0135 (8)0.0225 (9)0.0013 (7)0.0042 (7)0.0014 (7)
C480.0219 (10)0.0200 (9)0.0213 (9)0.0001 (7)0.0038 (7)0.0013 (7)
C490.0184 (10)0.0231 (9)0.0306 (10)0.0010 (7)0.0050 (8)0.0015 (8)
C500.0248 (11)0.0215 (9)0.0259 (10)0.0002 (8)0.0060 (8)0.0010 (8)
C510.0352 (12)0.0229 (9)0.0198 (9)0.0015 (8)0.0035 (8)0.0006 (8)
C520.0232 (10)0.0193 (9)0.0248 (9)0.0023 (7)0.0076 (8)0.0029 (7)
Geometric parameters (Å, º) top
Cl1—C11.7497 (18)C24—H240.9500
Cl2—C271.7516 (19)C25—C261.386 (3)
N1—C71.483 (2)C25—H250.9500
N1—C81.486 (2)C26—H260.9500
N1—C201.491 (2)C27—C281.389 (3)
N2—C331.484 (2)C27—C321.396 (2)
N2—C461.486 (2)C28—C291.375 (3)
N2—C341.488 (2)C28—H280.9500
C1—C21.382 (3)C29—C301.388 (3)
C1—C61.393 (2)C29—H290.9500
C2—C31.377 (3)C30—C311.380 (3)
C2—H20.9500C30—H300.9500
C3—C41.386 (3)C31—C321.393 (2)
C3—H30.9500C31—H310.9500
C4—C51.380 (3)C32—C331.513 (2)
C4—H40.9500C33—H33A0.9900
C5—C61.395 (2)C33—H33B0.9900
C5—H50.9500C34—C351.514 (2)
C6—C71.510 (2)C34—C421.546 (2)
C7—H7A0.9900C34—H341.0000
C7—H7B0.9900C35—C401.389 (3)
C8—C91.515 (2)C35—C361.396 (3)
C8—C161.548 (2)C36—C371.382 (3)
C8—H81.0000C36—H360.9500
C9—C101.392 (3)C37—C381.385 (3)
C9—C141.394 (3)C37—H370.9500
C10—C111.384 (3)C38—C391.375 (3)
C10—H100.9500C38—H380.9500
C11—C121.379 (3)C39—C401.388 (3)
C11—H110.9500C39—H390.9500
C12—C131.383 (3)C40—H400.9500
C12—H120.9500C41—C421.529 (3)
C13—C141.389 (3)C41—H41A0.9800
C13—H130.9500C41—H41B0.9800
C14—H140.9500C41—H41C0.9800
C15—C161.535 (3)C42—C431.514 (3)
C15—H15A0.9800C42—H421.0000
C15—H15B0.9800C43—C441.520 (3)
C15—H15C0.9800C43—H43A0.9900
C16—C171.526 (3)C43—H43B0.9900
C16—H161.0000C44—C451.518 (3)
C17—C181.523 (3)C44—C461.544 (2)
C17—H17A0.9900C44—H441.0000
C17—H17B0.9900C45—H45A0.9800
C18—C191.526 (3)C45—H45B0.9800
C18—C201.538 (2)C45—H45C0.9800
C18—H181.0000C46—C471.514 (2)
C19—H19A0.9800C46—H461.0000
C19—H19B0.9800C47—C521.389 (2)
C19—H19C0.9800C47—C481.393 (2)
C20—C211.517 (2)C48—C491.382 (3)
C20—H201.0000C48—H480.9500
C21—C261.387 (2)C49—C501.386 (3)
C21—C221.393 (2)C49—H490.9500
C22—C231.387 (3)C50—C511.378 (3)
C22—H220.9500C50—H500.9500
C23—C241.388 (3)C51—C521.391 (3)
C23—H230.9500C51—H510.9500
C24—C251.380 (3)C52—H520.9500
C7—N1—C8110.49 (13)C25—C26—C21121.09 (18)
C7—N1—C20108.71 (13)C25—C26—H26119.5
C8—N1—C20110.10 (13)C21—C26—H26119.5
C33—N2—C46108.41 (13)C28—C27—C32122.65 (17)
C33—N2—C34108.74 (13)C28—C27—Cl2116.61 (14)
C46—N2—C34110.42 (13)C32—C27—Cl2120.74 (14)
C2—C1—C6122.54 (17)C29—C28—C27119.18 (19)
C2—C1—Cl1116.98 (14)C29—C28—H28120.4
C6—C1—Cl1120.48 (14)C27—C28—H28120.4
C3—C2—C1119.90 (18)C28—C29—C30120.08 (19)
C3—C2—H2120.1C28—C29—H29120.0
C1—C2—H2120.1C30—C29—H29120.0
C2—C3—C4119.27 (18)C31—C30—C29119.59 (19)
C2—C3—H3120.4C31—C30—H30120.2
C4—C3—H3120.4C29—C30—H30120.2
C5—C4—C3119.95 (18)C30—C31—C32122.43 (18)
C5—C4—H4120.0C30—C31—H31118.8
C3—C4—H4120.0C32—C31—H31118.8
C4—C5—C6122.34 (17)C31—C32—C27116.06 (16)
C4—C5—H5118.8C31—C32—C33120.59 (16)
C6—C5—H5118.8C27—C32—C33123.21 (15)
C1—C6—C5115.97 (16)N2—C33—C32115.03 (14)
C1—C6—C7123.02 (16)N2—C33—H33A108.5
C5—C6—C7120.95 (16)C32—C33—H33A108.5
N1—C7—C6113.67 (14)N2—C33—H33B108.5
N1—C7—H7A108.8C32—C33—H33B108.5
C6—C7—H7A108.8H33A—C33—H33B107.5
N1—C7—H7B108.8N2—C34—C35112.08 (14)
C6—C7—H7B108.8N2—C34—C42112.31 (14)
H7A—C7—H7B107.7C35—C34—C42110.81 (14)
N1—C8—C9112.74 (14)N2—C34—H34107.1
N1—C8—C16110.31 (14)C35—C34—H34107.1
C9—C8—C16111.54 (14)C42—C34—H34107.1
N1—C8—H8107.3C40—C35—C36117.71 (17)
C9—C8—H8107.3C40—C35—C34119.74 (16)
C16—C8—H8107.3C36—C35—C34122.54 (17)
C10—C9—C14117.87 (17)C37—C36—C35121.11 (18)
C10—C9—C8122.98 (16)C37—C36—H36119.4
C14—C9—C8119.15 (16)C35—C36—H36119.4
C11—C10—C9120.97 (18)C36—C37—C38120.15 (19)
C11—C10—H10119.5C36—C37—H37119.9
C9—C10—H10119.5C38—C37—H37119.9
C12—C11—C10120.48 (19)C39—C38—C37119.59 (19)
C12—C11—H11119.8C39—C38—H38120.2
C10—C11—H11119.8C37—C38—H38120.2
C11—C12—C13119.54 (19)C38—C39—C40120.15 (19)
C11—C12—H12120.2C38—C39—H39119.9
C13—C12—H12120.2C40—C39—H39119.9
C12—C13—C14119.97 (19)C39—C40—C35121.26 (18)
C12—C13—H13120.0C39—C40—H40119.4
C14—C13—H13120.0C35—C40—H40119.4
C13—C14—C9121.17 (18)C42—C41—H41A109.5
C13—C14—H14119.4C42—C41—H41B109.5
C9—C14—H14119.4H41A—C41—H41B109.5
C16—C15—H15A109.5C42—C41—H41C109.5
C16—C15—H15B109.5H41A—C41—H41C109.5
H15A—C15—H15B109.5H41B—C41—H41C109.5
C16—C15—H15C109.5C43—C42—C41111.28 (16)
H15A—C15—H15C109.5C43—C42—C34108.89 (15)
H15B—C15—H15C109.5C41—C42—C34114.80 (16)
C17—C16—C15111.67 (16)C43—C42—H42107.2
C17—C16—C8108.37 (14)C41—C42—H42107.2
C15—C16—C8113.85 (15)C34—C42—H42107.2
C17—C16—H16107.6C42—C43—C44111.51 (16)
C15—C16—H16107.6C42—C43—H43A109.3
C8—C16—H16107.6C44—C43—H43A109.3
C18—C17—C16111.64 (15)C42—C43—H43B109.3
C18—C17—H17A109.3C44—C43—H43B109.3
C16—C17—H17A109.3H43A—C43—H43B108.0
C18—C17—H17B109.3C45—C44—C43111.13 (16)
C16—C17—H17B109.3C45—C44—C46110.70 (16)
H17A—C17—H17B108.0C43—C44—C46109.20 (15)
C17—C18—C19110.97 (16)C45—C44—H44108.6
C17—C18—C20109.90 (15)C43—C44—H44108.6
C19—C18—C20110.02 (15)C46—C44—H44108.6
C17—C18—H18108.6C44—C45—H45A109.5
C19—C18—H18108.6C44—C45—H45B109.5
C20—C18—H18108.6H45A—C45—H45B109.5
C18—C19—H19A109.5C44—C45—H45C109.5
C18—C19—H19B109.5H45A—C45—H45C109.5
H19A—C19—H19B109.5H45B—C45—H45C109.5
C18—C19—H19C109.5N2—C46—C47111.10 (14)
H19A—C19—H19C109.5N2—C46—C44111.50 (14)
H19B—C19—H19C109.5C47—C46—C44111.98 (14)
N1—C20—C21110.91 (14)N2—C46—H46107.3
N1—C20—C18112.45 (14)C47—C46—H46107.3
C21—C20—C18111.45 (14)C44—C46—H46107.3
N1—C20—H20107.2C52—C47—C48118.44 (17)
C21—C20—H20107.2C52—C47—C46120.89 (16)
C18—C20—H20107.2C48—C47—C46120.66 (15)
C26—C21—C22118.25 (17)C49—C48—C47120.79 (17)
C26—C21—C20120.76 (16)C49—C48—H48119.6
C22—C21—C20120.98 (15)C47—C48—H48119.6
C23—C22—C21120.83 (17)C48—C49—C50120.26 (18)
C23—C22—H22119.6C48—C49—H49119.9
C21—C22—H22119.6C50—C49—H49119.9
C22—C23—C24120.06 (18)C51—C50—C49119.58 (18)
C22—C23—H23120.0C51—C50—H50120.2
C24—C23—H23120.0C49—C50—H50120.2
C25—C24—C23119.54 (18)C50—C51—C52120.21 (17)
C25—C24—H24120.2C50—C51—H51119.9
C23—C24—H24120.2C52—C51—H51119.9
C24—C25—C26120.18 (17)C47—C52—C51120.71 (18)
C24—C25—H25119.9C47—C52—H52119.6
C26—C25—H25119.9C51—C52—H52119.6
C6—C1—C2—C30.3 (3)C32—C27—C28—C290.7 (3)
Cl1—C1—C2—C3179.61 (14)Cl2—C27—C28—C29179.30 (16)
C1—C2—C3—C41.9 (3)C27—C28—C29—C300.3 (3)
C2—C3—C4—C51.9 (3)C28—C29—C30—C310.0 (3)
C3—C4—C5—C60.2 (3)C29—C30—C31—C320.2 (3)
C2—C1—C6—C51.4 (2)C30—C31—C32—C270.5 (3)
Cl1—C1—C6—C5177.97 (13)C30—C31—C32—C33176.43 (17)
C2—C1—C6—C7178.49 (16)C28—C27—C32—C310.8 (3)
Cl1—C1—C6—C70.8 (2)Cl2—C27—C32—C31179.19 (13)
C4—C5—C6—C11.4 (3)C28—C27—C32—C33176.59 (17)
C4—C5—C6—C7178.57 (16)Cl2—C27—C32—C333.4 (2)
C8—N1—C7—C6145.16 (14)C46—N2—C33—C3293.22 (16)
C20—N1—C7—C693.91 (17)C34—N2—C33—C32146.70 (14)
C1—C6—C7—N1149.01 (16)C31—C32—C33—N241.3 (2)
C5—C6—C7—N134.0 (2)C27—C32—C33—N2143.10 (16)
C7—N1—C8—C953.74 (18)C33—N2—C34—C3558.33 (17)
C20—N1—C8—C9173.84 (14)C46—N2—C34—C35177.16 (14)
C7—N1—C8—C16179.17 (14)C33—N2—C34—C42176.17 (14)
C20—N1—C8—C1660.73 (17)C46—N2—C34—C4257.34 (18)
N1—C8—C9—C1046.9 (2)N2—C34—C35—C40134.52 (16)
C16—C8—C9—C1077.9 (2)C42—C34—C35—C4099.16 (19)
N1—C8—C9—C14133.87 (16)N2—C34—C35—C3646.1 (2)
C16—C8—C9—C14101.37 (19)C42—C34—C35—C3680.2 (2)
C14—C9—C10—C110.2 (3)C40—C35—C36—C370.3 (3)
C8—C9—C10—C11179.05 (17)C34—C35—C36—C37179.68 (17)
C9—C10—C11—C120.1 (3)C35—C36—C37—C380.3 (3)
C10—C11—C12—C130.0 (3)C36—C37—C38—C390.5 (3)
C11—C12—C13—C140.1 (3)C37—C38—C39—C401.4 (3)
C12—C13—C14—C90.2 (3)C38—C39—C40—C351.5 (3)
C10—C9—C14—C130.3 (3)C36—C35—C40—C390.6 (3)
C8—C9—C14—C13179.02 (17)C34—C35—C40—C39178.78 (16)
N1—C8—C16—C1760.37 (18)N2—C34—C42—C4356.4 (2)
C9—C8—C16—C17173.53 (15)C35—C34—C42—C43177.41 (15)
N1—C8—C16—C1564.54 (19)N2—C34—C42—C4169.1 (2)
C9—C8—C16—C1561.6 (2)C35—C34—C42—C4157.1 (2)
C15—C16—C17—C1868.85 (19)C41—C42—C43—C4471.1 (2)
C8—C16—C17—C1857.3 (2)C34—C42—C43—C4456.4 (2)
C16—C17—C18—C19176.09 (15)C42—C43—C44—C45179.61 (16)
C16—C17—C18—C2054.2 (2)C42—C43—C44—C4657.2 (2)
C7—N1—C20—C2155.53 (17)C33—N2—C46—C4757.78 (17)
C8—N1—C20—C21176.70 (13)C34—N2—C46—C47176.81 (13)
C7—N1—C20—C18178.92 (14)C33—N2—C46—C44176.55 (14)
C8—N1—C20—C1857.75 (18)C34—N2—C46—C4457.52 (18)
C17—C18—C20—N153.9 (2)C45—C44—C46—N2179.96 (16)
C19—C18—C20—N1176.42 (15)C43—C44—C46—N257.3 (2)
C17—C18—C20—C21179.20 (14)C45—C44—C46—C4754.9 (2)
C19—C18—C20—C2158.3 (2)C43—C44—C46—C47177.52 (15)
N1—C20—C21—C26114.11 (17)N2—C46—C47—C52121.84 (17)
C18—C20—C21—C26119.78 (17)C44—C46—C47—C52112.76 (18)
N1—C20—C21—C2265.0 (2)N2—C46—C47—C4859.5 (2)
C18—C20—C21—C2261.1 (2)C44—C46—C47—C4865.9 (2)
C26—C21—C22—C232.2 (3)C52—C47—C48—C490.8 (3)
C20—C21—C22—C23176.92 (15)C46—C47—C48—C49179.45 (16)
C21—C22—C23—C240.4 (3)C47—C48—C49—C500.7 (3)
C22—C23—C24—C251.6 (3)C48—C49—C50—C510.2 (3)
C23—C24—C25—C261.8 (3)C49—C50—C51—C520.2 (3)
C24—C25—C26—C210.0 (3)C48—C47—C52—C510.4 (3)
C22—C21—C26—C252.0 (3)C46—C47—C52—C51179.09 (16)
C20—C21—C26—C25177.13 (16)C50—C51—C52—C470.0 (3)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C35–C40 ring.
D—H···AD—HH···AD···AD—H···A
C29—H29···Cl10.952.733.678 (2)174
C24—H24···Cg1i0.952.953.680 (2)135
Symmetry code: (i) x+1, y1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC26H28ClN
Mr389.94
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)13.4940 (6), 17.3005 (6), 18.5078 (6)
β (°) 100.892 (4)
V3)4242.9 (3)
Z8
Radiation typeMo Kα
µ (mm1)0.19
Crystal size (mm)0.30 × 0.20 × 0.05
Data collection
DiffractometerAgilent SuperNova Dual
diffractometer with an Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2012)
Tmin, Tmax0.718, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
28999, 9798, 7163
Rint0.044
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.125, 1.04
No. of reflections9798
No. of parameters505
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.40, 0.34

Computer programs: CrysAlis PRO (Agilent, 2012), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), DIAMOND (Brandenburg, 2006) and QMol (Gans & Shalloway, 2001), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C35–C40 ring.
D—H···AD—HH···AD···AD—H···A
C29—H29···Cl10.952.733.678 (2)174
C24—H24···Cg1i0.952.953.680 (2)135
Symmetry code: (i) x+1, y1/2, z1/2.
 

Footnotes

Additional correspondence author, e-mail: ramalinganc@gmail.com.

Acknowledgements

The authors are grateful for facilities provided by the Chairman/Management of Kalasalingam University, and thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (UM.C/HIR/MOHE/SC/3).

References

First citationAgilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGans, J. & Shalloway, D. (2001). J. Mol. Graph. Model. 19, 557–559.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRamachandran, R., Rani, M., Senthan, S., Jeong, Y.-T. & Kabilan, S. (2011). Eur. J. Med. Chem. 46, 1926–1934.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationRamalingan, C., Balasubramanian, S., Kabilan, S. & Vasudevan, M. (2004). Eur. J. Med. Chem. 39, 527–533.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRamalingan, C., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, o2300.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds