metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[(1,10-phenanthroline-κ2N,N′)lanthanum(III)]-μ-(5-bromo-2-hy­dr­oxy­benzoato)-κ2O1:O1′-di-μ-chlorido]

aCollege of Environment and Chemical Engineering, Xi'an Polytechnic University, Xi'an, Shaanxi 710048, People's Republic of China
*Correspondence e-mail: wqzhu2008@163.com

(Received 14 May 2012; accepted 5 June 2012; online 13 June 2012)

In the title complex, [La(C7H4BrO3)Cl2(C12H8N2)]n, the LaIII ion is eight-coordinated by two carboxyl­ate O atoms from two 5-bromo­salicylate ligands, two N atoms from a chelating 1,10-phenanthroline ligand and four bridging Cl atoms in a distorted square-anti­prismatic geometry. The LaIII ions are linked by bridging carboxyl­ate groups and chloride anions into a chain along [100]. An intra­molecular O—H⋯O hydrogen bond is formed in the 5-bromo­salicylate ligand. ππ inter­actions between the pyridine and benzene rings and between the benzene rings are observed [centroid–centroid distances = 3.794 (5) and 3.804 (4) Å].

Related literature

For background to rare earth carboxyl­ates, see: Ali et al. (2004[Ali, H. M., Khamis, N. A. & Yamin, B. M. (2004). Acta Cryst. E60, m1708-m1709.]); Costes et al. (2002[Costes, J.-P., Clemente-Juan, J. M., Dahan, F., Nicodème, F. & Verelst, M. (2002). Angew. Chem. Int. Ed. 41, 323-325.]); Kaur et al. (2010[Kaur, G., Dwivedi, Y. & Rai, S. B. (2010). Opt. Commun. 283, 3441-3447.]); Yin & Sun (2004[Yin, M.-C. & Sun, J.-T. (2004). J. Alloys Compd, 381, 50-57.]). For complexes with salicylate ligands, see: Hu et al. (2005[Hu, M., Geng, C., Li, S., Du, Y., Jiang, Y. & Liu, Z. (2005). J. Organomet. Chem. 690, 3118-3124.]); Yin et al. (2004[Yin, M.-C., Ai, C.-C., Yuan, L.-J., Wang, C.-W. & Sun, J.-T. (2004). J. Mol. Struct. 691, 33-37.]).

[Scheme 1]

Experimental

Crystal data
  • [La(C7H4BrO3)Cl2(C12H8N2)]

  • Mr = 606.02

  • Orthorhombic, P b c a

  • a = 8.2957 (10) Å

  • b = 22.104 (3) Å

  • c = 22.110 (3) Å

  • V = 4054.3 (9) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 4.36 mm−1

  • T = 296 K

  • 0.30 × 0.24 × 0.14 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.352, Tmax = 0.584

  • 19025 measured reflections

  • 3598 independent reflections

  • 2849 reflections with I > 2σ(I)

  • Rint = 0.065

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.125

  • S = 1.00

  • 3598 reflections

  • 254 parameters

  • H-atom parameters constrained

  • Δρmax = 1.20 e Å−3

  • Δρmin = −1.34 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O2 0.82 1.93 2.588 (6) 137

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Over the past years, much attention has been paid to the rare earth carboxylates, owing to their novel structures and potential applications in a wide range of materials science, such as superconductor, magnetic materials and luminescent probes (Ali et al., 2004; Costes et al., 2002; Kaur et al., 2010; Yin & Sun, 2004). Because salicylic acid and its derivatives have been known for a long time to possess anti-inflammatory activity and have also been considered of interest from a structural point of view (Hu et al., 2005; Yin et al., 2004), a new lanthanum bromosalicylate complex was synthesized and its crystal structure is reported here.

Related literature top

For background to rare earth carboxylates, see: Ali et al. (2004); Costes et al. (2002); Kaur et al. (2010); Yin & Sun (2004). For complexes with salicylate ligands, see: Hu et al. (2005); Yin et al. (2004).

Experimental top

An ethanol solution (5 ml) of LaCl3.6H2O (0.5 mmol, 0.177 g) was added dropwise to an ethanol solution (5 ml) of 5-bromosalicylic acid (0.5 mmol, 0.109 g) under stirring and then an ethanol solution (5 ml) of 1,10-phenanthroline (0.5 mmol, 0.084 g) was added dropwise. The mixture was stirred for about 13 min at room temperature and sealed in a Teflon-lined stainless autoclave and heated to 120°C for 60 h. After filtered, colorless flake-shaped crystals were obtained.

Refinement top

H atoms were positioned geometrically and refined as riding atoms, with O—H = 0.82 and C—H = 0.93 Å and with Uiso(H) = 1.2Ueq(C) and 1.5Ueq(O). The highest residual electron density was found 1.20 Å from Br1 atom and the deepest hole 1.34 Å from La1 atom.

Structure description top

Over the past years, much attention has been paid to the rare earth carboxylates, owing to their novel structures and potential applications in a wide range of materials science, such as superconductor, magnetic materials and luminescent probes (Ali et al., 2004; Costes et al., 2002; Kaur et al., 2010; Yin & Sun, 2004). Because salicylic acid and its derivatives have been known for a long time to possess anti-inflammatory activity and have also been considered of interest from a structural point of view (Hu et al., 2005; Yin et al., 2004), a new lanthanum bromosalicylate complex was synthesized and its crystal structure is reported here.

For background to rare earth carboxylates, see: Ali et al. (2004); Costes et al. (2002); Kaur et al. (2010); Yin & Sun (2004). For complexes with salicylate ligands, see: Hu et al. (2005); Yin et al. (2004).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity. [Symmetry codes: (a) x + 1/2, -y + 1/2, -z + 1; (b) x - 1/2, -y + 1/2, -z + 1.]
[Figure 2] Fig. 2. The one-dimensional chain structure in the title compound. Hydrogen bonds are shown as dashed lines.
catena-Poly[[(1,10-phenanthroline- κ2N,N')lanthanum(III)]-µ-(5-bromo-2-hydroxybenzoato)- κ2O1:O1'-di-µ-chlorido] top
Crystal data top
[La(C7H4BrO3)Cl2(C12H8N2)]F(000) = 2320
Mr = 606.02Dx = 1.986 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 3026 reflections
a = 8.2957 (10) Åθ = 2.6–24.6°
b = 22.104 (3) ŵ = 4.36 mm1
c = 22.110 (3) ÅT = 296 K
V = 4054.3 (9) Å3Flake, colorless
Z = 80.30 × 0.24 × 0.14 mm
Data collection top
Bruker APEXII CCD
diffractometer
3598 independent reflections
Radiation source: fine-focus sealed tube2849 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.065
φ and ω scansθmax = 25.1°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 97
Tmin = 0.352, Tmax = 0.584k = 2626
19025 measured reflectionsl = 2626
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.125H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.080P)2 + 0.7837P]
where P = (Fo2 + 2Fc2)/3
3598 reflections(Δ/σ)max = 0.002
254 parametersΔρmax = 1.20 e Å3
0 restraintsΔρmin = 1.34 e Å3
Crystal data top
[La(C7H4BrO3)Cl2(C12H8N2)]V = 4054.3 (9) Å3
Mr = 606.02Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 8.2957 (10) ŵ = 4.36 mm1
b = 22.104 (3) ÅT = 296 K
c = 22.110 (3) Å0.30 × 0.24 × 0.14 mm
Data collection top
Bruker APEXII CCD
diffractometer
3598 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2849 reflections with I > 2σ(I)
Tmin = 0.352, Tmax = 0.584Rint = 0.065
19025 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.125H-atom parameters constrained
S = 1.00Δρmax = 1.20 e Å3
3598 reflectionsΔρmin = 1.34 e Å3
254 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
La10.78367 (4)0.242463 (15)0.537359 (15)0.02456 (15)
Br10.86777 (13)0.05046 (5)0.66282 (5)0.0877 (4)
Cl10.57034 (19)0.18099 (7)0.45631 (7)0.0352 (4)
Cl20.46216 (18)0.27765 (8)0.57361 (7)0.0365 (4)
N10.6683 (7)0.1654 (3)0.6202 (2)0.0401 (14)
N20.8088 (7)0.2724 (3)0.6548 (2)0.0396 (14)
O10.9829 (5)0.16436 (19)0.5594 (2)0.0389 (11)
O21.2182 (5)0.1607 (2)0.5117 (2)0.0423 (12)
O31.3579 (7)0.0573 (2)0.4954 (3)0.0615 (15)
H31.32820.08990.48180.092*
C10.5984 (9)0.1136 (3)0.6047 (4)0.0510 (19)
H10.59070.10480.56370.061*
C20.5357 (10)0.0711 (4)0.6451 (4)0.067 (2)
H20.49110.03490.63170.080*
C30.5428 (11)0.0852 (5)0.7052 (4)0.075 (3)
H3A0.50010.05850.73340.090*
C40.6131 (10)0.1391 (4)0.7249 (3)0.059 (2)
C50.6262 (12)0.1591 (5)0.7881 (3)0.082 (3)
H50.58530.13410.81840.098*
C60.6954 (12)0.2124 (5)0.8043 (4)0.077 (3)
H60.70220.22280.84500.093*
C70.7564 (11)0.2516 (4)0.7606 (4)0.056 (2)
C80.8293 (11)0.3067 (4)0.7754 (4)0.065 (2)
H80.83830.31820.81570.078*
C90.8855 (11)0.3424 (4)0.7323 (4)0.062 (2)
H90.93320.37920.74190.074*
C100.8721 (9)0.3240 (3)0.6727 (3)0.0482 (19)
H100.91070.35010.64310.058*
C110.7488 (9)0.2351 (3)0.6985 (3)0.0417 (17)
C120.6755 (8)0.1795 (3)0.6812 (3)0.0417 (17)
C131.0177 (9)0.0158 (3)0.6085 (3)0.0481 (18)
C141.1393 (10)0.0516 (3)0.5865 (4)0.056 (2)
H141.14650.09220.59710.067*
C151.2497 (11)0.0257 (4)0.5485 (4)0.060 (2)
H151.33230.04960.53310.072*
C161.2430 (9)0.0348 (3)0.5321 (3)0.0442 (18)
C171.1162 (8)0.0710 (3)0.5553 (3)0.0316 (14)
C181.0040 (8)0.0436 (3)0.5932 (3)0.0397 (16)
H180.91850.06620.60830.048*
C191.1035 (8)0.1364 (3)0.5407 (3)0.0352 (15)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
La10.0211 (2)0.0260 (2)0.0266 (2)0.00183 (13)0.00042 (14)0.00254 (13)
Br10.0732 (7)0.0716 (7)0.1182 (9)0.0105 (5)0.0171 (6)0.0530 (6)
Cl10.0248 (8)0.0350 (9)0.0459 (9)0.0010 (6)0.0002 (7)0.0084 (7)
Cl20.0264 (8)0.0551 (10)0.0282 (8)0.0097 (7)0.0002 (6)0.0023 (7)
N10.031 (3)0.045 (3)0.044 (3)0.003 (3)0.000 (3)0.012 (3)
N20.032 (3)0.052 (4)0.035 (3)0.011 (3)0.001 (2)0.004 (3)
O10.034 (3)0.039 (3)0.043 (3)0.012 (2)0.009 (2)0.012 (2)
O20.031 (3)0.032 (3)0.064 (3)0.001 (2)0.010 (2)0.018 (2)
O30.051 (3)0.045 (3)0.088 (4)0.017 (3)0.032 (3)0.013 (3)
C10.051 (5)0.048 (4)0.054 (4)0.001 (4)0.003 (4)0.013 (4)
C20.059 (6)0.061 (5)0.081 (6)0.013 (4)0.005 (5)0.032 (5)
C30.059 (6)0.095 (7)0.071 (6)0.014 (5)0.005 (5)0.050 (5)
C40.046 (5)0.077 (6)0.054 (5)0.007 (4)0.011 (4)0.030 (4)
C50.077 (7)0.137 (10)0.032 (5)0.018 (7)0.012 (4)0.044 (5)
C60.076 (7)0.111 (9)0.044 (5)0.008 (6)0.004 (5)0.010 (6)
C70.057 (6)0.085 (7)0.027 (4)0.026 (4)0.002 (4)0.010 (4)
C80.074 (6)0.079 (7)0.043 (5)0.020 (5)0.020 (4)0.022 (5)
C90.071 (6)0.068 (6)0.045 (5)0.013 (5)0.016 (4)0.011 (4)
C100.046 (5)0.055 (5)0.043 (4)0.008 (4)0.002 (3)0.013 (3)
C110.031 (4)0.058 (5)0.036 (4)0.016 (3)0.000 (3)0.005 (3)
C120.023 (3)0.064 (5)0.038 (4)0.017 (3)0.007 (3)0.018 (3)
C130.047 (5)0.039 (4)0.058 (5)0.008 (3)0.002 (4)0.014 (3)
C140.060 (5)0.032 (4)0.076 (6)0.000 (4)0.000 (5)0.010 (4)
C150.063 (5)0.033 (4)0.084 (6)0.020 (4)0.000 (5)0.004 (4)
C160.038 (4)0.032 (4)0.062 (5)0.004 (3)0.001 (4)0.004 (3)
C170.030 (4)0.024 (3)0.041 (4)0.002 (3)0.007 (3)0.002 (3)
C180.034 (4)0.036 (4)0.048 (4)0.001 (3)0.001 (3)0.010 (3)
C190.032 (4)0.037 (4)0.037 (4)0.004 (3)0.007 (3)0.002 (3)
Geometric parameters (Å, º) top
La1—O12.439 (4)C3—H3A0.9300
La1—O2i2.461 (4)C4—C121.415 (10)
La1—N12.678 (5)C4—C51.469 (12)
La1—N22.687 (6)C5—C61.359 (14)
La1—Cl12.8618 (16)C5—H50.9300
La1—Cl22.8915 (16)C6—C71.393 (14)
La1—Cl2ii2.9001 (16)C6—H60.9300
La1—Cl1ii2.9219 (16)C7—C81.397 (12)
Br1—C131.891 (7)C7—C111.422 (11)
Cl1—La1i2.9219 (16)C8—C91.321 (12)
Cl2—La1i2.9001 (16)C8—H80.9300
N1—C11.328 (9)C9—C101.383 (10)
N1—C121.386 (9)C9—H90.9300
N2—C101.317 (9)C10—H100.9300
N2—C111.365 (10)C11—C121.424 (11)
O1—C191.246 (8)C13—C181.361 (9)
O2—C191.266 (8)C13—C141.369 (10)
O2—La1ii2.461 (4)C14—C151.368 (12)
O3—C161.348 (9)C14—H140.9300
O3—H30.8200C15—C161.386 (12)
C1—C21.395 (10)C15—H150.9300
C1—H10.9300C16—C171.418 (9)
C2—C31.365 (13)C17—C181.392 (9)
C2—H20.9300C17—C191.485 (8)
C3—C41.396 (13)C18—H180.9300
O1—La1—O2i148.59 (15)C3—C4—C12118.5 (8)
O1—La1—N169.84 (15)C3—C4—C5125.7 (8)
O2i—La1—N1140.90 (16)C12—C4—C5115.7 (9)
O1—La1—N285.91 (16)C6—C5—C4122.8 (8)
O2i—La1—N2103.23 (17)C6—C5—H5118.6
N1—La1—N261.55 (19)C4—C5—H5118.6
O1—La1—Cl1102.01 (12)C5—C6—C7120.7 (9)
O2i—La1—Cl190.03 (11)C5—C6—H6119.6
N1—La1—Cl184.55 (13)C7—C6—H6119.6
N2—La1—Cl1140.34 (13)C6—C7—C8122.5 (9)
O1—La1—Cl2139.46 (11)C6—C7—C11119.6 (9)
O2i—La1—Cl271.62 (11)C8—C7—C11117.8 (8)
N1—La1—Cl269.63 (12)C9—C8—C7120.4 (8)
N2—La1—Cl274.78 (12)C9—C8—H8119.8
Cl1—La1—Cl274.39 (4)C7—C8—H8119.8
O1—La1—Cl2ii73.42 (11)C8—C9—C10118.8 (8)
O2i—La1—Cl2ii82.71 (12)C8—C9—H9120.6
N1—La1—Cl2ii131.57 (13)C10—C9—H9120.6
N2—La1—Cl2ii144.64 (13)N2—C10—C9125.0 (8)
Cl1—La1—Cl2ii73.33 (4)N2—C10—H10117.5
Cl2—La1—Cl2ii138.31 (4)C9—C10—H10117.5
O1—La1—Cl1ii81.30 (11)N2—C11—C7120.9 (8)
O2i—La1—Cl1ii72.36 (11)N2—C11—C12119.0 (7)
N1—La1—Cl1ii128.79 (13)C7—C11—C12120.0 (7)
N2—La1—Cl1ii75.41 (13)N1—C12—C4120.5 (7)
Cl1—La1—Cl1ii143.93 (3)N1—C12—C11118.4 (6)
Cl2—La1—Cl1ii125.57 (5)C4—C12—C11121.1 (7)
Cl2ii—La1—Cl1ii73.37 (4)C18—C13—C14122.0 (7)
La1—Cl1—La1i101.44 (5)C18—C13—Br1119.5 (6)
La1—Cl2—La1i101.25 (5)C14—C13—Br1118.4 (5)
C1—N1—C12117.6 (6)C15—C14—C13118.0 (7)
C1—N1—La1121.9 (5)C15—C14—H14121.0
C12—N1—La1120.4 (4)C13—C14—H14121.0
C10—N2—C11117.0 (7)C14—C15—C16122.4 (8)
C10—N2—La1122.4 (5)C14—C15—H15118.8
C11—N2—La1120.6 (5)C16—C15—H15118.8
C19—O1—La1146.0 (4)O3—C16—C15119.0 (7)
C19—O2—La1ii139.2 (4)O3—C16—C17122.2 (6)
C16—O3—H3109.5C15—C16—C17118.7 (8)
N1—C1—C2125.3 (8)C18—C17—C16117.9 (6)
N1—C1—H1117.4C18—C17—C19120.5 (6)
C2—C1—H1117.4C16—C17—C19121.7 (6)
C3—C2—C1116.9 (8)C13—C18—C17120.9 (7)
C3—C2—H2121.5C13—C18—H18119.5
C1—C2—H2121.5C17—C18—H18119.5
C2—C3—C4121.1 (8)O1—C19—O2124.2 (6)
C2—C3—H3A119.5O1—C19—C17117.9 (6)
C4—C3—H3A119.5O2—C19—C17117.9 (6)
O1—La1—Cl1—La1i161.75 (11)C2—C3—C4—C5179.5 (9)
O2i—La1—Cl1—La1i47.48 (12)C3—C4—C5—C6179.6 (10)
N1—La1—Cl1—La1i93.73 (13)C12—C4—C5—C60.9 (14)
N2—La1—Cl1—La1i63.6 (2)C4—C5—C6—C70.9 (16)
Cl2—La1—Cl1—La1i23.40 (5)C5—C6—C7—C8179.7 (10)
Cl2ii—La1—Cl1—La1i129.86 (6)C5—C6—C7—C111.2 (14)
Cl1ii—La1—Cl1—La1i106.56 (8)C6—C7—C8—C9180.0 (9)
O1—La1—Cl2—La1i113.89 (18)C11—C7—C8—C91.5 (13)
O2i—La1—Cl2—La1i71.80 (13)C7—C8—C9—C100.6 (13)
N1—La1—Cl2—La1i113.49 (14)C11—N2—C10—C91.6 (11)
N2—La1—Cl2—La1i178.30 (15)La1—N2—C10—C9178.7 (6)
Cl1—La1—Cl2—La1i23.57 (5)C8—C9—C10—N21.0 (13)
Cl2ii—La1—Cl2—La1i16.84 (4)C10—N2—C11—C70.5 (10)
Cl1ii—La1—Cl2—La1i122.73 (5)La1—N2—C11—C7177.7 (5)
O1—La1—N1—C184.2 (5)C10—N2—C11—C12178.4 (6)
O2i—La1—N1—C1104.1 (6)La1—N2—C11—C121.2 (8)
N2—La1—N1—C1179.4 (6)C6—C7—C11—N2179.5 (8)
Cl1—La1—N1—C120.8 (5)C8—C7—C11—N20.9 (12)
Cl2—La1—N1—C196.1 (5)C6—C7—C11—C121.6 (12)
Cl2ii—La1—N1—C141.2 (6)C8—C7—C11—C12179.9 (7)
Cl1ii—La1—N1—C1144.0 (5)C1—N1—C12—C41.2 (9)
O1—La1—N1—C1297.8 (5)La1—N1—C12—C4179.3 (5)
O2i—La1—N1—C1273.9 (5)C1—N1—C12—C11179.5 (6)
N2—La1—N1—C121.4 (4)La1—N1—C12—C111.4 (8)
Cl1—La1—N1—C12157.2 (5)C3—C4—C12—N10.7 (11)
Cl2—La1—N1—C1281.9 (4)C5—C4—C12—N1179.5 (7)
Cl2ii—La1—N1—C12140.8 (4)C3—C4—C12—C11179.9 (7)
Cl1ii—La1—N1—C1238.0 (5)C5—C4—C12—C111.3 (11)
O1—La1—N2—C10112.4 (5)N2—C11—C12—N10.2 (10)
O2i—La1—N2—C1037.2 (5)C7—C11—C12—N1179.1 (6)
N1—La1—N2—C10178.4 (6)N2—C11—C12—C4179.4 (6)
Cl1—La1—N2—C10143.7 (5)C7—C11—C12—C41.7 (11)
Cl2—La1—N2—C10103.6 (5)C18—C13—C14—C150.5 (12)
Cl2ii—La1—N2—C1058.9 (6)Br1—C13—C14—C15178.3 (6)
Cl1ii—La1—N2—C1030.3 (5)C13—C14—C15—C160.5 (13)
O1—La1—N2—C1170.6 (5)C14—C15—C16—O3178.7 (8)
O2i—La1—N2—C11139.9 (5)C14—C15—C16—C170.5 (13)
N1—La1—N2—C111.3 (5)O3—C16—C17—C18179.6 (7)
Cl1—La1—N2—C1133.4 (6)C15—C16—C17—C180.4 (10)
Cl2—La1—N2—C1173.4 (5)O3—C16—C17—C190.6 (11)
Cl2ii—La1—N2—C11124.0 (5)C15—C16—C17—C19178.6 (7)
Cl1ii—La1—N2—C11152.6 (5)C14—C13—C18—C171.4 (11)
O2i—La1—O1—C1932.9 (9)Br1—C13—C18—C17177.4 (5)
N1—La1—O1—C19157.1 (8)C16—C17—C18—C131.3 (10)
N2—La1—O1—C19141.8 (8)C19—C17—C18—C13177.7 (6)
Cl1—La1—O1—C1977.5 (8)La1—O1—C19—O239.6 (12)
Cl2—La1—O1—C19157.5 (7)La1—O1—C19—C17142.6 (6)
Cl2ii—La1—O1—C199.2 (8)La1ii—O2—C19—O19.6 (11)
Cl1ii—La1—O1—C1965.9 (8)La1ii—O2—C19—C17172.6 (4)
C12—N1—C1—C22.0 (11)C18—C17—C19—O15.8 (9)
La1—N1—C1—C2179.9 (6)C16—C17—C19—O1175.2 (6)
N1—C1—C2—C32.1 (13)C18—C17—C19—O2172.2 (6)
C1—C2—C3—C41.4 (14)C16—C17—C19—O26.8 (9)
C2—C3—C4—C120.8 (13)
Symmetry codes: (i) x1/2, y+1/2, z+1; (ii) x+1/2, y+1/2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O20.821.932.588 (6)137

Experimental details

Crystal data
Chemical formula[La(C7H4BrO3)Cl2(C12H8N2)]
Mr606.02
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)296
a, b, c (Å)8.2957 (10), 22.104 (3), 22.110 (3)
V3)4054.3 (9)
Z8
Radiation typeMo Kα
µ (mm1)4.36
Crystal size (mm)0.30 × 0.24 × 0.14
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.352, 0.584
No. of measured, independent and
observed [I > 2σ(I)] reflections
19025, 3598, 2849
Rint0.065
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.125, 1.00
No. of reflections3598
No. of parameters254
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.20, 1.34

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 1999) and Mercury (Macrae et al., 2006), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O20.821.932.588 (6)137
 

Acknowledgements

This project was supported by the Shaanxi Science Research Project (No. 2011 K07–23), the Scientific Research Special Plan of Shaanxi Department of Education (No. 11 J K0566) and the Foundation of Xi'an Polytechnic University (No. BS1013).

References

First citationAli, H. M., Khamis, N. A. & Yamin, B. M. (2004). Acta Cryst. E60, m1708–m1709.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCostes, J.-P., Clemente-Juan, J. M., Dahan, F., Nicodème, F. & Verelst, M. (2002). Angew. Chem. Int. Ed. 41, 323–325.  Web of Science CSD CrossRef CAS Google Scholar
First citationHu, M., Geng, C., Li, S., Du, Y., Jiang, Y. & Liu, Z. (2005). J. Organomet. Chem. 690, 3118–3124.  Web of Science CSD CrossRef CAS Google Scholar
First citationKaur, G., Dwivedi, Y. & Rai, S. B. (2010). Opt. Commun. 283, 3441–3447.  Web of Science CrossRef CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYin, M.-C., Ai, C.-C., Yuan, L.-J., Wang, C.-W. & Sun, J.-T. (2004). J. Mol. Struct. 691, 33–37.  Web of Science CSD CrossRef CAS Google Scholar
First citationYin, M.-C. & Sun, J.-T. (2004). J. Alloys Compd, 381, 50–57.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds