organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3,3′-Di­ethyl-1,1′-(1,4-phenyl­ene­di­methyl­ene)diimidazol-3-ium bis­­(hexa­fluoro­phosphate)

aSchool of Chemical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 25 June 2012; accepted 26 June 2012; online 30 June 2012)

In the title mol­ecular salt, C18H24N42+·2PF6, the complete dication is generated by a crystallographic inversion centre. The central benzene ring makes a dihedral angle of 77.19 (9)° with each of the imidazole rings. In the crystal, C—H⋯F inter­actions link the cations and anions into layers lying parallel to the bc plane. The hexa­fluoro­phosphate anion is disordered over two sets of sites in a 0.520 (11):0.480 (11) ratio.

Related literature

For the properties of imidzole derivates, see: Shargel et al. (2006[Shargel, L., Mutnick, A. H., Souney, P. F. & Swanson L. N. (2006). Com. Pharm. Rev. 6, 930-986.]). For related structures, see: Haque et al. (2010[Haque, R. A., Washeel, A., Nasri, S. F., Yeap, C. S. & Fun, H.-K. (2010). Acta Cryst. E66, o824-o825.], 2011[Haque, R. A., Nasri, S. F., Hemamalini, M. & Fun, H.-K. (2011). Acta Cryst. E67, o1931.]).

[Scheme 1]

Experimental

Crystal data
  • C18H24N42+·2PF6

  • Mr = 586.35

  • Triclinic, [P \overline 1]

  • a = 8.5441 (5) Å

  • b = 8.6018 (5) Å

  • c = 9.5626 (6) Å

  • α = 67.913 (1)°

  • β = 77.928 (1)°

  • γ = 67.837 (1)°

  • V = 601.25 (6) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.29 mm−1

  • T = 297 K

  • 0.28 × 0.25 × 0.12 mm

Data collection
  • Bruker APEX DUO CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.925, Tmax = 0.966

  • 12274 measured reflections

  • 3996 independent reflections

  • 2968 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.170

  • S = 1.04

  • 3996 reflections

  • 228 parameters

  • 21 restraints

  • H-atom parameters constrained

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.36 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3A⋯F1i 0.93 2.49 3.408 (10) 170
C4—H4A⋯F3ii 0.93 2.48 3.369 (11) 160
C5—H5A⋯F6iii 0.93 2.32 3.211 (8) 159
Symmetry codes: (i) -x+1, -y+2, -z+2; (ii) -x+1, -y+1, -z+2; (iii) -x+1, -y+2, -z+1.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Substituted imidazole derivatives are valuable in the treatment of many systemic fungal infections (Shargel et al., 2006). Previously, we have reported crystal structures of para- xylyl linked bis-imidazolium salts with propyl (Haque et al., 2011) and benzyl (Haque et al., 2010) substitutions. In this report, we describe the crystal structure of a para-xylyl linked bis-benzimidazolium salt with ethyl substitutuents

All parameters in (I) are within normal ranges. The complete dication is generated by a crystallographic inversion centre. The central benzene ring (C7—C9/C7A—C9A) makes a dihedral angle of 77.19 (9)° with the imidazole rings (N1—N2/C3—C5 and N1A—N2A/C3A—C5A). The hexafluorophosphate anions are disordered over two sets of sites with the final refined occupancies of 0.52 (1):0.48 (1).

In the crystal, C3—H3A···F1i, C4—H4A···F3ii and C5—H5A···F6iii (Table 1) interactions link the molecules into layers lying parallel to the bc-plane.

Related literature top

For the properties of imidzole derivates, see: Shargel et al. (2006). For related structures, see: Haque et al. (2010, 2011).

Experimental top

To a solution of 1,4-bis((1H-imidazol-1-yl)methyl)benzene (1.00 g, 0.004 mol) in 15 ml of acetonitrile, 1-iodoethane (1.31 g, 0.008 mol) was added. The mixture was refluxed at 363 K for 24 h. The resultant white precipitate was filtered, washed with fresh acetonitrile (2 × 5 ml) and converted directly to its hexafluorophosphate counterpart by metathesis reaction using KPF6 (1.67 g, 0.008 mol) in 40 ml of methanol/water. The white precipitates were collected, washed with fresh acetonitrile (2 × 3 ml) to give the product as a white solid (1.78 g, 67%). M.p 467–469 K. Colourless blocks were obtained by slow diffusion method of the salt solution by using diethyl ether and acetonitrile at room temperature.

Refinement top

All H atoms attached to C atoms were fixed geometrically and refined as riding with C—H = 0.93–0.97 Å and Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C) for methyl H atoms. A rotating group model was applied to the methyl group. The hexafluorophosphate anion is disordered over two sets of sites with refined occupancies of 0.52 (1):0.48 (1).

Structure description top

Substituted imidazole derivatives are valuable in the treatment of many systemic fungal infections (Shargel et al., 2006). Previously, we have reported crystal structures of para- xylyl linked bis-imidazolium salts with propyl (Haque et al., 2011) and benzyl (Haque et al., 2010) substitutions. In this report, we describe the crystal structure of a para-xylyl linked bis-benzimidazolium salt with ethyl substitutuents

All parameters in (I) are within normal ranges. The complete dication is generated by a crystallographic inversion centre. The central benzene ring (C7—C9/C7A—C9A) makes a dihedral angle of 77.19 (9)° with the imidazole rings (N1—N2/C3—C5 and N1A—N2A/C3A—C5A). The hexafluorophosphate anions are disordered over two sets of sites with the final refined occupancies of 0.52 (1):0.48 (1).

In the crystal, C3—H3A···F1i, C4—H4A···F3ii and C5—H5A···F6iii (Table 1) interactions link the molecules into layers lying parallel to the bc-plane.

For the properties of imidzole derivates, see: Shargel et al. (2006). For related structures, see: Haque et al. (2010, 2011).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure, showing 30% probability displacement ellipsoids. Hydrogen atoms are shown as spheres of arbitrary radius.
[Figure 2] Fig. 2. The crystal packing of (I). Dashed lines indicate hydrogen bonds. H atoms not involved in the hydrogen bond interactions have been omitted for clarity.
3,3'-Diethyl-1,1'-(1,4-phenylenedimethylene)diimidazol-3-ium bis(hexafluorophosphate) top
Crystal data top
C18H24N42+·2PF6Z = 1
Mr = 586.35F(000) = 298
Triclinic, P1Dx = 1.619 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.5441 (5) ÅCell parameters from 3921 reflections
b = 8.6018 (5) Åθ = 2.3–29.3°
c = 9.5626 (6) ŵ = 0.29 mm1
α = 67.913 (1)°T = 297 K
β = 77.928 (1)°Block, colourless
γ = 67.837 (1)°0.28 × 0.25 × 0.12 mm
V = 601.25 (6) Å3
Data collection top
Bruker APEX DUO CCD
diffractometer
3996 independent reflections
Radiation source: fine-focus sealed tube2968 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
φ and ω scansθmax = 31.7°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1212
Tmin = 0.925, Tmax = 0.966k = 1212
12274 measured reflectionsl = 1413
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.170H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.087P)2 + 0.1678P]
where P = (Fo2 + 2Fc2)/3
3996 reflections(Δ/σ)max = 0.026
228 parametersΔρmax = 0.38 e Å3
21 restraintsΔρmin = 0.36 e Å3
Crystal data top
C18H24N42+·2PF6γ = 67.837 (1)°
Mr = 586.35V = 601.25 (6) Å3
Triclinic, P1Z = 1
a = 8.5441 (5) ÅMo Kα radiation
b = 8.6018 (5) ŵ = 0.29 mm1
c = 9.5626 (6) ÅT = 297 K
α = 67.913 (1)°0.28 × 0.25 × 0.12 mm
β = 77.928 (1)°
Data collection top
Bruker APEX DUO CCD
diffractometer
3996 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2968 reflections with I > 2σ(I)
Tmin = 0.925, Tmax = 0.966Rint = 0.018
12274 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05321 restraints
wR(F2) = 0.170H-atom parameters constrained
S = 1.04Δρmax = 0.38 e Å3
3996 reflectionsΔρmin = 0.36 e Å3
228 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
P10.2804 (5)0.8326 (6)0.7615 (5)0.0638 (15)0.520 (11)
F10.3579 (13)0.9624 (13)0.7737 (9)0.131 (3)0.520 (11)
F20.4136 (13)0.7509 (17)0.6579 (12)0.199 (7)0.520 (11)
F30.2044 (14)0.6984 (10)0.7644 (13)0.163 (4)0.520 (11)
F40.1422 (6)0.8696 (10)0.8921 (5)0.107 (3)0.520 (11)
F50.3982 (12)0.7149 (17)0.8932 (9)0.166 (5)0.520 (11)
F60.1612 (11)0.9775 (11)0.6426 (9)0.114 (3)0.520 (11)
P1X0.2841 (4)0.8298 (4)0.7654 (4)0.0360 (7)0.480 (11)
F1X0.3854 (13)0.9578 (14)0.718 (2)0.203 (6)0.480 (11)
F2X0.4179 (9)0.7801 (15)0.6381 (8)0.125 (4)0.480 (11)
F3X0.1751 (10)0.7065 (9)0.8061 (13)0.142 (5)0.480 (11)
F4X0.1575 (11)0.9329 (18)0.8653 (13)0.176 (5)0.480 (11)
F5X0.3981 (10)0.6706 (12)0.8876 (10)0.124 (3)0.480 (11)
F6X0.1650 (13)0.9487 (15)0.6319 (9)0.123 (4)0.480 (11)
N10.7726 (2)0.9473 (2)0.78904 (17)0.0434 (3)
N20.80090 (18)0.67771 (18)0.81853 (15)0.0376 (3)
C10.5791 (3)1.2530 (3)0.7237 (4)0.0789 (8)
H1A0.57181.37350.66480.118*
H1B0.54051.24530.82710.118*
H1C0.50941.21650.68410.118*
C20.7574 (3)1.1356 (3)0.7159 (3)0.0580 (5)
H2A0.80101.15590.61080.070*
H2B0.82551.16500.76530.070*
C30.7587 (3)0.8606 (3)0.9407 (2)0.0568 (5)
H3A0.74100.90891.01710.068*
C40.7751 (3)0.6920 (3)0.9598 (2)0.0512 (5)
H4A0.77000.60251.05150.061*
C50.7975 (2)0.8345 (2)0.71706 (19)0.0424 (4)
H5A0.81060.86070.61260.051*
C60.8154 (3)0.5168 (2)0.78841 (19)0.0460 (4)
H6A0.70270.51430.78900.055*
H6B0.87260.41270.86890.055*
C70.9118 (2)0.5083 (2)0.63878 (17)0.0375 (3)
C80.8268 (2)0.5812 (3)0.5089 (2)0.0513 (5)
H8A0.70990.63620.51390.062*
C91.0854 (3)0.4272 (3)0.6285 (2)0.0512 (5)
H9A1.14400.37750.71510.061*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.061 (2)0.066 (2)0.052 (2)0.0193 (18)0.0073 (16)0.0066 (16)
F10.183 (8)0.157 (6)0.133 (5)0.118 (5)0.029 (4)0.093 (5)
F20.131 (7)0.242 (11)0.180 (9)0.076 (7)0.016 (6)0.158 (8)
F30.213 (9)0.120 (5)0.224 (8)0.102 (5)0.040 (7)0.070 (6)
F40.060 (2)0.168 (5)0.049 (2)0.027 (3)0.0210 (15)0.013 (3)
F50.090 (5)0.284 (12)0.084 (4)0.030 (6)0.052 (4)0.026 (6)
F60.084 (4)0.078 (3)0.087 (5)0.005 (2)0.005 (3)0.035 (3)
P1X0.0345 (13)0.0375 (13)0.0373 (15)0.0150 (10)0.0042 (10)0.0143 (11)
F1X0.102 (5)0.148 (7)0.343 (16)0.096 (5)0.007 (7)0.013 (8)
F2X0.073 (4)0.213 (9)0.061 (3)0.023 (5)0.027 (3)0.055 (4)
F3X0.088 (3)0.092 (4)0.196 (8)0.060 (3)0.062 (4)0.064 (5)
F4X0.115 (5)0.273 (10)0.239 (9)0.035 (6)0.011 (5)0.231 (9)
F5X0.070 (4)0.105 (4)0.107 (5)0.005 (3)0.011 (3)0.041 (3)
F6X0.089 (5)0.178 (9)0.048 (3)0.007 (5)0.026 (3)0.004 (4)
N10.0464 (8)0.0408 (7)0.0481 (8)0.0170 (6)0.0016 (6)0.0202 (6)
N20.0450 (7)0.0383 (7)0.0311 (6)0.0158 (5)0.0033 (5)0.0145 (5)
C10.0633 (15)0.0511 (12)0.114 (2)0.0112 (11)0.0112 (14)0.0229 (14)
C20.0608 (12)0.0401 (9)0.0745 (14)0.0204 (8)0.0033 (10)0.0211 (9)
C30.0789 (14)0.0595 (12)0.0443 (10)0.0269 (10)0.0003 (9)0.0286 (9)
C40.0739 (13)0.0520 (10)0.0319 (8)0.0240 (9)0.0003 (8)0.0170 (7)
C50.0519 (9)0.0406 (8)0.0356 (7)0.0179 (7)0.0035 (6)0.0146 (6)
C60.0636 (11)0.0412 (8)0.0374 (8)0.0244 (8)0.0100 (7)0.0177 (7)
C70.0481 (9)0.0326 (7)0.0328 (7)0.0135 (6)0.0019 (6)0.0143 (6)
C80.0389 (9)0.0648 (12)0.0444 (9)0.0058 (8)0.0033 (7)0.0231 (9)
C90.0506 (10)0.0611 (11)0.0360 (8)0.0064 (8)0.0097 (7)0.0181 (8)
Geometric parameters (Å, º) top
P1—F21.490 (7)C1—H1A0.9600
P1—F31.513 (6)C1—H1B0.9600
P1—F61.531 (7)C1—H1C0.9600
P1—F11.545 (6)C2—H2A0.9700
P1—F51.558 (7)C2—H2B0.9700
P1—F41.566 (5)C3—C41.347 (3)
P1X—F4X1.533 (6)C3—H3A0.9300
P1X—F1X1.532 (7)C4—H4A0.9300
P1X—F2X1.553 (6)C5—H5A0.9300
P1X—F3X1.557 (6)C6—C71.507 (2)
P1X—F5X1.567 (6)C6—H6A0.9700
P1X—F6X1.577 (6)C6—H6B0.9700
N1—C51.321 (2)C7—C91.381 (3)
N1—C31.362 (3)C7—C81.382 (2)
N1—C21.469 (2)C8—C9i1.383 (2)
N2—C51.327 (2)C8—H8A0.9300
N2—C41.367 (2)C9—C8i1.383 (2)
N2—C61.473 (2)C9—H9A0.9300
C1—C21.482 (3)
F2—P1—F382.7 (7)C2—C1—H1A109.5
F2—P1—F698.2 (6)C2—C1—H1B109.5
F3—P1—F690.4 (5)H1A—C1—H1B109.5
F2—P1—F1100.0 (7)C2—C1—H1C109.5
F3—P1—F1175.0 (6)H1A—C1—H1C109.5
F6—P1—F193.3 (6)H1B—C1—H1C109.5
F2—P1—F588.9 (6)N1—C2—C1111.63 (19)
F3—P1—F598.9 (7)N1—C2—H2A109.3
F6—P1—F5169.0 (8)C1—C2—H2A109.3
F1—P1—F577.1 (6)N1—C2—H2B109.3
F2—P1—F4165.7 (7)C1—C2—H2B109.3
F3—P1—F486.3 (5)H2A—C2—H2B108.0
F6—P1—F490.8 (5)C4—C3—N1107.53 (16)
F1—P1—F490.4 (4)C4—C3—H3A126.2
F5—P1—F483.8 (5)N1—C3—H3A126.2
F4X—P1X—F1X90.9 (6)C3—C4—N2106.79 (17)
F4X—P1X—F2X163.0 (8)C3—C4—H4A126.6
F1X—P1X—F2X74.1 (7)N2—C4—H4A126.6
F4X—P1X—F3X89.2 (5)N1—C5—N2108.71 (15)
F1X—P1X—F3X176.8 (6)N1—C5—H5A125.6
F2X—P1X—F3X105.3 (6)N2—C5—H5A125.6
F4X—P1X—F5X100.5 (7)N2—C6—C7112.44 (14)
F1X—P1X—F5X99.7 (6)N2—C6—H6A109.1
F2X—P1X—F5X90.0 (5)C7—C6—H6A109.1
F3X—P1X—F5X83.5 (5)N2—C6—H6B109.1
F4X—P1X—F6X88.6 (6)C7—C6—H6B109.1
F1X—P1X—F6X92.3 (7)H6A—C6—H6B107.8
F2X—P1X—F6X84.2 (6)C9—C7—C8118.74 (15)
F3X—P1X—F6X84.5 (5)C9—C7—C6121.03 (16)
F5X—P1X—F6X164.7 (7)C8—C7—C6120.23 (17)
C5—N1—C3108.48 (15)C9i—C8—C7120.44 (17)
C5—N1—C2125.15 (17)C9i—C8—H8A119.8
C3—N1—C2126.35 (17)C7—C8—H8A119.8
C5—N2—C4108.49 (15)C7—C9—C8i120.82 (16)
C5—N2—C6127.06 (14)C7—C9—H9A119.6
C4—N2—C6124.27 (15)C8i—C9—H9A119.6
C5—N1—C2—C1104.3 (3)C6—N2—C5—N1176.08 (17)
C3—N1—C2—C173.6 (3)C5—N2—C6—C729.1 (3)
C5—N1—C3—C40.2 (3)C4—N2—C6—C7156.30 (18)
C2—N1—C3—C4178.0 (2)N2—C6—C7—C990.2 (2)
N1—C3—C4—N20.6 (3)N2—C6—C7—C890.3 (2)
C5—N2—C4—C30.9 (2)C9—C7—C8—C9i0.1 (3)
C6—N2—C4—C3176.35 (19)C6—C7—C8—C9i179.61 (18)
C3—N1—C5—N20.4 (2)C8—C7—C9—C8i0.1 (3)
C2—N1—C5—N2178.59 (18)C6—C7—C9—C8i179.61 (18)
C4—N2—C5—N10.8 (2)
Symmetry code: (i) x+2, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3A···F1ii0.932.493.408 (10)170
C4—H4A···F3iii0.932.483.369 (11)160
C5—H5A···F6iv0.932.323.211 (8)159
Symmetry codes: (ii) x+1, y+2, z+2; (iii) x+1, y+1, z+2; (iv) x+1, y+2, z+1.

Experimental details

Crystal data
Chemical formulaC18H24N42+·2PF6
Mr586.35
Crystal system, space groupTriclinic, P1
Temperature (K)297
a, b, c (Å)8.5441 (5), 8.6018 (5), 9.5626 (6)
α, β, γ (°)67.913 (1), 77.928 (1), 67.837 (1)
V3)601.25 (6)
Z1
Radiation typeMo Kα
µ (mm1)0.29
Crystal size (mm)0.28 × 0.25 × 0.12
Data collection
DiffractometerBruker APEX DUO CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.925, 0.966
No. of measured, independent and
observed [I > 2σ(I)] reflections
12274, 3996, 2968
Rint0.018
(sin θ/λ)max1)0.738
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.170, 1.04
No. of reflections3996
No. of parameters228
No. of restraints21
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.38, 0.36

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3A···F1i0.932.493.408 (10)170
C4—H4A···F3ii0.932.483.369 (11)160
C5—H5A···F6iii0.932.323.211 (8)159
Symmetry codes: (i) x+1, y+2, z+2; (ii) x+1, y+1, z+2; (iii) x+1, y+2, z+1.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

RAH and SFN thank Universiti Sains Malaysia (USM) for the short-term grant (304/PKIMIA/6311123) and RU grants (1001/PKIMIA/811157), (1001/PKIMIA/813023). HKF thanks USM for the Research University Grant No. 1001/PFIZIK/811160.

References

First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHaque, R. A., Nasri, S. F., Hemamalini, M. & Fun, H.-K. (2011). Acta Cryst. E67, o1931.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHaque, R. A., Washeel, A., Nasri, S. F., Yeap, C. S. & Fun, H.-K. (2010). Acta Cryst. E66, o824–o825.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShargel, L., Mutnick, A. H., Souney, P. F. & Swanson L. N. (2006). Com. Pharm. Rev. 6, 930-986.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds