metal-organic compounds
Bis[2-(5-methylsulfanyl-1,3,4-oxadiazol-2-yl-κN3)phenolato-κO1]copper(II)
aUnité de Recherche de Chimie de l'Environnement et Moléculaire Structurale (CHEMS), Faculté des Sciences Exactes, Département de Chimie, Université Mentouri, 25000 Constantine, Algeria, and bCentre de Diffractométrie X, Université de Bretagne Occidentale, BP 809, 29285 Brest Cedex, France
*Correspondence e-mail: a_beghidja@yahoo.fr
In the title complex, [Cu(C9H7N2O2S)2], the CuII ion, located on an inversion center, adopts an N2O2 square-planar coordination. The 2-(5-methylsulfanyl-1,3,4-oxadiazol-2-yl)phenolate ligand is chelated to the central CuII ion in an N,O-bidentate manner.
Related literature
For general background to derivatives of dithiocarbazate ligands and their metal complexes, see: Beghidja et al. (2005; 2006); Bouchameni et al. (2011); Beghidja, Bouslimani & Welter (2007); Beghidja, Rogez & Welter (2007). For similar structures, see: Kala et al. (2007); Liu et al. (2008); Zhang et al. (2001). For the preparation of the ligand, see: Dolman et al. (2006); Young & Wood (1955).
Experimental
Crystal data
|
Refinement
|
|
Data collection: CrysAlis CCD (Oxford Diffraction, 2007); cell CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2007); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ATOMS (Dowty, 1995); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).
Supporting information
https://doi.org/10.1107/S1600536812026815/hp2039sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536812026815/hp2039Isup2.hkl
The ligand HL(1) (0.128 g, 0.05 mmol) was dissolved in minimum of DMF. The solution of CuCl2.2H2O (0.0085 g, 0.05 mmol) in DMF was added to the first when the ligand was dissolved completely. Green crystals of the complex 1 were isolated from the solution after two weeks.
All H atoms were placed at calculated positions and treated as riding on their parent atoms with C—H = 0.93–0.96 Å, and Uiso (H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for the others.
The molecular structure of the complex (1) shows that the CuII ion is located on an inversion center and chelated by two bidentate anions HL- (Fig. 1). This ligand has been obtained from the in situ
of 2-hydroxy [bis(methylsulfanyl)methylene]hydrazide HL(1) described previously by (Young et al.,1955; Dolman et al., 2006). The title mononuclear complex, [Cu (C9H7O2N2S)2] (1) has a square-plane geometry formed by the N2O2 donor atoms (N1, O2). Several mononuclear compounds with similar structures have been reported previously (Kala et al., 2007; Liu et al., 2008). The whole molecule is planar with a small deviation at C8 from the mean plane. The distances in the coordination planes around the CuII ion [Cu1—N1= 1.975 (19) Å and Cu1—O2= 1.896 (2) Å] are in agreement with other square-planar complexes, such as [Cu(C15H22O)2] [Cu—O = 1.88 (3) Å and Cu—N = 2.00 (3) Å; (Zhang et al., 2001)]. From a supramolecular point of view, this structure can be described as a zigzag chain within which the molecular complexes are connected to each other via the weak hydrogen bonding C—H···O. In the crystal the layers are held together by normal van der Waals interactions (Fig. 2).For general background to derivatives of dithiocarbazate ligands and their metal complexes, see: Beghidja et al. (2005; 2006); Bouchameni et al. (2011); Beghidja, Bouslimani & Welter (2007); Beghidja, Rogez & Welter (2007). For similar structures, see: Kala et al. (2007); Liu et al. (2008); Zhang et al. (2001). For the preparation of the ligand, see: Dolman et al. (2006); Young & Wood (1955).
Data collection: CrysAlis CCD (Oxford Diffraction, 2007); cell
CrysAlis CCD (Oxford Diffraction, 2007); data reduction: CrysAlis RED (Oxford Diffraction, 2007); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ATOMS (Dowty, 1995); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).Fig. 1. The molecular structure of (I), with atom labels and 50% probability displacement ellipsoids for non-H atoms. | |
Fig. 2. Linking of the layers in the structure via van der Waals interactions. |
[Cu(C9H7N2O2S)2] | F(000) = 486 |
Mr = 478.02 | Least Squares Treatment of 25 SET4 setting angles. |
Monoclinic, P21/n | Dx = 1.709 Mg m−3 |
Hall symbol: -P 2yn | Mo Kα radiation, λ = 0.71073 Å |
a = 12.5695 (7) Å | Cell parameters from 2354 reflections |
b = 4.4216 (3) Å | θ = 3.3–31.6° |
c = 17.3861 (9) Å | µ = 1.44 mm−1 |
β = 106.005 (6)° | T = 170 K |
V = 928.81 (9) Å3 | Plates, green |
Z = 2 | 0.18 × 0.12 × 0.09 mm |
Oxford Diffraction Xcalibur CCD diffractometer | 1906 independent reflections |
Radiation source: Enhance (Mo) X-ray Source | 1250 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.037 |
Detector resolution: 18.4 pixels mm-1 | θmax = 26.4°, θmin = 3.4° |
ω and φ scans | h = −15→15 |
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007) | k = −5→5 |
Tmin = 0.926, Tmax = 1.000 | l = −21→14 |
6693 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.033 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.066 | H-atom parameters constrained |
S = 0.99 | w = 1/[σ2(Fo2) + (0.0283P)2] where P = (Fo2 + 2Fc2)/3 |
1906 reflections | (Δ/σ)max = 0.004 |
133 parameters | Δρmax = 0.31 e Å−3 |
0 restraints | Δρmin = −0.18 e Å−3 |
[Cu(C9H7N2O2S)2] | V = 928.81 (9) Å3 |
Mr = 478.02 | Z = 2 |
Monoclinic, P21/n | Mo Kα radiation |
a = 12.5695 (7) Å | µ = 1.44 mm−1 |
b = 4.4216 (3) Å | T = 170 K |
c = 17.3861 (9) Å | 0.18 × 0.12 × 0.09 mm |
β = 106.005 (6)° |
Oxford Diffraction Xcalibur CCD diffractometer | 1906 independent reflections |
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007) | 1250 reflections with I > 2σ(I) |
Tmin = 0.926, Tmax = 1.000 | Rint = 0.037 |
6693 measured reflections |
R[F2 > 2σ(F2)] = 0.033 | 0 restraints |
wR(F2) = 0.066 | H-atom parameters constrained |
S = 0.99 | Δρmax = 0.31 e Å−3 |
1906 reflections | Δρmin = −0.18 e Å−3 |
133 parameters |
Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles |
Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.50000 | 0.00000 | 1.00000 | 0.0381 (1) | |
S1 | 0.45296 (6) | 0.47186 (17) | 0.68566 (4) | 0.0455 (3) | |
O1 | 0.58495 (13) | 0.1114 (4) | 0.79047 (9) | 0.0362 (6) | |
O2 | 0.62190 (14) | −0.2686 (5) | 1.01766 (9) | 0.0506 (7) | |
N1 | 0.51554 (16) | 0.0936 (5) | 0.89257 (11) | 0.0347 (7) | |
N2 | 0.44837 (16) | 0.2890 (5) | 0.83525 (11) | 0.0387 (8) | |
C1 | 0.59434 (18) | −0.0065 (6) | 0.86434 (13) | 0.0315 (7) | |
C2 | 0.68113 (19) | −0.2153 (6) | 0.89831 (14) | 0.0326 (8) | |
C3 | 0.68883 (19) | −0.3359 (6) | 0.97479 (15) | 0.0356 (8) | |
C4 | 0.7755 (2) | −0.5413 (6) | 1.00571 (15) | 0.0424 (9) | |
C5 | 0.8503 (2) | −0.6167 (6) | 0.96422 (17) | 0.0474 (10) | |
C6 | 0.8424 (2) | −0.4940 (7) | 0.88955 (16) | 0.0455 (9) | |
C7 | 0.7584 (2) | −0.2969 (6) | 0.85724 (16) | 0.0429 (10) | |
C8 | 0.4933 (2) | 0.2903 (6) | 0.77720 (14) | 0.0346 (8) | |
C9 | 0.3251 (2) | 0.6276 (7) | 0.69352 (17) | 0.0602 (11) | |
H4 | 0.78230 | −0.62840 | 1.05550 | 0.0510* | |
H5 | 0.90710 | −0.75200 | 0.98660 | 0.0570* | |
H6 | 0.89350 | −0.54500 | 0.86190 | 0.0550* | |
H7 | 0.75220 | −0.21510 | 0.80690 | 0.0510* | |
H9A | 0.29080 | 0.74020 | 0.64590 | 0.0900* | |
H9B | 0.33910 | 0.75940 | 0.73910 | 0.0900* | |
H9C | 0.27680 | 0.46690 | 0.69980 | 0.0900* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.0309 (2) | 0.0596 (3) | 0.0265 (2) | 0.0096 (2) | 0.0123 (2) | 0.0020 (3) |
S1 | 0.0469 (4) | 0.0576 (5) | 0.0340 (4) | −0.0015 (4) | 0.0146 (3) | 0.0092 (4) |
O1 | 0.0361 (10) | 0.0457 (11) | 0.0307 (9) | −0.0003 (8) | 0.0158 (8) | 0.0006 (8) |
O2 | 0.0442 (11) | 0.0785 (14) | 0.0346 (10) | 0.0221 (10) | 0.0200 (9) | 0.0092 (11) |
N1 | 0.0300 (11) | 0.0482 (14) | 0.0274 (11) | 0.0054 (10) | 0.0104 (9) | 0.0020 (10) |
N2 | 0.0340 (12) | 0.0521 (15) | 0.0303 (12) | 0.0051 (11) | 0.0093 (10) | 0.0039 (11) |
C1 | 0.0301 (12) | 0.0398 (14) | 0.0261 (12) | −0.0068 (14) | 0.0102 (10) | −0.0058 (14) |
C2 | 0.0285 (13) | 0.0385 (15) | 0.0316 (13) | −0.0021 (11) | 0.0098 (11) | −0.0059 (12) |
C3 | 0.0289 (13) | 0.0443 (16) | 0.0341 (14) | −0.0017 (12) | 0.0095 (11) | −0.0084 (13) |
C4 | 0.0397 (15) | 0.0520 (19) | 0.0342 (13) | 0.0079 (13) | 0.0078 (12) | 0.0011 (14) |
C5 | 0.0398 (16) | 0.0462 (17) | 0.0562 (19) | 0.0112 (13) | 0.0135 (14) | −0.0070 (15) |
C6 | 0.0398 (14) | 0.0508 (17) | 0.0535 (16) | 0.0065 (15) | 0.0256 (13) | −0.0016 (17) |
C7 | 0.0426 (16) | 0.0489 (18) | 0.0438 (16) | 0.0004 (14) | 0.0230 (13) | −0.0031 (14) |
C8 | 0.0320 (14) | 0.0401 (16) | 0.0315 (14) | −0.0036 (12) | 0.0086 (12) | −0.0033 (12) |
C9 | 0.060 (2) | 0.069 (2) | 0.0527 (19) | 0.0110 (16) | 0.0175 (16) | 0.0157 (16) |
Cu1—O2 | 1.896 (2) | C2—C3 | 1.411 (3) |
Cu1—N1 | 1.9746 (19) | C2—C7 | 1.402 (4) |
Cu1—O2i | 1.896 (2) | C3—C4 | 1.406 (4) |
Cu1—N1i | 1.9746 (19) | C4—C5 | 1.375 (4) |
S1—C8 | 1.729 (3) | C5—C6 | 1.385 (4) |
S1—C9 | 1.788 (3) | C6—C7 | 1.365 (4) |
O1—C1 | 1.361 (3) | C4—H4 | 0.9300 |
O1—C8 | 1.364 (3) | C5—H5 | 0.9300 |
O2—C3 | 1.303 (3) | C6—H6 | 0.9300 |
N1—N2 | 1.410 (3) | C7—H7 | 0.9300 |
N1—C1 | 1.298 (3) | C9—H9A | 0.9600 |
N2—C8 | 1.285 (3) | C9—H9B | 0.9600 |
C1—C2 | 1.427 (4) | C9—H9C | 0.9600 |
Cu1···O2ii | 3.555 (2) | C3···Cu1vi | 3.876 (3) |
Cu1···C3ii | 3.876 (3) | C3···N1vi | 3.381 (3) |
Cu1···C4ii | 3.991 (3) | C3···C1vi | 3.554 (4) |
Cu1···O2iii | 3.555 (2) | C3···Cu1iii | 3.876 (3) |
Cu1···C3iii | 3.876 (3) | C4···C2vi | 3.543 (4) |
Cu1···C4iii | 3.991 (3) | C4···Cu1vi | 3.991 (3) |
S1···H6iv | 3.1400 | C4···C1vi | 3.517 (4) |
S1···H4v | 3.0600 | C4···Cu1iii | 3.991 (3) |
O1···N2 | 2.215 (3) | C5···C7vi | 3.557 (4) |
O1···C7ii | 3.399 (3) | C5···C2vi | 3.391 (4) |
O2···N2i | 2.928 (3) | C7···O1vi | 3.399 (3) |
O2···C1 | 2.839 (3) | C7···C5ii | 3.557 (4) |
O2···Cu1vi | 3.555 (2) | C8···C1ii | 3.538 (4) |
O2···N1 | 2.735 (3) | C8···C2ii | 3.471 (4) |
O2···Cu1iii | 3.555 (2) | C9···N2x | 3.410 (3) |
O2···N1i | 2.740 (3) | C3···H9Aviii | 2.9300 |
O1···H6vii | 2.8200 | C4···H9Aviii | 2.7400 |
O1···H7 | 2.5000 | C8···H9Bvi | 3.0000 |
O2···H9Aviii | 2.6200 | C9···H9Cx | 2.9400 |
N1···O1 | 2.185 (3) | H4···S1xi | 3.0600 |
N1···O2 | 2.735 (3) | H4···H9Aviii | 2.3100 |
N1···C3 | 2.946 (3) | H6···S1xii | 3.1400 |
N1···C3ii | 3.381 (3) | H6···O1xiii | 2.8200 |
N1···O2i | 2.740 (3) | H7···O1 | 2.5000 |
N2···O1 | 2.215 (3) | H9A···O2xiv | 2.6200 |
N2···O2i | 2.928 (3) | H9A···C3xiv | 2.9300 |
N2···C9ix | 3.410 (3) | H9A···C4xiv | 2.7400 |
N2···H9C | 2.8300 | H9A···H4xiv | 2.3100 |
N2···H9B | 2.7800 | H9B···N2 | 2.7800 |
C1···C3ii | 3.554 (4) | H9B···C8ii | 3.0000 |
C1···C4ii | 3.517 (4) | H9B···H9Cx | 2.2200 |
C1···C8vi | 3.538 (4) | H9C···N2 | 2.8300 |
C2···C4ii | 3.543 (4) | H9C···C9ix | 2.9400 |
C2···C5ii | 3.391 (4) | H9C···H9Bix | 2.2200 |
C2···C8vi | 3.471 (4) | ||
O2—Cu1—N1 | 89.90 (8) | C3—C4—C5 | 121.7 (2) |
O2—Cu1—O2i | 180.00 | C4—C5—C6 | 121.0 (2) |
O2—Cu1—N1i | 90.11 (8) | C5—C6—C7 | 118.9 (2) |
O2i—Cu1—N1 | 90.11 (8) | C2—C7—C6 | 121.4 (2) |
N1—Cu1—N1i | 180.00 | S1—C8—O1 | 116.41 (17) |
O2i—Cu1—N1i | 89.90 (8) | S1—C8—N2 | 130.1 (2) |
C8—S1—C9 | 98.63 (13) | O1—C8—N2 | 113.5 (2) |
C1—O1—C8 | 103.37 (18) | C3—C4—H4 | 119.00 |
Cu1—O2—C3 | 132.15 (16) | C5—C4—H4 | 119.00 |
Cu1—N1—N2 | 126.93 (15) | C4—C5—H5 | 120.00 |
Cu1—N1—C1 | 124.81 (17) | C6—C5—H5 | 119.00 |
N2—N1—C1 | 108.19 (19) | C5—C6—H6 | 121.00 |
N1—N2—C8 | 104.5 (2) | C7—C6—H6 | 121.00 |
O1—C1—N1 | 110.5 (2) | C2—C7—H7 | 119.00 |
O1—C1—C2 | 119.7 (2) | C6—C7—H7 | 119.00 |
N1—C1—C2 | 129.8 (2) | S1—C9—H9A | 109.00 |
C1—C2—C3 | 118.7 (2) | S1—C9—H9B | 109.00 |
C1—C2—C7 | 120.9 (2) | S1—C9—H9C | 109.00 |
C3—C2—C7 | 120.4 (2) | H9A—C9—H9B | 109.00 |
O2—C3—C2 | 124.4 (2) | H9A—C9—H9C | 110.00 |
O2—C3—C4 | 118.9 (2) | H9B—C9—H9C | 109.00 |
C2—C3—C4 | 116.7 (2) | ||
N1—Cu1—O2—C3 | 3.7 (2) | Cu1—N1—C1—O1 | −176.81 (15) |
N1i—Cu1—O2—C3 | −176.3 (2) | N1—N2—C8—O1 | 0.2 (3) |
O2—Cu1—N1—N2 | 178.6 (2) | N1—N2—C8—S1 | 177.9 (2) |
O2i—Cu1—N1—N2 | −1.4 (2) | O1—C1—C2—C7 | 1.2 (4) |
O2—Cu1—N1—C1 | −4.9 (2) | N1—C1—C2—C7 | 179.4 (3) |
O2i—Cu1—N1—C1 | 175.1 (2) | O1—C1—C2—C3 | −179.6 (2) |
C9—S1—C8—O1 | 173.0 (2) | N1—C1—C2—C3 | −1.4 (4) |
C9—S1—C8—N2 | −4.7 (3) | C3—C2—C7—C6 | 0.2 (4) |
C8—O1—C1—N1 | −0.1 (3) | C1—C2—C3—C4 | 179.8 (2) |
C1—O1—C8—N2 | −0.1 (3) | C1—C2—C7—C6 | 179.3 (3) |
C8—O1—C1—C2 | 178.4 (2) | C1—C2—C3—O2 | −0.4 (4) |
C1—O1—C8—S1 | −178.12 (18) | C7—C2—C3—O2 | 178.8 (2) |
Cu1—O2—C3—C2 | −1.8 (4) | C7—C2—C3—C4 | −1.0 (4) |
Cu1—O2—C3—C4 | 177.95 (18) | O2—C3—C4—C5 | −178.6 (2) |
C1—N1—N2—C8 | −0.3 (3) | C2—C3—C4—C5 | 1.2 (4) |
Cu1—N1—N2—C8 | 176.71 (18) | C3—C4—C5—C6 | −0.5 (4) |
N2—N1—C1—C2 | −178.1 (3) | C4—C5—C6—C7 | −0.3 (4) |
N2—N1—C1—O1 | 0.2 (3) | C5—C6—C7—C2 | 0.5 (4) |
Cu1—N1—C1—C2 | 4.9 (4) |
Symmetry codes: (i) −x+1, −y, −z+2; (ii) x, y+1, z; (iii) −x+1, −y−1, −z+2; (iv) −x+3/2, y+3/2, −z+3/2; (v) x−1/2, −y−1/2, z−1/2; (vi) x, y−1, z; (vii) −x+3/2, y+1/2, −z+3/2; (viii) x+1/2, −y+1/2, z+1/2; (ix) −x+1/2, y−1/2, −z+3/2; (x) −x+1/2, y+1/2, −z+3/2; (xi) x+1/2, −y−1/2, z+1/2; (xii) −x+3/2, y−3/2, −z+3/2; (xiii) −x+3/2, y−1/2, −z+3/2; (xiv) x−1/2, −y+1/2, z−1/2. |
Experimental details
Crystal data | |
Chemical formula | [Cu(C9H7N2O2S)2] |
Mr | 478.02 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 170 |
a, b, c (Å) | 12.5695 (7), 4.4216 (3), 17.3861 (9) |
β (°) | 106.005 (6) |
V (Å3) | 928.81 (9) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 1.44 |
Crystal size (mm) | 0.18 × 0.12 × 0.09 |
Data collection | |
Diffractometer | Oxford Diffraction Xcalibur CCD |
Absorption correction | Multi-scan (CrysAlis RED; Oxford Diffraction, 2007) |
Tmin, Tmax | 0.926, 1.000 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 6693, 1906, 1250 |
Rint | 0.037 |
(sin θ/λ)max (Å−1) | 0.625 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.033, 0.066, 0.99 |
No. of reflections | 1906 |
No. of parameters | 133 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.31, −0.18 |
Computer programs: CrysAlis CCD (Oxford Diffraction, 2007), CrysAlis RED (Oxford Diffraction, 2007), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ATOMS (Dowty, 1995), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).
Acknowledgements
The authors thank the Algerian MESRS for financial support (PNR project).
References
Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119. Web of Science CrossRef CAS IUCr Journals Google Scholar
Beghidja, C., Bouslimani, N. & Welter, R. (2007). C. R. Acad. Sci. II C, 10, 590–597. CAS Google Scholar
Beghidja, C., Rogez, G., Kurtus, J., Wesolek, M. & Welter, R. (2006). J. Am. Chem. Soc. 128, 3140–3141. Web of Science CSD CrossRef PubMed CAS Google Scholar
Beghidja, C., Rogez, G. & Welter, R. (2007). New J. Chem. 31, 1403–1406. Web of Science CSD CrossRef CAS Google Scholar
Beghidja, C., Wesolek, M. & Welter, R. (2005). Inorg. Chim. Acta, 358, 3881–3888. Web of Science CSD CrossRef CAS Google Scholar
Bouchameni, C., Beghidja, C., Beghidja, A., Rabu, P. & Welter, R. (2011). Polyhedron, 30, 1774–1778. Web of Science CSD CrossRef CAS Google Scholar
Dolman, S., Gosselin, F., O'Shea, P. & Davies, I. (2006). J. Org. Chem. 71, 9548–9551. Web of Science CrossRef PubMed CAS Google Scholar
Dowty, E. (1995). ATOMS. Shape Software, Kingsport, Tennessee, USA. Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Kala, U.-L., Suma, S., Prathapachandra Kurup, M.-R., Krishnan, S. & John, R.-P. (2007). Polyhedron, 26, 1427–1435. Web of Science CSD CrossRef CAS Google Scholar
Liu, H., Lu, Z. & Niu, D. (2008). J. Coord. Chem. 61, 4040–4046. Web of Science CSD CrossRef CAS Google Scholar
Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Young, R. & Wood, K. (1955). J. Am. Chem. Soc. 77, 400–403. CrossRef CAS Web of Science Google Scholar
Zhang, L. Z., Bu, P.-Y., Wang, L.-J. & Cheng, P. (2001). Acta Cryst. C57, 1166–1167. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The molecular structure of the complex (1) shows that the CuII ion is located on an inversion center and chelated by two bidentate anions HL- (Fig. 1). This ligand has been obtained from the in situ cyclization of 2-hydroxy [bis(methylsulfanyl)methylene]hydrazide HL(1) described previously by (Young et al.,1955; Dolman et al., 2006). The title mononuclear complex, [Cu (C9H7O2N2S)2] (1) has a square-plane geometry formed by the N2O2 donor atoms (N1, O2). Several mononuclear compounds with similar structures have been reported previously (Kala et al., 2007; Liu et al., 2008). The whole molecule is planar with a small deviation at C8 from the mean plane. The distances in the coordination planes around the CuII ion [Cu1—N1= 1.975 (19) Å and Cu1—O2= 1.896 (2) Å] are in agreement with other square-planar complexes, such as [Cu(C15H22O)2] [Cu—O = 1.88 (3) Å and Cu—N = 2.00 (3) Å; (Zhang et al., 2001)]. From a supramolecular point of view, this structure can be described as a zigzag chain within which the molecular complexes are connected to each other via the weak hydrogen bonding C—H···O. In the crystal the layers are held together by normal van der Waals interactions (Fig. 2).