organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl 2-(3,5-di­methyl-1,1-dioxo-2H-1λ6,2,6-thia­diazin-4-yl)benzoate

aChemistry Department, JJT University, Rajasthan, India, bSchool of Chemistry, University of KwaZulu-Natal, Durban 4000, South Africa, cSheth L.H. Science College, Mansa, Gujarat, India, dDepartment of Chemistry, Government Science College, Gandhinagar, Gujarat, India, and eSchool of Pharmacology, University of KwaZulu-Natal, Westville Campus, Private Bag-X54001, Durban, South Africa
*Correspondence e-mail: maguireg@ukzn.ac.za

(Received 1 May 2012; accepted 31 May 2012; online 20 June 2012)

In the title compound, C14H16N2O4S, the thia­diazine ring is in a half-boat conformation. The aromatic ring deviates from the plane of this moiety at an angle of 74.6 (2)°. The structure displays inter­molecular N—H⋯O hydrogen bonding [N⋯O = 2.8157 (16) Å], creating ribbons along the [010] axis. There are also weak C—H⋯O inter­actions in the crystal but no ππ stacking.

Related literature

For the synthesis of 1,2,6-thia­diazine-1,1-dioxide derivatives, see: Wright (1964[Wright, J. B. (1964). J. Org. Chem. 29, 1905-1909.]); Ochoa & Stud (1978[Ochoa, C. & Stud, M. (1978). J. Heterocycl. Chem, 15, 221-224.]). For the biological activity of 1,2,6-thia­diazine-1,1-dioxide derivatives, see: Aran et al. (1986[Aran, V. J., Bielsa, A. G., Goya, P., Ochoa, C., Paez, J. A., Stud, M., Contreras, M., Escario, J. A. & Jimenez, M. I. (1986). Il Farmaco, 41, 863-872.]); Herrero et al. (1992[Herrero, A., Ochoa, C., Atienza, J., Escario, J. A., Gomez, B. A. & Martinez Fenandez, A. R. (1992). Arch. Pharm. 325, 509-514.]); Breining et al. (1995[Breining, T., Cimpoia, A. R., Mansour, T. S., Cammack, N., Hopewell, P. & Ashman, C. (1995). Heterocycles, 41, 87-94.]); Campillo et al. (2000[Campillo, N., Garcia, C., Goya, P., Alkorta, I. & Juan, A. (2000). J. Med. Chem. 43, 4219-4227.]). For related structures, see: Elguero et al. (1982[Elguero, J., Carmen, O., Manfred, S., Estaben, C. C., Martinez, R. M., Fayet, J. P. & Vertut, M. C. (1982). J. Org. Chem. 47, 536-544.]).

[Scheme 1]

Experimental

Crystal data
  • C14H16N2O4S

  • Mr = 308.35

  • Monoclinic, P 21

  • a = 10.3943 (2) Å

  • b = 6.6089 (2) Å

  • c = 10.6563 (3) Å

  • β = 94.982 (2)°

  • V = 729.27 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 173 K

  • 0.25 × 0.24 × 0.23 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2006[Bruker (2006). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.943, Tmax = 0.947

  • 3321 measured reflections

  • 3321 independent reflections

  • 3083 reflections with I > 2σ(I)

  • Rint = 0.013

Refinement
  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.067

  • S = 1.08

  • 3321 reflections

  • 198 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.22 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]) 1512 Friedel pairs

  • Flack parameter: −0.03 (5)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O3i 0.97 (2) 1.85 (2) 2.8157 (16) 175 (2)
C5—H5A⋯O1ii 0.98 2.52 3.310 (2) 137
Symmetry codes: (i) [-x, y+{\script{1\over 2}}, -z]; (ii) [-x+1, y-{\script{1\over 2}}, -z].

Data collection: COLLECT (Nonius, 2000[Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO-SMN; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The synthesis of 1,2,6-thiadiazine-1,1-dioxides derivatives was first reported using sulfamide with alpha and beta diketones (Wright, 1964). Purine and pyrimidine nucleotide versions of this structure have also been synthesized (Ochoa & Stud, 1978). More recently 1,2,6-thiadiazine-1,1-dioxide derivatives have since been reported to posses antiparasitic (Aran et al., 1986), antiprotozoal (Herrero et al., 1992), anti-HIV-1 activity (Breining et al., 1995) and also act as bronchodilators (Campillo et al., 2000).

The first single-crystal X-ray structure of a 3,5 dimethyl-1,2,6-thiadiazine-1,1-dioxide derivative was reported by Elguero et al., 1982. The structure displayed intermolecular hydrogen bonding at N(2)—H(1)—O(2), 2.904 Å. The title compound is the first 3,5 dimethyl based structure reported with an aromatic ring at position 4 of the thiadiazine ring. It is also the first containing an ester functional group in the broader family of 1,2,6-thiadiazine-1,1-dioxides. The sulfur atom deviates from the plane of the ring by 0.53 Å (Fig. 1). The aromatic ring is nearly orthogonal to the thiadiazine ring with an angle of 74.6 (2)° from the plane. The structure displays intermolecular hydrogen bonding N(1)—H(1)—O(3), 2.8157 (16)Å creating ribbons along the [010] axis (Fig. 2). There is no π -π stacking in the crystal structure.

Related literature top

For the synthesis of 1,2,6-thiadiazine-1,1-dioxide derivatives, see: Wright (1964); Ochoa & Stud (1978), . For the biological activities of 1,2,6-thiadiazine-1,1-dioxide derivatives, see: Aran et al. (1986); Herrero et al. (1992); Breining et al. (1995); Campillo et al. (2000). For related structures, see: Elguero et al., (1982).

Experimental top

To ethanol (25 ml) and 2-(3,5-dimethyl-1,1-dioxo-2H-1,2,6-thiadiazin-4-yl) benzoic acid (10 mM) was slowly added thionyl chloride (50 mM), the contents were refluxed for 4 h, untill the reaction was complete (TLC Rf = 0.7 in 80% ethyl acetate/hexane). The contents were filtered. The filtrate was evaporated under reduced pressure yielding a clear oil. To this residue was added a solution of ethanol/ethyl acetate, (10 ml) (10/90) to yield a white colourless solid (55%). M.p.= 417.5 K.

Crystals suitable for X-ray analysis were grown in methanol/ethyl acetate at room temprature.

Refinement top

All hydrogen atoms were positioned geometrically with d(C-H) ranging from 0.95 Å to 0.99 Å and d(N-H) = 0.88 Å and refined as riding on their parent atoms with Uiso (H) = 1.2 - 1.5 Ueq (C ). The hydrogen atom H1 was located in the difference electron density maps and refined with O—H distance restraint to the value of 0.97 (1)Å.

Structure description top

The synthesis of 1,2,6-thiadiazine-1,1-dioxides derivatives was first reported using sulfamide with alpha and beta diketones (Wright, 1964). Purine and pyrimidine nucleotide versions of this structure have also been synthesized (Ochoa & Stud, 1978). More recently 1,2,6-thiadiazine-1,1-dioxide derivatives have since been reported to posses antiparasitic (Aran et al., 1986), antiprotozoal (Herrero et al., 1992), anti-HIV-1 activity (Breining et al., 1995) and also act as bronchodilators (Campillo et al., 2000).

The first single-crystal X-ray structure of a 3,5 dimethyl-1,2,6-thiadiazine-1,1-dioxide derivative was reported by Elguero et al., 1982. The structure displayed intermolecular hydrogen bonding at N(2)—H(1)—O(2), 2.904 Å. The title compound is the first 3,5 dimethyl based structure reported with an aromatic ring at position 4 of the thiadiazine ring. It is also the first containing an ester functional group in the broader family of 1,2,6-thiadiazine-1,1-dioxides. The sulfur atom deviates from the plane of the ring by 0.53 Å (Fig. 1). The aromatic ring is nearly orthogonal to the thiadiazine ring with an angle of 74.6 (2)° from the plane. The structure displays intermolecular hydrogen bonding N(1)—H(1)—O(3), 2.8157 (16)Å creating ribbons along the [010] axis (Fig. 2). There is no π -π stacking in the crystal structure.

For the synthesis of 1,2,6-thiadiazine-1,1-dioxide derivatives, see: Wright (1964); Ochoa & Stud (1978), . For the biological activities of 1,2,6-thiadiazine-1,1-dioxide derivatives, see: Aran et al. (1986); Herrero et al. (1992); Breining et al. (1995); Campillo et al. (2000). For related structures, see: Elguero et al., (1982).

Computing details top

Data collection: COLLECT (Nonius, 2000); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with atomic numbering scheme. The H atoms have been omitted for clarity. Displacement ellipsoids are drawn at 40% probability.
[Figure 2] Fig. 2. The hydrogen bonding ineractions of the title compound along the [111] axis. All H atoms except those involved in hydrogen bonding interactions have been omitted for clarity.
Ethyl 2-(3,5-dimethyl-1,1-dioxo-2H-1λ6,2,6-thiadiazin-4-yl)benzoate top
Crystal data top
C14H16N2O4SF(000) = 324
Mr = 308.35Dx = 1.404 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 3321 reflections
a = 10.3943 (2) Åθ = 3.6–27.5°
b = 6.6089 (2) ŵ = 0.24 mm1
c = 10.6563 (3) ÅT = 173 K
β = 94.982 (2)°Block, colourless
V = 729.27 (3) Å30.25 × 0.24 × 0.23 mm
Z = 2
Data collection top
Nonius KappaCCD
diffractometer
3321 independent reflections
Radiation source: fine-focus sealed tube3083 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.013
1.2° φ scans and ω scansθmax = 27.5°, θmin = 3.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2006)
h = 1313
Tmin = 0.943, Tmax = 0.947k = 88
3321 measured reflectionsl = 1313
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.027 w = 1/[σ2(Fo2) + (0.0356P)2 + 0.1059P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.067(Δ/σ)max < 0.001
S = 1.08Δρmax = 0.22 e Å3
3321 reflectionsΔρmin = 0.22 e Å3
198 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
2 restraintsExtinction coefficient: 0.021 (3)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983) ???? Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.03 (5)
Crystal data top
C14H16N2O4SV = 729.27 (3) Å3
Mr = 308.35Z = 2
Monoclinic, P21Mo Kα radiation
a = 10.3943 (2) ŵ = 0.24 mm1
b = 6.6089 (2) ÅT = 173 K
c = 10.6563 (3) Å0.25 × 0.24 × 0.23 mm
β = 94.982 (2)°
Data collection top
Nonius KappaCCD
diffractometer
3321 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2006)
3083 reflections with I > 2σ(I)
Tmin = 0.943, Tmax = 0.947Rint = 0.013
3321 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.027H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.067Δρmax = 0.22 e Å3
S = 1.08Δρmin = 0.22 e Å3
3321 reflectionsAbsolute structure: Flack (1983) ???? Friedel pairs
198 parametersAbsolute structure parameter: 0.03 (5)
2 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.22417 (3)0.66320 (6)0.19373 (3)0.02436 (10)
O10.32997 (11)0.7730 (2)0.23716 (11)0.0362 (3)
O20.13244 (11)0.58238 (18)0.28774 (10)0.0343 (3)
O30.07360 (10)0.52605 (18)0.21011 (10)0.0305 (3)
O40.04265 (9)0.69099 (17)0.38957 (9)0.0245 (2)
N10.14372 (11)0.81211 (19)0.10443 (11)0.0228 (3)
H10.0717 (13)0.887 (3)0.1454 (17)0.049 (6)*
N20.27760 (12)0.4887 (2)0.09828 (12)0.0287 (3)
C10.11769 (16)1.0140 (3)0.07966 (15)0.0323 (4)
H1A0.02680.97870.08500.048*
H1B0.12331.13680.02880.048*
H1C0.15911.03810.16450.048*
C20.18463 (13)0.8442 (2)0.01961 (13)0.0209 (3)
C30.27298 (13)0.7164 (2)0.08085 (13)0.0206 (3)
C40.30819 (13)0.5334 (2)0.02143 (14)0.0244 (3)
C50.37968 (18)0.3714 (3)0.09778 (16)0.0377 (4)
H5A0.46930.41400.11860.057*
H5B0.37840.24570.04890.057*
H5C0.33800.34870.17560.057*
C60.32137 (14)0.7514 (2)0.21576 (13)0.0226 (3)
C70.24812 (13)0.7118 (2)0.31791 (12)0.0207 (3)
C80.30187 (14)0.7466 (2)0.44105 (13)0.0243 (3)
H80.25170.72160.50980.029*
C90.42703 (15)0.8167 (3)0.46405 (14)0.0284 (3)
H90.46340.83640.54810.034*
C100.49884 (15)0.8579 (3)0.36372 (15)0.0313 (4)
H100.58430.90860.37880.038*
C110.44671 (14)0.8255 (3)0.24139 (14)0.0296 (3)
H110.49730.85430.17340.036*
C120.11380 (13)0.6337 (2)0.29881 (12)0.0222 (3)
C130.08984 (13)0.6165 (2)0.38507 (14)0.0269 (3)
H13A0.09080.46680.38810.032*
H13B0.13940.66100.30640.032*
C140.14763 (15)0.7028 (3)0.49745 (14)0.0309 (4)
H14A0.14670.85090.49280.046*
H14B0.09710.65860.57450.046*
H14C0.23690.65540.49860.046*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.02388 (17)0.0332 (2)0.01587 (16)0.00301 (16)0.00125 (11)0.00161 (15)
O10.0280 (6)0.0546 (7)0.0272 (6)0.0033 (5)0.0091 (5)0.0012 (5)
O20.0371 (6)0.0418 (7)0.0223 (5)0.0019 (5)0.0074 (5)0.0080 (5)
O30.0283 (5)0.0411 (7)0.0221 (5)0.0120 (5)0.0017 (4)0.0079 (5)
O40.0196 (4)0.0317 (6)0.0224 (5)0.0035 (4)0.0033 (4)0.0038 (5)
N10.0220 (6)0.0292 (7)0.0169 (6)0.0044 (5)0.0001 (4)0.0016 (5)
N20.0318 (7)0.0337 (7)0.0203 (6)0.0090 (6)0.0013 (5)0.0023 (5)
C10.0378 (9)0.0303 (9)0.0288 (8)0.0088 (7)0.0025 (7)0.0046 (7)
C20.0210 (7)0.0248 (7)0.0170 (7)0.0015 (6)0.0030 (5)0.0003 (6)
C30.0184 (6)0.0282 (8)0.0153 (6)0.0006 (5)0.0016 (5)0.0006 (5)
C40.0204 (7)0.0310 (8)0.0217 (7)0.0042 (6)0.0025 (5)0.0026 (6)
C50.0416 (10)0.0385 (10)0.0317 (9)0.0143 (8)0.0046 (7)0.0036 (7)
C60.0218 (7)0.0278 (7)0.0178 (7)0.0009 (6)0.0002 (5)0.0017 (6)
C70.0218 (6)0.0225 (8)0.0175 (6)0.0007 (5)0.0007 (5)0.0009 (5)
C80.0278 (7)0.0284 (8)0.0164 (7)0.0008 (6)0.0009 (5)0.0006 (6)
C90.0286 (8)0.0337 (8)0.0216 (7)0.0037 (7)0.0051 (6)0.0019 (6)
C100.0230 (7)0.0416 (10)0.0282 (8)0.0078 (7)0.0042 (6)0.0004 (7)
C110.0232 (7)0.0420 (9)0.0238 (8)0.0039 (7)0.0027 (6)0.0016 (7)
C120.0240 (7)0.0255 (8)0.0169 (6)0.0020 (6)0.0010 (5)0.0023 (6)
C130.0201 (7)0.0315 (9)0.0290 (8)0.0046 (6)0.0016 (5)0.0024 (6)
C140.0263 (7)0.0362 (10)0.0310 (8)0.0025 (6)0.0062 (6)0.0002 (7)
Geometric parameters (Å, º) top
S1—O21.4255 (11)C5—H5B0.9800
S1—O11.4279 (12)C5—H5C0.9800
S1—N21.6046 (14)C6—C111.396 (2)
S1—N11.6466 (12)C6—C71.406 (2)
O3—C121.2269 (17)C7—C81.3998 (18)
O4—C121.3229 (17)C7—C121.4859 (19)
O4—C131.4593 (16)C8—C91.383 (2)
N1—C21.3694 (18)C8—H80.9500
N1—H10.9697 (10)C9—C101.383 (2)
N2—C41.3210 (19)C9—H90.9500
C1—C21.494 (2)C10—C111.384 (2)
C1—H1A0.9800C10—H100.9500
C1—H1B0.9800C11—H110.9500
C1—H1C0.9800C13—C141.498 (2)
C2—C31.3707 (19)C13—H13A0.9900
C3—C41.427 (2)C13—H13B0.9900
C3—C61.4992 (19)C14—H14A0.9800
C4—C51.502 (2)C14—H14B0.9800
C5—H5A0.9800C14—H14C0.9800
O2—S1—O1116.72 (7)C11—C6—C3118.12 (13)
O2—S1—N2110.47 (7)C7—C6—C3123.68 (13)
O1—S1—N2109.69 (7)C8—C7—C6119.76 (13)
O2—S1—N1106.73 (7)C8—C7—C12118.63 (12)
O1—S1—N1109.12 (7)C6—C7—C12121.60 (12)
N2—S1—N1103.20 (6)C9—C8—C7120.93 (13)
C12—O4—C13117.73 (11)C9—C8—H8119.5
C2—N1—S1121.31 (10)C7—C8—H8119.5
C2—N1—H1121.2 (12)C8—C9—C10119.44 (14)
S1—N1—H1117.2 (12)C8—C9—H9120.3
C4—N2—S1119.50 (11)C10—C9—H9120.3
C2—C1—H1A109.5C9—C10—C11120.28 (14)
C2—C1—H1B109.5C9—C10—H10119.9
H1A—C1—H1B109.5C11—C10—H10119.9
C2—C1—H1C109.5C10—C11—C6121.38 (14)
H1A—C1—H1C109.5C10—C11—H11119.3
H1B—C1—H1C109.5C6—C11—H11119.3
N1—C2—C3120.21 (13)O3—C12—O4123.68 (12)
N1—C2—C1114.38 (13)O3—C12—C7124.07 (13)
C3—C2—C1125.23 (13)O4—C12—C7112.25 (11)
C2—C3—C4119.86 (13)O4—C13—C14106.74 (11)
C2—C3—C6121.10 (13)O4—C13—H13A110.4
C4—C3—C6118.59 (13)C14—C13—H13A110.4
N2—C4—C3124.64 (13)O4—C13—H13B110.4
N2—C4—C5115.46 (14)C14—C13—H13B110.4
C3—C4—C5119.84 (13)H13A—C13—H13B108.6
C4—C5—H5A109.5C13—C14—H14A109.5
C4—C5—H5B109.5C13—C14—H14B109.5
H5A—C5—H5B109.5H14A—C14—H14B109.5
C4—C5—H5C109.5C13—C14—H14C109.5
H5A—C5—H5C109.5H14A—C14—H14C109.5
H5B—C5—H5C109.5H14B—C14—H14C109.5
C11—C6—C7118.20 (13)
O2—S1—N1—C2151.55 (12)C2—C3—C6—C774.6 (2)
O1—S1—N1—C281.50 (13)C4—C3—C6—C797.68 (17)
N2—S1—N1—C235.09 (13)C11—C6—C7—C80.2 (2)
O2—S1—N2—C4146.56 (12)C3—C6—C7—C8179.14 (14)
O1—S1—N2—C483.40 (13)C11—C6—C7—C12179.72 (14)
N1—S1—N2—C432.79 (13)C3—C6—C7—C120.9 (2)
S1—N1—C2—C316.62 (19)C6—C7—C8—C90.9 (2)
S1—N1—C2—C1167.96 (11)C12—C7—C8—C9179.14 (14)
N1—C2—C3—C49.2 (2)C7—C8—C9—C101.7 (2)
C1—C2—C3—C4165.70 (14)C8—C9—C10—C111.2 (3)
N1—C2—C3—C6178.59 (13)C9—C10—C11—C60.1 (3)
C1—C2—C3—C66.5 (2)C7—C6—C11—C100.6 (2)
S1—N2—C4—C313.8 (2)C3—C6—C11—C10178.75 (15)
S1—N2—C4—C5169.16 (12)C13—O4—C12—O31.8 (2)
C2—C3—C4—N211.2 (2)C13—O4—C12—C7177.25 (12)
C6—C3—C4—N2176.42 (14)C8—C7—C12—O3150.10 (15)
C2—C3—C4—C5165.74 (14)C6—C7—C12—O330.0 (2)
C6—C3—C4—C56.7 (2)C8—C7—C12—O428.97 (19)
C2—C3—C6—C11106.03 (17)C6—C7—C12—O4150.95 (13)
C4—C3—C6—C1181.65 (18)C12—O4—C13—C14179.87 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O3i0.97 (2)1.85 (2)2.8157 (16)175 (2)
C5—H5A···O1ii0.982.523.310 (2)137
Symmetry codes: (i) x, y+1/2, z; (ii) x+1, y1/2, z.

Experimental details

Crystal data
Chemical formulaC14H16N2O4S
Mr308.35
Crystal system, space groupMonoclinic, P21
Temperature (K)173
a, b, c (Å)10.3943 (2), 6.6089 (2), 10.6563 (3)
β (°) 94.982 (2)
V3)729.27 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.24
Crystal size (mm)0.25 × 0.24 × 0.23
Data collection
DiffractometerNonius KappaCCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2006)
Tmin, Tmax0.943, 0.947
No. of measured, independent and
observed [I > 2σ(I)] reflections
3321, 3321, 3083
Rint0.013
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.067, 1.08
No. of reflections3321
No. of parameters198
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.22, 0.22
Absolute structureFlack (1983) ???? Friedel pairs
Absolute structure parameter0.03 (5)

Computer programs: COLLECT (Nonius, 2000), DENZO-SMN (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O3i0.969 (16)1.849 (16)2.8157 (16)174.6 (15)
C5—H5A···O1ii0.982.523.310 (2)137
Symmetry codes: (i) x, y+1/2, z; (ii) x+1, y1/2, z.
 

Acknowledgements

The authors thank Dr Hong Su from the University of Cape Town for assistance with the data collection and refinement.

References

First citationAran, V. J., Bielsa, A. G., Goya, P., Ochoa, C., Paez, J. A., Stud, M., Contreras, M., Escario, J. A. & Jimenez, M. I. (1986). Il Farmaco, 41, 863–872.  Google Scholar
First citationBreining, T., Cimpoia, A. R., Mansour, T. S., Cammack, N., Hopewell, P. & Ashman, C. (1995). Heterocycles, 41, 87–94.  CAS Google Scholar
First citationBruker (2006). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCampillo, N., Garcia, C., Goya, P., Alkorta, I. & Juan, A. (2000). J. Med. Chem. 43, 4219–4227.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationElguero, J., Carmen, O., Manfred, S., Estaben, C. C., Martinez, R. M., Fayet, J. P. & Vertut, M. C. (1982). J. Org. Chem. 47, 536–544.  CSD CrossRef CAS Web of Science Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHerrero, A., Ochoa, C., Atienza, J., Escario, J. A., Gomez, B. A. & Martinez Fenandez, A. R. (1992). Arch. Pharm. 325, 509–514.  CrossRef CAS Web of Science Google Scholar
First citationNonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOchoa, C. & Stud, M. (1978). J. Heterocycl. Chem, 15, 221–224.  CrossRef CAS Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWright, J. B. (1964). J. Org. Chem. 29, 1905–1909.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds