metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis[2-(5-methyl­sulfanyl-1,3,4-oxa­diazol-2-yl-κN3)phenolato-κO1]copper(II)

aUnité de Recherche de Chimie de l'Environnement et Moléculaire Structurale (CHEMS), Faculté des Sciences Exactes, Département de Chimie, Université Mentouri, 25000 Constantine, Algeria, and bCentre de Diffractométrie X, Université de Bretagne Occidentale, BP 809, 29285 Brest Cedex, France
*Correspondence e-mail: a_beghidja@yahoo.fr

(Received 10 May 2012; accepted 13 June 2012; online 20 June 2012)

In the title complex, [Cu(C9H7N2O2S)2], the CuII ion, located on an inversion center, adopts an N2O2 square-planar coord­ination. The 2-(5-methyl­sulfanyl-1,3,4-oxadiazol-2-yl)phenolate ligand is chelated to the central CuII ion in an N,O-bidentate manner.

Related literature

For general background to derivatives of dithio­carbazate ligands and their metal complexes, see: Beghidja et al. (2005[Beghidja, C., Wesolek, M. & Welter, R. (2005). Inorg. Chim. Acta, 358, 3881-3888.]; 2006[Beghidja, C., Rogez, G., Kurtus, J., Wesolek, M. & Welter, R. (2006). J. Am. Chem. Soc. 128, 3140-3141.]); Bouchameni et al. (2011[Bouchameni, C., Beghidja, C., Beghidja, A., Rabu, P. & Welter, R. (2011). Polyhedron, 30, 1774-1778.]); Beghidja, Bouslimani & Welter (2007[Beghidja, C., Bouslimani, N. & Welter, R. (2007). C. R. Acad. Sci. II C, 10, 590-597.]); Beghidja, Rogez & Welter (2007[Beghidja, C., Rogez, G. & Welter, R. (2007). New J. Chem. 31, 1403-1406.]). For similar structures, see: Kala et al. (2007[Kala, U.-L., Suma, S., Prathapachandra Kurup, M.-R., Krishnan, S. & John, R.-P. (2007). Polyhedron, 26, 1427-1435.]); Liu et al. (2008[Liu, H., Lu, Z. & Niu, D. (2008). J. Coord. Chem. 61, 4040-4046.]); Zhang et al. (2001[Zhang, L. Z., Bu, P.-Y., Wang, L.-J. & Cheng, P. (2001). Acta Cryst. C57, 1166-1167.]). For the preparation of the ligand, see: Dolman et al. (2006[Dolman, S., Gosselin, F., O'Shea, P. & Davies, I. (2006). J. Org. Chem. 71, 9548-9551.]); Young & Wood (1955[Young, R. & Wood, K. (1955). J. Am. Chem. Soc. 77, 400-403.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C9H7N2O2S)2]

  • Mr = 478.02

  • Monoclinic, P 21 /n

  • a = 12.5695 (7) Å

  • b = 4.4216 (3) Å

  • c = 17.3861 (9) Å

  • β = 106.005 (6)°

  • V = 928.81 (9) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.44 mm−1

  • T = 170 K

  • 0.18 × 0.12 × 0.09 mm

Data collection
  • Oxford Diffraction Xcalibur CCD diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]) Tmin = 0.926, Tmax = 1.000

  • 6693 measured reflections

  • 1906 independent reflections

  • 1250 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.066

  • S = 0.99

  • 1906 reflections

  • 133 parameters

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Selected bond lengths (Å)

Cu1—O2 1.896 (2)
Cu1—N1 1.9746 (19)

Data collection: CrysAlis CCD (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ATOMS (Dowty, 1995[Dowty, E. (1995). ATOMS. Shape Software, Kingsport, Tennessee, USA.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The molecular structure of the complex (1) shows that the CuII ion is located on an inversion center and chelated by two bidentate anions HL- (Fig. 1). This ligand has been obtained from the in situ cyclization of 2-hydroxy [bis(methylsulfanyl)methylene]hydrazide HL(1) described previously by (Young et al.,1955; Dolman et al., 2006). The title mononuclear complex, [Cu (C9H7O2N2S)2] (1) has a square-plane geometry formed by the N2O2 donor atoms (N1, O2). Several mononuclear compounds with similar structures have been reported previously (Kala et al., 2007; Liu et al., 2008). The whole molecule is planar with a small deviation at C8 from the mean plane. The distances in the coordination planes around the CuII ion [Cu1—N1= 1.975 (19) Å and Cu1—O2= 1.896 (2) Å] are in agreement with other square-planar complexes, such as [Cu(C15H22O)2] [Cu—O = 1.88 (3) Å and Cu—N = 2.00 (3) Å; (Zhang et al., 2001)]. From a supramolecular point of view, this structure can be described as a zigzag chain within which the molecular complexes are connected to each other via the weak hydrogen bonding C—H···O. In the crystal the layers are held together by normal van der Waals interactions (Fig. 2).

Related literature top

For general background to derivatives of dithiocarbazate ligands and their metal complexes, see: Beghidja et al. (2005; 2006); Bouchameni et al. (2011); Beghidja, Bouslimani & Welter (2007); Beghidja, Rogez & Welter (2007). For similar structures, see: Kala et al. (2007); Liu et al. (2008); Zhang et al. (2001). For the preparation of the ligand, see: Dolman et al. (2006); Young & Wood (1955).

Experimental top

The ligand HL(1) (0.128 g, 0.05 mmol) was dissolved in minimum of DMF. The solution of CuCl2.2H2O (0.0085 g, 0.05 mmol) in DMF was added to the first when the ligand was dissolved completely. Green crystals of the complex 1 were isolated from the solution after two weeks.

Refinement top

All H atoms were placed at calculated positions and treated as riding on their parent atoms with C—H = 0.93–0.96 Å, and Uiso (H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for the others.

Structure description top

The molecular structure of the complex (1) shows that the CuII ion is located on an inversion center and chelated by two bidentate anions HL- (Fig. 1). This ligand has been obtained from the in situ cyclization of 2-hydroxy [bis(methylsulfanyl)methylene]hydrazide HL(1) described previously by (Young et al.,1955; Dolman et al., 2006). The title mononuclear complex, [Cu (C9H7O2N2S)2] (1) has a square-plane geometry formed by the N2O2 donor atoms (N1, O2). Several mononuclear compounds with similar structures have been reported previously (Kala et al., 2007; Liu et al., 2008). The whole molecule is planar with a small deviation at C8 from the mean plane. The distances in the coordination planes around the CuII ion [Cu1—N1= 1.975 (19) Å and Cu1—O2= 1.896 (2) Å] are in agreement with other square-planar complexes, such as [Cu(C15H22O)2] [Cu—O = 1.88 (3) Å and Cu—N = 2.00 (3) Å; (Zhang et al., 2001)]. From a supramolecular point of view, this structure can be described as a zigzag chain within which the molecular complexes are connected to each other via the weak hydrogen bonding C—H···O. In the crystal the layers are held together by normal van der Waals interactions (Fig. 2).

For general background to derivatives of dithiocarbazate ligands and their metal complexes, see: Beghidja et al. (2005; 2006); Bouchameni et al. (2011); Beghidja, Bouslimani & Welter (2007); Beghidja, Rogez & Welter (2007). For similar structures, see: Kala et al. (2007); Liu et al. (2008); Zhang et al. (2001). For the preparation of the ligand, see: Dolman et al. (2006); Young & Wood (1955).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2007); cell refinement: CrysAlis CCD (Oxford Diffraction, 2007); data reduction: CrysAlis RED (Oxford Diffraction, 2007); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ATOMS (Dowty, 1995); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with atom labels and 50% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. Linking of the layers in the structure via van der Waals interactions.
Bis[2-(5-methylsulfanyl-1,3,4-oxadiazol-2-yl-κN3)phenolato- κO1]copper(II) top
Crystal data top
[Cu(C9H7N2O2S)2]F(000) = 486
Mr = 478.02Least Squares Treatment of 25 SET4 setting angles.
Monoclinic, P21/nDx = 1.709 Mg m3
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 12.5695 (7) ÅCell parameters from 2354 reflections
b = 4.4216 (3) Åθ = 3.3–31.6°
c = 17.3861 (9) ŵ = 1.44 mm1
β = 106.005 (6)°T = 170 K
V = 928.81 (9) Å3Plates, green
Z = 20.18 × 0.12 × 0.09 mm
Data collection top
Oxford Diffraction Xcalibur CCD
diffractometer
1906 independent reflections
Radiation source: Enhance (Mo) X-ray Source1250 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
Detector resolution: 18.4 pixels mm-1θmax = 26.4°, θmin = 3.4°
ω and φ scansh = 1515
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007)
k = 55
Tmin = 0.926, Tmax = 1.000l = 2114
6693 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.066H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.0283P)2]
where P = (Fo2 + 2Fc2)/3
1906 reflections(Δ/σ)max = 0.004
133 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
[Cu(C9H7N2O2S)2]V = 928.81 (9) Å3
Mr = 478.02Z = 2
Monoclinic, P21/nMo Kα radiation
a = 12.5695 (7) ŵ = 1.44 mm1
b = 4.4216 (3) ÅT = 170 K
c = 17.3861 (9) Å0.18 × 0.12 × 0.09 mm
β = 106.005 (6)°
Data collection top
Oxford Diffraction Xcalibur CCD
diffractometer
1906 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007)
1250 reflections with I > 2σ(I)
Tmin = 0.926, Tmax = 1.000Rint = 0.037
6693 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.066H-atom parameters constrained
S = 0.99Δρmax = 0.31 e Å3
1906 reflectionsΔρmin = 0.18 e Å3
133 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.500000.000001.000000.0381 (1)
S10.45296 (6)0.47186 (17)0.68566 (4)0.0455 (3)
O10.58495 (13)0.1114 (4)0.79047 (9)0.0362 (6)
O20.62190 (14)0.2686 (5)1.01766 (9)0.0506 (7)
N10.51554 (16)0.0936 (5)0.89257 (11)0.0347 (7)
N20.44837 (16)0.2890 (5)0.83525 (11)0.0387 (8)
C10.59434 (18)0.0065 (6)0.86434 (13)0.0315 (7)
C20.68113 (19)0.2153 (6)0.89831 (14)0.0326 (8)
C30.68883 (19)0.3359 (6)0.97479 (15)0.0356 (8)
C40.7755 (2)0.5413 (6)1.00571 (15)0.0424 (9)
C50.8503 (2)0.6167 (6)0.96422 (17)0.0474 (10)
C60.8424 (2)0.4940 (7)0.88955 (16)0.0455 (9)
C70.7584 (2)0.2969 (6)0.85724 (16)0.0429 (10)
C80.4933 (2)0.2903 (6)0.77720 (14)0.0346 (8)
C90.3251 (2)0.6276 (7)0.69352 (17)0.0602 (11)
H40.782300.628401.055500.0510*
H50.907100.752000.986600.0570*
H60.893500.545000.861900.0550*
H70.752200.215100.806900.0510*
H9A0.290800.740200.645900.0900*
H9B0.339100.759400.739100.0900*
H9C0.276800.466900.699800.0900*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0309 (2)0.0596 (3)0.0265 (2)0.0096 (2)0.0123 (2)0.0020 (3)
S10.0469 (4)0.0576 (5)0.0340 (4)0.0015 (4)0.0146 (3)0.0092 (4)
O10.0361 (10)0.0457 (11)0.0307 (9)0.0003 (8)0.0158 (8)0.0006 (8)
O20.0442 (11)0.0785 (14)0.0346 (10)0.0221 (10)0.0200 (9)0.0092 (11)
N10.0300 (11)0.0482 (14)0.0274 (11)0.0054 (10)0.0104 (9)0.0020 (10)
N20.0340 (12)0.0521 (15)0.0303 (12)0.0051 (11)0.0093 (10)0.0039 (11)
C10.0301 (12)0.0398 (14)0.0261 (12)0.0068 (14)0.0102 (10)0.0058 (14)
C20.0285 (13)0.0385 (15)0.0316 (13)0.0021 (11)0.0098 (11)0.0059 (12)
C30.0289 (13)0.0443 (16)0.0341 (14)0.0017 (12)0.0095 (11)0.0084 (13)
C40.0397 (15)0.0520 (19)0.0342 (13)0.0079 (13)0.0078 (12)0.0011 (14)
C50.0398 (16)0.0462 (17)0.0562 (19)0.0112 (13)0.0135 (14)0.0070 (15)
C60.0398 (14)0.0508 (17)0.0535 (16)0.0065 (15)0.0256 (13)0.0016 (17)
C70.0426 (16)0.0489 (18)0.0438 (16)0.0004 (14)0.0230 (13)0.0031 (14)
C80.0320 (14)0.0401 (16)0.0315 (14)0.0036 (12)0.0086 (12)0.0033 (12)
C90.060 (2)0.069 (2)0.0527 (19)0.0110 (16)0.0175 (16)0.0157 (16)
Geometric parameters (Å, º) top
Cu1—O21.896 (2)C2—C31.411 (3)
Cu1—N11.9746 (19)C2—C71.402 (4)
Cu1—O2i1.896 (2)C3—C41.406 (4)
Cu1—N1i1.9746 (19)C4—C51.375 (4)
S1—C81.729 (3)C5—C61.385 (4)
S1—C91.788 (3)C6—C71.365 (4)
O1—C11.361 (3)C4—H40.9300
O1—C81.364 (3)C5—H50.9300
O2—C31.303 (3)C6—H60.9300
N1—N21.410 (3)C7—H70.9300
N1—C11.298 (3)C9—H9A0.9600
N2—C81.285 (3)C9—H9B0.9600
C1—C21.427 (4)C9—H9C0.9600
Cu1···O2ii3.555 (2)C3···Cu1vi3.876 (3)
Cu1···C3ii3.876 (3)C3···N1vi3.381 (3)
Cu1···C4ii3.991 (3)C3···C1vi3.554 (4)
Cu1···O2iii3.555 (2)C3···Cu1iii3.876 (3)
Cu1···C3iii3.876 (3)C4···C2vi3.543 (4)
Cu1···C4iii3.991 (3)C4···Cu1vi3.991 (3)
S1···H6iv3.1400C4···C1vi3.517 (4)
S1···H4v3.0600C4···Cu1iii3.991 (3)
O1···N22.215 (3)C5···C7vi3.557 (4)
O1···C7ii3.399 (3)C5···C2vi3.391 (4)
O2···N2i2.928 (3)C7···O1vi3.399 (3)
O2···C12.839 (3)C7···C5ii3.557 (4)
O2···Cu1vi3.555 (2)C8···C1ii3.538 (4)
O2···N12.735 (3)C8···C2ii3.471 (4)
O2···Cu1iii3.555 (2)C9···N2x3.410 (3)
O2···N1i2.740 (3)C3···H9Aviii2.9300
O1···H6vii2.8200C4···H9Aviii2.7400
O1···H72.5000C8···H9Bvi3.0000
O2···H9Aviii2.6200C9···H9Cx2.9400
N1···O12.185 (3)H4···S1xi3.0600
N1···O22.735 (3)H4···H9Aviii2.3100
N1···C32.946 (3)H6···S1xii3.1400
N1···C3ii3.381 (3)H6···O1xiii2.8200
N1···O2i2.740 (3)H7···O12.5000
N2···O12.215 (3)H9A···O2xiv2.6200
N2···O2i2.928 (3)H9A···C3xiv2.9300
N2···C9ix3.410 (3)H9A···C4xiv2.7400
N2···H9C2.8300H9A···H4xiv2.3100
N2···H9B2.7800H9B···N22.7800
C1···C3ii3.554 (4)H9B···C8ii3.0000
C1···C4ii3.517 (4)H9B···H9Cx2.2200
C1···C8vi3.538 (4)H9C···N22.8300
C2···C4ii3.543 (4)H9C···C9ix2.9400
C2···C5ii3.391 (4)H9C···H9Bix2.2200
C2···C8vi3.471 (4)
O2—Cu1—N189.90 (8)C3—C4—C5121.7 (2)
O2—Cu1—O2i180.00C4—C5—C6121.0 (2)
O2—Cu1—N1i90.11 (8)C5—C6—C7118.9 (2)
O2i—Cu1—N190.11 (8)C2—C7—C6121.4 (2)
N1—Cu1—N1i180.00S1—C8—O1116.41 (17)
O2i—Cu1—N1i89.90 (8)S1—C8—N2130.1 (2)
C8—S1—C998.63 (13)O1—C8—N2113.5 (2)
C1—O1—C8103.37 (18)C3—C4—H4119.00
Cu1—O2—C3132.15 (16)C5—C4—H4119.00
Cu1—N1—N2126.93 (15)C4—C5—H5120.00
Cu1—N1—C1124.81 (17)C6—C5—H5119.00
N2—N1—C1108.19 (19)C5—C6—H6121.00
N1—N2—C8104.5 (2)C7—C6—H6121.00
O1—C1—N1110.5 (2)C2—C7—H7119.00
O1—C1—C2119.7 (2)C6—C7—H7119.00
N1—C1—C2129.8 (2)S1—C9—H9A109.00
C1—C2—C3118.7 (2)S1—C9—H9B109.00
C1—C2—C7120.9 (2)S1—C9—H9C109.00
C3—C2—C7120.4 (2)H9A—C9—H9B109.00
O2—C3—C2124.4 (2)H9A—C9—H9C110.00
O2—C3—C4118.9 (2)H9B—C9—H9C109.00
C2—C3—C4116.7 (2)
N1—Cu1—O2—C33.7 (2)Cu1—N1—C1—O1176.81 (15)
N1i—Cu1—O2—C3176.3 (2)N1—N2—C8—O10.2 (3)
O2—Cu1—N1—N2178.6 (2)N1—N2—C8—S1177.9 (2)
O2i—Cu1—N1—N21.4 (2)O1—C1—C2—C71.2 (4)
O2—Cu1—N1—C14.9 (2)N1—C1—C2—C7179.4 (3)
O2i—Cu1—N1—C1175.1 (2)O1—C1—C2—C3179.6 (2)
C9—S1—C8—O1173.0 (2)N1—C1—C2—C31.4 (4)
C9—S1—C8—N24.7 (3)C3—C2—C7—C60.2 (4)
C8—O1—C1—N10.1 (3)C1—C2—C3—C4179.8 (2)
C1—O1—C8—N20.1 (3)C1—C2—C7—C6179.3 (3)
C8—O1—C1—C2178.4 (2)C1—C2—C3—O20.4 (4)
C1—O1—C8—S1178.12 (18)C7—C2—C3—O2178.8 (2)
Cu1—O2—C3—C21.8 (4)C7—C2—C3—C41.0 (4)
Cu1—O2—C3—C4177.95 (18)O2—C3—C4—C5178.6 (2)
C1—N1—N2—C80.3 (3)C2—C3—C4—C51.2 (4)
Cu1—N1—N2—C8176.71 (18)C3—C4—C5—C60.5 (4)
N2—N1—C1—C2178.1 (3)C4—C5—C6—C70.3 (4)
N2—N1—C1—O10.2 (3)C5—C6—C7—C20.5 (4)
Cu1—N1—C1—C24.9 (4)
Symmetry codes: (i) x+1, y, z+2; (ii) x, y+1, z; (iii) x+1, y1, z+2; (iv) x+3/2, y+3/2, z+3/2; (v) x1/2, y1/2, z1/2; (vi) x, y1, z; (vii) x+3/2, y+1/2, z+3/2; (viii) x+1/2, y+1/2, z+1/2; (ix) x+1/2, y1/2, z+3/2; (x) x+1/2, y+1/2, z+3/2; (xi) x+1/2, y1/2, z+1/2; (xii) x+3/2, y3/2, z+3/2; (xiii) x+3/2, y1/2, z+3/2; (xiv) x1/2, y+1/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···O10.932.502.822 (3)100

Experimental details

Crystal data
Chemical formula[Cu(C9H7N2O2S)2]
Mr478.02
Crystal system, space groupMonoclinic, P21/n
Temperature (K)170
a, b, c (Å)12.5695 (7), 4.4216 (3), 17.3861 (9)
β (°) 106.005 (6)
V3)928.81 (9)
Z2
Radiation typeMo Kα
µ (mm1)1.44
Crystal size (mm)0.18 × 0.12 × 0.09
Data collection
DiffractometerOxford Diffraction Xcalibur CCD
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2007)
Tmin, Tmax0.926, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
6693, 1906, 1250
Rint0.037
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.066, 0.99
No. of reflections1906
No. of parameters133
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.31, 0.18

Computer programs: CrysAlis CCD (Oxford Diffraction, 2007), CrysAlis RED (Oxford Diffraction, 2007), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ATOMS (Dowty, 1995), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Selected bond lengths (Å) top
Cu1—O21.896 (2)Cu1—N11.9746 (19)
 

Acknowledgements

The authors thank the Algerian MESRS for financial support (PNR project).

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBeghidja, C., Bouslimani, N. & Welter, R. (2007). C. R. Acad. Sci. II C, 10, 590–597.  CAS Google Scholar
First citationBeghidja, C., Rogez, G., Kurtus, J., Wesolek, M. & Welter, R. (2006). J. Am. Chem. Soc. 128, 3140–3141.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBeghidja, C., Rogez, G. & Welter, R. (2007). New J. Chem. 31, 1403–1406.  Web of Science CSD CrossRef CAS Google Scholar
First citationBeghidja, C., Wesolek, M. & Welter, R. (2005). Inorg. Chim. Acta, 358, 3881–3888.  Web of Science CSD CrossRef CAS Google Scholar
First citationBouchameni, C., Beghidja, C., Beghidja, A., Rabu, P. & Welter, R. (2011). Polyhedron, 30, 1774–1778.  Web of Science CSD CrossRef CAS Google Scholar
First citationDolman, S., Gosselin, F., O'Shea, P. & Davies, I. (2006). J. Org. Chem. 71, 9548–9551.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDowty, E. (1995). ATOMS. Shape Software, Kingsport, Tennessee, USA.  Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationKala, U.-L., Suma, S., Prathapachandra Kurup, M.-R., Krishnan, S. & John, R.-P. (2007). Polyhedron, 26, 1427–1435.  Web of Science CSD CrossRef CAS Google Scholar
First citationLiu, H., Lu, Z. & Niu, D. (2008). J. Coord. Chem. 61, 4040–4046.  Web of Science CSD CrossRef CAS Google Scholar
First citationOxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYoung, R. & Wood, K. (1955). J. Am. Chem. Soc. 77, 400–403.  CrossRef CAS Web of Science Google Scholar
First citationZhang, L. Z., Bu, P.-Y., Wang, L.-J. & Cheng, P. (2001). Acta Cryst. C57, 1166–1167.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds