metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[[tetra­aqua­lanthanum(III)]-di-μ-isonicotinato-κ4O:O′] chloride]

aDepartment of Chemical and Life Science, Baise University, Baise 533000, People's Republic of China
*Correspondence e-mail: ben19812006@163.com

(Received 21 March 2012; accepted 19 June 2012; online 27 June 2012)

In the title compound, {[La(C6H4NO2)2(H2O)4]Cl}n, the LaIII atom lies on a twofold rotation axis and is eight-coordinated by four O atoms from four isonicotinate ligands and four water mol­ecules in a distorted square-anti­prismatic coodination environment. Adjacent LaIII atoms are bridged by two carboxyl­ate groups from two isonicotinate ligands, forming an extended chain along [001]. These chains are linked through O—H⋯N hydrogen bonds into a three-dimensional network with channels in which the chloride anions form O—H⋯Cl hydrogen bonds. Intra­chain O—H⋯O hydrogen bonds and ππ inter­actions [centroid–centroid distance = 3.908 (2) Å] are also observed.

Related literature

For lanthanide complexes with nicotinic acid, isonicotinic acid and isonicotinic acid N-oxide ligands, see: Cai et al. (2003[Cai, L.-Z., Wang, M.-S., Zhou, G.-W., Guo, G.-C., Mao, J.-G. & Huang, J.-S. (2003). Acta Cryst. E59, m249-m251.]); Chen & Fukuzumi (2009[Chen, W.-T. & Fukuzumi, S. (2009). Inorg. Chem. 48, 3800-3807.]); Cui et al. (1999[Cui, Y., Zheng, F.-K. & Huang, J.-S. (1999). Chem. Lett. pp. 281-282.]); Kay et al. (1972[Kay, J., Moore, J. W. & Glick, M. D. (1972). Inorg. Chem. 11, 2818-2827.]); Ma et al. (1996[Ma, J.-F., Hu, N.-H. & Ni, J.-Z. (1996). Polyhedron, 15, 1797-1799.], 1999[Ma, L., Evans, O. R., Foxman, B. M. & Lin, W. B. (1999). Inorg. Chem. 38, 5837-5840.]); Mao et al. (1998[Mao, J.-G., Zhang, H.-J., Ni, J.-Z., Wang, S.-B. & Mak, T. C. W. (1998). J. Chem. Crystallogr. 17, 3999-4009.]); Starynowicz (1991[Starynowicz, P. (1991). Acta Cryst. C47, 294-297.], 1993[Starynowicz, P. (1993). Acta Cryst. C49, 1895-1897.]); Wu et al. (2008[Wu, K.-J., Cai, L.-Z., Xu, G., Zhou, G.-W. & Guo, G.-C. (2008). Acta Cryst. E64, m56.]); Zeng et al. (2000[Zeng, X.-R., Xu, Y., Xiong, R.-G., Zhang, L.-J. & You, X.-Z. (2000). Acta Cryst. C56, e325-e326.]); Zhang et al. (1999[Zhang, X., Cui, Y., Zheng, F.-K. & Huang, J.-S. (1999). Chem. Lett. pp. 1111-1112.]).

[Scheme 1]

Experimental

Crystal data
  • [La(C6H4NO2)2(H2O)4]Cl

  • Mr = 490.63

  • Orthorhombic, P b c n

  • a = 8.987 (3) Å

  • b = 19.769 (3) Å

  • c = 10.305 (3) Å

  • V = 1830.8 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.52 mm−1

  • T = 296 K

  • 0.36 × 0.34 × 0.32 mm

Data collection
  • Bruker SMART 1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.464, Tmax = 0.500

  • 9336 measured reflections

  • 1652 independent reflections

  • 1442 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.025

  • wR(F2) = 0.058

  • S = 1.07

  • 1652 reflections

  • 110 parameters

  • H-atom parameters constrained

  • Δρmax = 0.46 e Å−3

  • Δρmin = −0.83 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3A⋯N1i 0.85 1.85 2.699 (4) 175
O3—H3B⋯Cl1ii 0.85 2.36 3.212 (2) 175
O4—H4C⋯O3iii 0.85 2.01 2.860 (3) 180
O4—H4D⋯Cl1 0.85 2.17 3.024 (3) 180
Symmetry codes: (i) [x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) x+1, y, z; (iii) -x+2, -y+2, -z+1.

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Much attention has been devoted to the research on lanthanide metal polynuclear compounds because of their magnetic and luminescent properties. Most of these types of compounds were synthesized by the reaction of rare-earth metal ions with bi- or multi-dentate ligands such as nicotinic acid (Kay et al., 1972; Ma, Hu et al., 1996; Starynowicz, 1991, 1993), isonicotinic acid (Chen & Fukuzumi, 2009; Ma, Evans et al., 1999; Wu et al., 2008; Zeng et al., 2000) and isonicotinic acid N-oxide (Mao et al., 1998). In the course of research in this area, our extended group has reported several such compounds with different bridging ligands (Cai et al., 2003; Cui et al., 1999; Zhang et al., 1999). Herein, we report the synthesis and crystal structure of a new lanthanum complex with isonicotinic ligand.

The title compound contains extended [La(C6H4NO2)2(H2O)4]n cationic chains and Cl- anions. The LaIII ion, lying on a twofold rotation axis, is eight-coordinated by four O atoms belonging to four different isonicotinic ligands [average La—O = 2.451 (3) Å] and four water molecules [average La—O = 2.563 (3) Å] (Fig. 1). The coordination geometry of the LaIII ion is best described as slightly distorted square-antiprismatic. The La atoms are bridged each other by two syn-syn µ-O:O'-carboxylate groups of the isonicotinic ligands, forming an extended chain along [0 0 1]. This geometry is similar to that found in [Eu(L)2(H2O)4]n.nH2O (L = isonicotinic acid N-oxide) (Mao et al., 1998) and [La(C6H4NO2)2(H2O)4](NO3) (Cai et al., 2003), but differs from those found in Ln(isonicotinate)3(H2O)2 (Ln = Ce, Pr, Nd, Sm, Eu, Tb) (Ma, Evans et al., 1999), in which the LnIII atoms are bridged by four syn-syn µ-O:O'-carboxylate groups of the isonicotinic ligands (Ln = Ce, Pr, Nd) or coordinated by both two syn-syn µ-O:O'-carboxylate groups and chelating carboxylate groups of the isonicotinic ligands (Ln = Sm, Eu, Tb). To the best of our knowledge, the arrangement in the present complex is rare in the lanthanide analogs.

There are three kinds of hydrogen bonds, O—H···Cl, O—H···O and O—H···N (Table 1). Interchain O—H···N hydrogen bonds between the coordinated water molecules and uncoordinated N atoms of the isonicotinate ligands link the cationic chains into a three-dimensional network with channels along [0 0 1], in which the chloride anions are located, as shown in Fig. 2, forming O—H···Cl hydrogen bonds. Intrachain O—H···O hydrogen bonds are also present. ππ stacking interactions exist between two adjacent isonicotinate ligands located in a same chain [centroid–centroid distance = 3.908 (2) Å].

Related literature top

For lanthanide complexes with nicotinic acid, isonicotinic acid and isonicotinic acid N-oxide ligands, see: Cai et al. (2003); Chen & Fukuzumi (2009); Cui et al. (1999); Kay et al. (1972); Ma, Evans et al. (1999); Ma, Hu et al. (1996); Mao et al. (1998); Starynowicz (1991, 1993); Wu et al. (2008); Zeng et al. (2000); Zhang et al. (1999).

Experimental top

LaCl3.7H2O (0.3174 g, 1 mmol), isonicotinic acid (0.2442 g, 2 mmol), NaOH (0.08 g, 2 mmol) were added to a mixture of water (15 ml) and ethanol (10 ml). The resulting mixture was stirred at 423 K for 4 h and filtered off. The filtrate was allowed to stand at room temperature and slow evaporation afforded colorless block crystals of the title complex (yield: 65%). Analysis, calculated for C12H16ClLaN2O8: C 29.38, N 5.71, H 3.29%; found: C 29.36, N 5.74, H 3.28%.

Refinement top

H atoms on C atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C). The water H atoms were located in difference Fourier maps and refined using a riding model, with O—H = 0.85 Å and Uiso(H) = 1.2Ueq(O).

Structure description top

Much attention has been devoted to the research on lanthanide metal polynuclear compounds because of their magnetic and luminescent properties. Most of these types of compounds were synthesized by the reaction of rare-earth metal ions with bi- or multi-dentate ligands such as nicotinic acid (Kay et al., 1972; Ma, Hu et al., 1996; Starynowicz, 1991, 1993), isonicotinic acid (Chen & Fukuzumi, 2009; Ma, Evans et al., 1999; Wu et al., 2008; Zeng et al., 2000) and isonicotinic acid N-oxide (Mao et al., 1998). In the course of research in this area, our extended group has reported several such compounds with different bridging ligands (Cai et al., 2003; Cui et al., 1999; Zhang et al., 1999). Herein, we report the synthesis and crystal structure of a new lanthanum complex with isonicotinic ligand.

The title compound contains extended [La(C6H4NO2)2(H2O)4]n cationic chains and Cl- anions. The LaIII ion, lying on a twofold rotation axis, is eight-coordinated by four O atoms belonging to four different isonicotinic ligands [average La—O = 2.451 (3) Å] and four water molecules [average La—O = 2.563 (3) Å] (Fig. 1). The coordination geometry of the LaIII ion is best described as slightly distorted square-antiprismatic. The La atoms are bridged each other by two syn-syn µ-O:O'-carboxylate groups of the isonicotinic ligands, forming an extended chain along [0 0 1]. This geometry is similar to that found in [Eu(L)2(H2O)4]n.nH2O (L = isonicotinic acid N-oxide) (Mao et al., 1998) and [La(C6H4NO2)2(H2O)4](NO3) (Cai et al., 2003), but differs from those found in Ln(isonicotinate)3(H2O)2 (Ln = Ce, Pr, Nd, Sm, Eu, Tb) (Ma, Evans et al., 1999), in which the LnIII atoms are bridged by four syn-syn µ-O:O'-carboxylate groups of the isonicotinic ligands (Ln = Ce, Pr, Nd) or coordinated by both two syn-syn µ-O:O'-carboxylate groups and chelating carboxylate groups of the isonicotinic ligands (Ln = Sm, Eu, Tb). To the best of our knowledge, the arrangement in the present complex is rare in the lanthanide analogs.

There are three kinds of hydrogen bonds, O—H···Cl, O—H···O and O—H···N (Table 1). Interchain O—H···N hydrogen bonds between the coordinated water molecules and uncoordinated N atoms of the isonicotinate ligands link the cationic chains into a three-dimensional network with channels along [0 0 1], in which the chloride anions are located, as shown in Fig. 2, forming O—H···Cl hydrogen bonds. Intrachain O—H···O hydrogen bonds are also present. ππ stacking interactions exist between two adjacent isonicotinate ligands located in a same chain [centroid–centroid distance = 3.908 (2) Å].

For lanthanide complexes with nicotinic acid, isonicotinic acid and isonicotinic acid N-oxide ligands, see: Cai et al. (2003); Chen & Fukuzumi (2009); Cui et al. (1999); Kay et al. (1972); Ma, Evans et al. (1999); Ma, Hu et al. (1996); Mao et al. (1998); Starynowicz (1991, 1993); Wu et al. (2008); Zeng et al. (2000); Zhang et al. (1999).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Part of the one-dimensional cationic chain of the title compound (Cl anions are not shown). Displacement ellipsoids are shown at the 30% probability level. [Symmetry codes: (i) 2-x, y, 1/2-z; (ii) 2-x, 2-y, -z; (iii) x, 2-y, 1/2+z.]
[Figure 2] Fig. 2. Packing diagram of the title compound. Yellow dashed lines represent ππ interactions and green dashed lines represent hydrogen bonds.
catena-Poly[[[tetraaqualanthanum(III)]-di-µ-isonicotinato- κ4O:O'] chloride] top
Crystal data top
[La(C6H4NO2)2(H2O)4]ClF(000) = 960
Mr = 490.63Dx = 1.780 Mg m3
Orthorhombic, PbcnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2n 2abCell parameters from 3778 reflections
a = 8.987 (3) Åθ = 2.5–28.3°
b = 19.769 (3) ŵ = 2.52 mm1
c = 10.305 (3) ÅT = 296 K
V = 1830.8 (9) Å3Block, colorless
Z = 40.36 × 0.34 × 0.32 mm
Data collection top
Bruker SMART 1000 CCD
diffractometer
1652 independent reflections
Radiation source: fine-focus sealed tube1442 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
φ and ω scansθmax = 25.2°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1010
Tmin = 0.464, Tmax = 0.500k = 1323
9336 measured reflectionsl = 1211
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.058H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0232P)2 + 2.6828P]
where P = (Fo2 + 2Fc2)/3
1652 reflections(Δ/σ)max = 0.001
110 parametersΔρmax = 0.46 e Å3
0 restraintsΔρmin = 0.83 e Å3
Crystal data top
[La(C6H4NO2)2(H2O)4]ClV = 1830.8 (9) Å3
Mr = 490.63Z = 4
Orthorhombic, PbcnMo Kα radiation
a = 8.987 (3) ŵ = 2.52 mm1
b = 19.769 (3) ÅT = 296 K
c = 10.305 (3) Å0.36 × 0.34 × 0.32 mm
Data collection top
Bruker SMART 1000 CCD
diffractometer
1652 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1442 reflections with I > 2σ(I)
Tmin = 0.464, Tmax = 0.500Rint = 0.029
9336 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0250 restraints
wR(F2) = 0.058H-atom parameters constrained
S = 1.07Δρmax = 0.46 e Å3
1652 reflectionsΔρmin = 0.83 e Å3
110 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O20.9557 (3)0.89408 (12)0.0984 (2)0.0408 (6)
La11.00001.011578 (11)0.25000.02190 (10)
O10.8975 (3)0.92871 (11)0.1000 (2)0.0377 (5)
O31.2552 (2)1.04958 (10)0.3400 (2)0.0352 (5)
H3A1.29171.08900.34830.042*
H3B1.32401.02280.31630.042*
C10.8975 (3)0.81153 (15)0.0573 (3)0.0260 (6)
C20.8242 (4)0.79557 (17)0.1717 (3)0.0374 (8)
H20.78840.82930.22620.045*
O40.7951 (3)0.95919 (14)0.3865 (2)0.0473 (6)
H4C0.78030.95660.46780.057*
H4D0.71230.95410.34800.057*
C30.9497 (4)0.75920 (16)0.0183 (3)0.0366 (8)
H31.00010.76810.09520.044*
N10.8541 (3)0.67750 (15)0.1297 (3)0.0466 (8)
C50.9265 (5)0.69354 (18)0.0216 (4)0.0500 (10)
H50.96330.65870.02970.060*
C60.8060 (5)0.7282 (2)0.2023 (4)0.0485 (9)
H60.75670.71760.27900.058*
C70.9186 (3)0.88401 (15)0.0168 (3)0.0270 (7)
Cl10.50000.94091 (8)0.25000.0543 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O20.0554 (15)0.0312 (12)0.0358 (13)0.0011 (11)0.0088 (11)0.0112 (10)
La10.02877 (15)0.01764 (15)0.01929 (14)0.0000.00134 (9)0.000
O10.0418 (13)0.0273 (12)0.0441 (13)0.0027 (10)0.0035 (11)0.0106 (10)
O30.0358 (12)0.0247 (11)0.0450 (12)0.0076 (9)0.0005 (10)0.0071 (10)
C10.0297 (16)0.0252 (16)0.0232 (14)0.0039 (13)0.0028 (12)0.0002 (12)
C20.048 (2)0.0331 (18)0.0316 (17)0.0037 (15)0.0086 (15)0.0009 (14)
O40.0318 (13)0.0836 (19)0.0265 (11)0.0182 (12)0.0036 (9)0.0118 (12)
C30.050 (2)0.0280 (17)0.0322 (17)0.0020 (15)0.0090 (15)0.0005 (14)
N10.0507 (19)0.0318 (16)0.057 (2)0.0095 (14)0.0008 (16)0.0117 (15)
C50.067 (3)0.0247 (18)0.058 (2)0.0007 (19)0.007 (2)0.0048 (17)
C60.053 (2)0.047 (2)0.045 (2)0.0104 (18)0.0123 (19)0.0156 (18)
C70.0253 (17)0.0245 (16)0.0312 (16)0.0026 (13)0.0032 (13)0.0012 (13)
Cl10.0349 (7)0.0595 (9)0.0687 (9)0.0000.0172 (6)0.000
Geometric parameters (Å, º) top
O2—C71.249 (4)C2—C61.379 (5)
La1—O12.433 (2)C2—H20.9300
La1—O2i2.465 (2)O4—H4C0.8500
La1—O42.538 (2)O4—H4D0.8500
La1—O32.585 (2)C3—C51.378 (5)
O1—C71.246 (4)C3—H30.9300
O3—H3A0.8500N1—C61.323 (5)
O3—H3B0.8500N1—C51.328 (5)
C1—C31.377 (4)C5—H50.9300
C1—C21.387 (4)C6—H60.9300
C1—C71.504 (4)
C7—O2—La1ii140.0 (2)O3—La1—O3iii146.21 (10)
O1—La1—O1iii95.35 (11)C7—O1—La1149.0 (2)
O1—La1—O2i148.28 (8)La1—O3—H3A130.2
O1iii—La1—O2i99.69 (8)La1—O3—H3B111.2
O1—La1—O2ii99.69 (8)H3A—O3—H3B108.5
O1iii—La1—O2ii148.28 (8)C3—C1—C2118.1 (3)
O2i—La1—O2ii81.66 (11)C3—C1—C7121.0 (3)
O1—La1—O478.60 (8)C2—C1—C7120.8 (3)
O1iii—La1—O469.39 (8)C6—C2—C1118.1 (3)
O2i—La1—O480.82 (8)C6—C2—H2121.0
O2ii—La1—O4141.00 (8)C1—C2—H2121.0
O1—La1—O4iii69.39 (8)La1—O4—H4C133.2
O1iii—La1—O4iii78.60 (8)La1—O4—H4D115.2
O2i—La1—O4iii141.00 (8)H4C—O4—H4D108.4
O2ii—La1—O4iii80.82 (8)C1—C3—C5119.2 (3)
O4—La1—O4iii131.82 (13)C1—C3—H3120.4
O1—La1—O3139.41 (7)C5—C3—H3120.4
O1iii—La1—O368.40 (7)C6—N1—C5117.0 (3)
O2i—La1—O372.31 (8)N1—C5—C3123.4 (3)
O2ii—La1—O382.19 (8)N1—C5—H5118.3
O4—La1—O3124.28 (7)C3—C5—H5118.3
O4iii—La1—O370.97 (7)N1—C6—C2124.3 (3)
O1—La1—O3iii68.40 (7)N1—C6—H6117.8
O1iii—La1—O3iii139.41 (7)C2—C6—H6117.8
O2i—La1—O3iii82.19 (8)O1—C7—O2125.6 (3)
O2ii—La1—O3iii72.31 (8)O1—C7—C1117.7 (3)
O4—La1—O3iii70.97 (7)O2—C7—C1116.7 (3)
O4iii—La1—O3iii124.28 (7)
Symmetry codes: (i) x, y+2, z+1/2; (ii) x+2, y+2, z; (iii) x+2, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···N1iv0.851.852.699 (4)175
O3—H3B···Cl1v0.852.363.212 (2)175
O4—H4C···O3vi0.852.012.860 (3)180
O4—H4D···Cl10.852.173.024 (3)180
Symmetry codes: (iv) x+1/2, y+1/2, z+1/2; (v) x+1, y, z; (vi) x+2, y+2, z+1.

Experimental details

Crystal data
Chemical formula[La(C6H4NO2)2(H2O)4]Cl
Mr490.63
Crystal system, space groupOrthorhombic, Pbcn
Temperature (K)296
a, b, c (Å)8.987 (3), 19.769 (3), 10.305 (3)
V3)1830.8 (9)
Z4
Radiation typeMo Kα
µ (mm1)2.52
Crystal size (mm)0.36 × 0.34 × 0.32
Data collection
DiffractometerBruker SMART 1000 CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.464, 0.500
No. of measured, independent and
observed [I > 2σ(I)] reflections
9336, 1652, 1442
Rint0.029
(sin θ/λ)max1)0.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.058, 1.07
No. of reflections1652
No. of parameters110
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.46, 0.83

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 1999), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···N1i0.851.852.699 (4)175
O3—H3B···Cl1ii0.852.363.212 (2)175
O4—H4C···O3iii0.852.012.860 (3)180
O4—H4D···Cl10.852.173.024 (3)180
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+1, y, z; (iii) x+2, y+2, z+1.
 

References

First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCai, L.-Z., Wang, M.-S., Zhou, G.-W., Guo, G.-C., Mao, J.-G. & Huang, J.-S. (2003). Acta Cryst. E59, m249–m251.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChen, W.-T. & Fukuzumi, S. (2009). Inorg. Chem. 48, 3800–3807.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationCui, Y., Zheng, F.-K. & Huang, J.-S. (1999). Chem. Lett. pp. 281–282.  CSD CrossRef Google Scholar
First citationKay, J., Moore, J. W. & Glick, M. D. (1972). Inorg. Chem. 11, 2818–2827.  CSD CrossRef CAS Web of Science Google Scholar
First citationMa, L., Evans, O. R., Foxman, B. M. & Lin, W. B. (1999). Inorg. Chem. 38, 5837–5840.  Web of Science CSD CrossRef CAS Google Scholar
First citationMa, J.-F., Hu, N.-H. & Ni, J.-Z. (1996). Polyhedron, 15, 1797–1799.  Google Scholar
First citationMao, J.-G., Zhang, H.-J., Ni, J.-Z., Wang, S.-B. & Mak, T. C. W. (1998). J. Chem. Crystallogr. 17, 3999–4009.  CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStarynowicz, P. (1991). Acta Cryst. C47, 294–297.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationStarynowicz, P. (1993). Acta Cryst. C49, 1895–1897.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationWu, K.-J., Cai, L.-Z., Xu, G., Zhou, G.-W. & Guo, G.-C. (2008). Acta Cryst. E64, m56.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZeng, X.-R., Xu, Y., Xiong, R.-G., Zhang, L.-J. & You, X.-Z. (2000). Acta Cryst. C56, e325–e326.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationZhang, X., Cui, Y., Zheng, F.-K. & Huang, J.-S. (1999). Chem. Lett. pp. 1111–1112.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds