metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(Methanol-κO)(methano­lato-κO)oxido[N-(2-oxido­benzyl­­idene)isoleucinato-κ3O,N,O′]vanadium(V)

aResearch Center of Medical Chemistry and Chemical Biology, Chongqing Technology and Business University, Chongqing 400067, People's Republic of China, and bSchool of Chemistry and Chemical Engineering, Liaocheng University, Shandong 252059, People's Republic of China
*Correspondence e-mail: chengyuanw@yahoo.cn

(Received 30 May 2012; accepted 21 June 2012; online 30 June 2012)

In the title complex, [V(C13H15NO3)O(CH3O)(CH3OH)], the VV atom is six-coordinated by a tridentate O,N,O′-donor ligand, derived from the condensation of salicyl­aldehyde and L-isoleucine, a vanadyl O atom, a methano­late O atom and a methanol O atom in a distorted octa­hedral geometry. The asymmetric unit contains two complex mol­ecules. In the crystal, inter­molecular O—H⋯O and C—H⋯O hydrogen bonds connect the mol­ecules into a one-dimensional chain along [100].

Related literature

For background to vanadium compounds, see: Horn et al. (2004[Horn, A., Filgueiras, C. A. L., Wardell, J. L., Herbst, M. H., Vugman, N. V., Santos, P. S., Lopes, J. G. S. & Howie, R. A. (2004). Inorg. Chim. Acta, 357, 4240-4246.]); Thompson et al. (1999[Thompson, K. H., McNeill, J. H. & Orvig, C. (1999). Chem. Rev. 99, 2561-2571.]); Wikksky et al. (2001[Wikksky, G. R., Goldfine, A. B., Kostyniak, P. J., McNeill, J. H., Yang, L. Q., Khan, H. R. & Crans, D. C. (2001). J. Inorg. Biochem. 85, 33-42.]). For related structures of vanadium complexes derived from amino acid Schiff base ligands and with a coordination number of six for vanadium, see: Bian & Li (2011[Bian, L. & Li, L. (2011). Acta Cryst. E67, m274.]); Cao et al. (2011[Cao, Y.-Z., Zhao, H.-Y., Bai, F.-Y., Xing, Y.-H., Wei, D.-M., Niu, S.-Y. & Shi, Z. (2011). Inorg. Chim. Acta, 368, 223-230.]); Chen et al. (2004[Chen, C.-T., Lin, J.-S., Kuo, J.-H., Weng, S.-S., Cuo, T.-S., Lin, Y.-W., Cheng, C.-C., Huang, Y.-C., Yu, J.-K. & Chou, P.-T. (2004). Org. Lett. 6, 4471-4474.]).

[Scheme 1]

Experimental

Crystal data
  • [V(C13H15NO3)O(CH3O)(CH4O)]

  • Mr = 363.28

  • Orthorhombic, P 21 21 21

  • a = 6.6148 (9) Å

  • b = 18.463 (2) Å

  • c = 29.286 (3) Å

  • V = 3576.7 (7) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.58 mm−1

  • T = 298 K

  • 0.26 × 0.11 × 0.08 mm

Data collection
  • Bruker SMART 1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.864, Tmax = 0.955

  • 18864 measured reflections

  • 6295 independent reflections

  • 3229 reflections with I > 2σ(I)

  • Rint = 0.174

Refinement
  • R[F2 > 2σ(F2)] = 0.092

  • wR(F2) = 0.215

  • S = 1.04

  • 6295 reflections

  • 423 parameters

  • 1046 restraints

  • H-atom parameters constrained

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.41 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2690 Friedel pairs

  • Flack parameter: 0.09 (5)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O5i 0.98 2.52 3.388 (12) 148
C7—H7⋯O4i 0.93 2.48 3.395 (12) 170
C17—H17⋯O12i 0.98 2.39 3.328 (12) 159
O6—H6⋯O8 0.82 1.89 2.688 (8) 165
O11—H11⋯O2 0.82 1.86 2.668 (8) 170
Symmetry code: (i) x+1, y, z.

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The strong interest in vanadium compounds arises from the presence of vanadium in several metalloenzymes, their use as metallopharmaceutical agents and their catalytic abilities (Horn et al., 2004). Compared with other transition metal complexes, less vanadium complexes have been synthesized and characterized (Thompson et al., 1999; Wikksky et al., 2001). We report herein the synthesis and crystal structure of a new oxovanadium(V) complex with a tridentate Schiff base ligand derived from the condensation of salicylaldehyde and L-isoleucine.

As shown in Fig. 1, the asymmetric unit of the title compound contains two independent molecules. Each VV ion is six-coordinated by a tridentate O,N,O-donor ligand, a vanadyl O atom, a methanolate O atom and a methanol O atom, forming a distorted octahedral geometry. In one of the complex molecules, O1, N1, O3 atoms of the Schiff base ligand and O5 atom of the methanolate define the equatorial plane and the terminal oxido O4 and the methanol O6 are at the axial positions. The V1 atom lies 0.308 (3) Å above the equatorial plane towards O4. The V2 atom deviates 0.297 (3) Å from the equatorial plane, formed by O7, N2, O9 and O12, towards O10. The axial O6 and O11 atoms are involved in long V—O distances [V1—O6 and V2—O11 = 2.345 (6) and 2.330 (6) Å], which is similar to the reported vanadium(V) complexes (Bian & Li, 2011; Cao et al., 2011; Chen et al., 2004). In the crystal, intermolecular O—H···O and C—H···O hydrogen bonds connect the molecules into a one-dimensional structure along [100] (Table 1, Fig. 2).

Related literature top

For background to vanadium compounds, see: Horn et al. (2004); Thompson et al. (1999); Wikksky et al. (2001). For related structures of six-coordinated vanadium complexes with amino acid Schiff base ligands, see: Bian & Li (2011); Cao et al. (2011); Chen et al. (2004).

Experimental top

L-Isoleucine (1 mmol, 131.2 mg) and potassium hydroxide (1 mmol, 56.1 mg) were dissolved in hot methanol (10 ml) with stirring and added successively to a methanol solution (5 ml) of salicylaldehyde (1 mmol, 0.11 ml). The mixture was then stirred at 333 K for 2 h. Subsequently, an aqueous solution (2 ml) of vanadyl sulfate hydrate (1 mmol, 225.4 mg) was added dropwise and stirred for 2 h continuously. Then the resultant solution was filtered and the filtrate was held at room temperature for several days, whereupon brown blocky crystals suitable for X-ray diffraction were obtained.

Refinement top

H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 (aromatic), 0.98 (CH), 0.97 (CH2) and 0.96 (CH3) Å and O—H = 0.82 Å and with Uiso(H) = 1.2(1.5 for methyl and hydroxyl)Ueq(C, O).

Structure description top

The strong interest in vanadium compounds arises from the presence of vanadium in several metalloenzymes, their use as metallopharmaceutical agents and their catalytic abilities (Horn et al., 2004). Compared with other transition metal complexes, less vanadium complexes have been synthesized and characterized (Thompson et al., 1999; Wikksky et al., 2001). We report herein the synthesis and crystal structure of a new oxovanadium(V) complex with a tridentate Schiff base ligand derived from the condensation of salicylaldehyde and L-isoleucine.

As shown in Fig. 1, the asymmetric unit of the title compound contains two independent molecules. Each VV ion is six-coordinated by a tridentate O,N,O-donor ligand, a vanadyl O atom, a methanolate O atom and a methanol O atom, forming a distorted octahedral geometry. In one of the complex molecules, O1, N1, O3 atoms of the Schiff base ligand and O5 atom of the methanolate define the equatorial plane and the terminal oxido O4 and the methanol O6 are at the axial positions. The V1 atom lies 0.308 (3) Å above the equatorial plane towards O4. The V2 atom deviates 0.297 (3) Å from the equatorial plane, formed by O7, N2, O9 and O12, towards O10. The axial O6 and O11 atoms are involved in long V—O distances [V1—O6 and V2—O11 = 2.345 (6) and 2.330 (6) Å], which is similar to the reported vanadium(V) complexes (Bian & Li, 2011; Cao et al., 2011; Chen et al., 2004). In the crystal, intermolecular O—H···O and C—H···O hydrogen bonds connect the molecules into a one-dimensional structure along [100] (Table 1, Fig. 2).

For background to vanadium compounds, see: Horn et al. (2004); Thompson et al. (1999); Wikksky et al. (2001). For related structures of six-coordinated vanadium complexes with amino acid Schiff base ligands, see: Bian & Li (2011); Cao et al. (2011); Chen et al. (2004).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. The one-dimensional structure of the title compound. Hydrogen bonds are shown as dashed lines.
(Methanol-κO)(methanolato-κO)oxido[N-(2- oxidobenzylidene)isoleucinato-κ3O,N,O']vanadium(V) top
Crystal data top
[V(C13H15NO3)O(CH3O)(CH4O)]F(000) = 1520
Mr = 363.28Dx = 1.349 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 2166 reflections
a = 6.6148 (9) Åθ = 2.6–25.2°
b = 18.463 (2) ŵ = 0.58 mm1
c = 29.286 (3) ÅT = 298 K
V = 3576.7 (7) Å3Block, brown
Z = 80.26 × 0.11 × 0.08 mm
Data collection top
Bruker SMART 1000 CCD
diffractometer
6295 independent reflections
Radiation source: fine-focus sealed tube3229 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.174
φ and ω scansθmax = 25.0°, θmin = 1.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 77
Tmin = 0.864, Tmax = 0.955k = 1221
18864 measured reflectionsl = 3434
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.092H-atom parameters constrained
wR(F2) = 0.215 w = 1/[σ2(Fo2) + (0.0752P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.007
6295 reflectionsΔρmax = 0.39 e Å3
423 parametersΔρmin = 0.41 e Å3
1046 restraintsAbsolute structure: Flack (1983), 2690 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.09 (5)
Crystal data top
[V(C13H15NO3)O(CH3O)(CH4O)]V = 3576.7 (7) Å3
Mr = 363.28Z = 8
Orthorhombic, P212121Mo Kα radiation
a = 6.6148 (9) ŵ = 0.58 mm1
b = 18.463 (2) ÅT = 298 K
c = 29.286 (3) Å0.26 × 0.11 × 0.08 mm
Data collection top
Bruker SMART 1000 CCD
diffractometer
6295 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3229 reflections with I > 2σ(I)
Tmin = 0.864, Tmax = 0.955Rint = 0.174
18864 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.092H-atom parameters constrained
wR(F2) = 0.215Δρmax = 0.39 e Å3
S = 1.04Δρmin = 0.41 e Å3
6295 reflectionsAbsolute structure: Flack (1983), 2690 Friedel pairs
423 parametersAbsolute structure parameter: 0.09 (5)
1046 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
V10.6186 (2)0.58076 (9)0.08740 (5)0.0456 (4)
V20.6024 (2)0.68203 (8)0.30480 (5)0.0455 (4)
N10.9207 (11)0.6096 (4)0.0724 (2)0.0360 (17)
N20.8986 (11)0.6526 (3)0.3246 (2)0.0369 (16)
O10.6870 (9)0.6492 (3)0.1357 (2)0.0532 (12)
O20.9033 (11)0.7236 (3)0.17086 (19)0.0581 (12)
O30.6656 (9)0.4999 (3)0.05076 (19)0.0554 (13)
O40.5227 (10)0.6343 (3)0.0500 (2)0.0575 (14)
O50.4003 (11)0.5519 (3)0.11735 (19)0.0573 (14)
O60.7934 (9)0.5063 (3)0.1388 (2)0.0545 (13)
H60.81050.52180.16480.065*
O70.6786 (9)0.6122 (3)0.25799 (19)0.0526 (12)
O80.9174 (10)0.5451 (3)0.2227 (2)0.0605 (13)
O90.6394 (11)0.7641 (3)0.34196 (19)0.0596 (13)
O100.4947 (10)0.6297 (3)0.3407 (2)0.0575 (14)
O110.7984 (9)0.7540 (3)0.25673 (19)0.0547 (13)
H110.82580.73990.23090.066*
O120.3896 (8)0.7086 (3)0.27030 (18)0.0568 (13)
C10.8593 (16)0.6819 (5)0.1394 (3)0.0525 (15)
C21.0115 (14)0.6683 (5)0.1006 (3)0.0488 (15)
H21.13740.65010.11400.059*
C31.0599 (15)0.7389 (5)0.0734 (3)0.0545 (17)
H31.12910.72320.04550.065*
C41.2096 (16)0.7875 (5)0.0984 (3)0.0583 (19)
H4A1.14090.81010.12400.070*
H4B1.31720.75760.11070.070*
C51.3008 (16)0.8451 (5)0.0698 (3)0.068 (2)
H5A1.39590.82390.04890.103*
H5B1.36910.87950.08900.103*
H5C1.19640.86930.05280.103*
C60.8720 (17)0.7769 (5)0.0578 (3)0.0608 (17)
H6A0.81520.80370.08280.091*
H6B0.77570.74180.04720.091*
H6C0.90480.80950.03340.091*
C71.0345 (15)0.5792 (5)0.0418 (3)0.0517 (15)
H71.16770.59500.04000.062*
C80.9732 (15)0.5228 (5)0.0103 (3)0.0486 (16)
C90.7908 (15)0.4889 (5)0.0143 (3)0.0534 (16)
C100.7324 (17)0.4356 (5)0.0177 (3)0.0582 (18)
H100.60860.41200.01530.070*
C110.8681 (17)0.4195 (5)0.0533 (3)0.0600 (18)
H11A0.83320.38450.07460.072*
C121.0428 (15)0.4528 (5)0.0570 (3)0.0548 (18)
H12A1.12630.44110.08150.066*
C131.1091 (17)0.5055 (5)0.0256 (3)0.0549 (17)
H131.23480.52770.02820.066*
C140.3652 (17)0.5267 (5)0.1638 (3)0.066 (2)
H14A0.39360.56530.18480.099*
H14B0.45210.48630.17010.099*
H14C0.22670.51210.16700.099*
C150.8635 (18)0.4359 (5)0.1361 (3)0.073 (2)
H15A0.95310.42650.16120.109*
H15B0.93490.42940.10790.109*
H15C0.75130.40300.13740.109*
C160.8581 (16)0.5828 (5)0.2552 (3)0.0513 (14)
C171.0050 (15)0.5991 (5)0.2949 (3)0.0518 (15)
H171.12900.62090.28280.062*
C181.0586 (14)0.5289 (5)0.3221 (3)0.0563 (17)
H181.11870.54410.35120.068*
C191.2219 (16)0.4839 (5)0.2959 (3)0.0633 (19)
H19A1.15970.46280.26900.076*
H19B1.32720.51660.28560.076*
C201.3212 (16)0.4223 (5)0.3243 (4)0.074 (2)
H20A1.38600.44250.35070.111*
H20B1.41970.39770.30580.111*
H20C1.21910.38850.33380.111*
C210.8721 (17)0.4819 (5)0.3335 (3)0.0662 (17)
H21A0.81370.46390.30580.099*
H21B0.77420.51080.34950.099*
H21C0.91260.44200.35240.099*
C221.0021 (16)0.6793 (5)0.3590 (3)0.0547 (15)
H221.13330.66290.36390.066*
C230.9192 (17)0.7337 (5)0.3899 (3)0.0560 (16)
C240.7400 (17)0.7719 (5)0.3813 (3)0.0570 (16)
C250.6718 (17)0.8226 (6)0.4131 (3)0.0658 (18)
H250.55370.84850.40760.079*
C260.7817 (17)0.8347 (6)0.4538 (3)0.0662 (19)
H260.73590.86880.47480.079*
C270.9519 (17)0.7975 (5)0.4623 (3)0.064 (2)
H271.01960.80510.48970.077*
C281.0326 (17)0.7461 (6)0.4303 (3)0.0658 (19)
H281.15370.72200.43570.079*
C290.9195 (16)0.8146 (5)0.2678 (3)0.0646 (19)
H29A0.83860.85020.28320.097*
H29B0.97360.83520.24030.097*
H29C1.02840.79970.28730.097*
C300.3799 (17)0.7283 (5)0.2223 (3)0.0633 (19)
H30A0.24210.72630.21210.095*
H30B0.46010.69510.20470.095*
H30C0.43100.77650.21830.095*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
V10.0333 (8)0.0662 (10)0.0373 (8)0.0008 (9)0.0012 (8)0.0034 (8)
V20.0409 (9)0.0609 (10)0.0346 (8)0.0015 (9)0.0004 (8)0.0037 (8)
N10.036 (4)0.046 (4)0.026 (3)0.000 (4)0.008 (3)0.001 (3)
N20.037 (4)0.032 (3)0.042 (4)0.009 (4)0.004 (4)0.003 (3)
O10.051 (2)0.067 (2)0.041 (2)0.002 (2)0.000 (2)0.002 (2)
O20.064 (3)0.071 (2)0.040 (2)0.000 (2)0.004 (2)0.008 (2)
O30.055 (3)0.067 (3)0.044 (2)0.005 (2)0.002 (2)0.007 (2)
O40.053 (3)0.073 (3)0.046 (3)0.005 (2)0.007 (2)0.008 (2)
O50.044 (3)0.078 (3)0.050 (3)0.006 (3)0.002 (3)0.000 (3)
O60.058 (3)0.063 (2)0.043 (2)0.002 (2)0.001 (2)0.002 (2)
O70.052 (2)0.065 (2)0.040 (2)0.005 (2)0.005 (2)0.003 (2)
O80.065 (3)0.070 (3)0.047 (2)0.010 (3)0.004 (2)0.008 (2)
O90.067 (3)0.066 (3)0.045 (2)0.002 (3)0.001 (2)0.007 (2)
O100.053 (3)0.071 (3)0.048 (3)0.002 (3)0.007 (2)0.006 (2)
O110.062 (3)0.064 (3)0.038 (2)0.006 (2)0.003 (2)0.005 (2)
O120.047 (3)0.077 (3)0.046 (3)0.001 (3)0.004 (2)0.005 (3)
C10.057 (3)0.062 (3)0.038 (3)0.001 (3)0.002 (3)0.002 (3)
C20.049 (3)0.060 (3)0.037 (3)0.002 (3)0.001 (3)0.001 (3)
C30.060 (3)0.062 (3)0.041 (3)0.004 (3)0.007 (3)0.002 (3)
C40.066 (4)0.062 (4)0.047 (4)0.007 (3)0.007 (3)0.003 (3)
C50.075 (5)0.073 (5)0.057 (4)0.018 (4)0.006 (4)0.003 (4)
C60.064 (3)0.070 (3)0.049 (3)0.005 (3)0.006 (3)0.002 (3)
C70.054 (3)0.061 (3)0.039 (3)0.003 (3)0.001 (3)0.001 (3)
C80.053 (3)0.060 (3)0.033 (3)0.001 (3)0.003 (3)0.002 (3)
C90.058 (3)0.066 (3)0.035 (3)0.000 (3)0.001 (3)0.006 (3)
C100.064 (4)0.067 (4)0.043 (3)0.001 (3)0.000 (3)0.006 (3)
C110.070 (4)0.068 (4)0.042 (3)0.003 (4)0.000 (3)0.011 (3)
C120.067 (4)0.066 (4)0.031 (3)0.006 (3)0.003 (3)0.013 (3)
C130.060 (3)0.066 (3)0.039 (3)0.002 (3)0.005 (3)0.005 (3)
C140.060 (4)0.082 (4)0.056 (4)0.001 (4)0.011 (4)0.005 (4)
C150.076 (4)0.082 (4)0.061 (4)0.012 (4)0.004 (4)0.003 (4)
C160.056 (3)0.059 (3)0.039 (3)0.004 (3)0.001 (3)0.002 (3)
C170.053 (3)0.060 (3)0.043 (3)0.003 (3)0.003 (3)0.004 (3)
C180.059 (3)0.063 (3)0.047 (3)0.006 (3)0.009 (3)0.002 (3)
C190.065 (4)0.062 (4)0.063 (4)0.009 (3)0.006 (3)0.004 (3)
C200.074 (5)0.069 (5)0.079 (5)0.004 (4)0.010 (4)0.000 (4)
C210.068 (3)0.069 (3)0.062 (3)0.009 (3)0.002 (3)0.005 (3)
C220.060 (3)0.060 (3)0.044 (3)0.000 (3)0.002 (3)0.007 (3)
C230.064 (3)0.062 (3)0.042 (3)0.006 (3)0.002 (3)0.010 (3)
C240.067 (3)0.065 (3)0.039 (3)0.003 (3)0.005 (3)0.007 (3)
C250.076 (4)0.073 (4)0.048 (3)0.000 (3)0.005 (3)0.010 (3)
C260.077 (4)0.074 (4)0.047 (3)0.003 (4)0.004 (3)0.013 (4)
C270.079 (4)0.069 (4)0.045 (3)0.006 (4)0.000 (3)0.015 (3)
C280.077 (4)0.072 (4)0.048 (3)0.000 (3)0.003 (3)0.013 (3)
C290.071 (4)0.072 (4)0.051 (4)0.007 (4)0.001 (4)0.002 (4)
C300.060 (4)0.079 (4)0.050 (4)0.007 (4)0.002 (4)0.003 (3)
Geometric parameters (Å, º) top
V1—O41.606 (6)C9—C101.413 (12)
V1—O51.772 (7)C10—C111.407 (13)
V1—O31.865 (6)C10—H100.9300
V1—O11.950 (6)C11—C121.313 (13)
V1—N12.114 (7)C11—H11A0.9300
V1—O62.345 (6)C12—C131.410 (12)
V2—O101.596 (6)C12—H12A0.9300
V2—O121.801 (4)C13—H130.9300
V2—O91.881 (6)C14—H14A0.9600
V2—O71.948 (6)C14—H14B0.9600
V2—N22.114 (8)C14—H14C0.9600
V2—O112.330 (6)C15—H15A0.9600
N1—C71.298 (10)C15—H15B0.9600
N1—C21.490 (10)C15—H15C0.9600
N2—C221.314 (11)C16—C171.543 (12)
N2—C171.492 (10)C17—C181.564 (12)
O1—C11.294 (11)C17—H170.9800
O2—C11.236 (10)C18—C191.564 (12)
O3—C91.366 (10)C18—C211.544 (14)
O5—C141.455 (10)C18—H180.9800
O6—C151.382 (10)C19—C201.555 (12)
O6—H60.8200C19—H19A0.9700
O7—C161.308 (11)C19—H19B0.9700
O8—C161.242 (9)C20—H20A0.9600
O9—C241.339 (11)C20—H20B0.9600
O11—C291.414 (10)C20—H20C0.9600
O11—H110.8200C21—H21A0.9600
O12—C301.454 (9)C21—H21B0.9600
C1—C21.538 (12)C21—H21C0.9600
C2—C31.562 (12)C22—C231.459 (12)
C2—H20.9800C22—H220.9300
C3—C61.498 (13)C23—C241.402 (14)
C3—C41.524 (12)C23—C281.418 (13)
C3—H30.9800C24—C251.396 (13)
C4—C51.483 (12)C25—C261.413 (13)
C4—H4A0.9700C25—H250.9300
C4—H4B0.9700C26—C271.343 (14)
C5—H5A0.9600C26—H260.9300
C5—H5B0.9600C27—C281.437 (13)
C5—H5C0.9600C27—H270.9300
C6—H6A0.9600C28—H280.9300
C6—H6B0.9600C29—H29A0.9600
C6—H6C0.9600C29—H29B0.9600
C7—C81.449 (12)C29—H29C0.9600
C7—H70.9300C30—H30A0.9600
C8—C91.364 (12)C30—H30B0.9600
C8—C131.419 (12)C30—H30C0.9600
O4—V1—O5101.6 (3)C9—C10—C11117.6 (10)
O4—V1—O399.6 (3)C9—C10—H10121.2
O5—V1—O3100.3 (3)C11—C10—H10121.2
O4—V1—O1100.8 (3)C12—C11—C10121.6 (9)
O5—V1—O191.5 (3)C12—C11—H11A119.2
O3—V1—O1153.8 (3)C10—C11—H11A119.2
O4—V1—N194.4 (3)C11—C12—C13122.8 (9)
O5—V1—N1161.7 (3)C11—C12—H12A118.6
O3—V1—N185.7 (3)C13—C12—H12A118.6
O1—V1—N176.6 (2)C8—C13—C12116.2 (10)
O4—V1—O6173.7 (3)C8—C13—H13121.9
O5—V1—O684.7 (3)C12—C13—H13121.9
O3—V1—O679.5 (2)O5—C14—H14A109.5
O1—V1—O678.4 (2)O5—C14—H14B109.5
N1—V1—O679.4 (2)H14A—C14—H14B109.5
O10—V2—O12100.7 (3)O5—C14—H14C109.5
O10—V2—O999.4 (3)H14A—C14—H14C109.5
O12—V2—O9101.9 (3)H14B—C14—H14C109.5
O10—V2—O7100.3 (3)O6—C15—H15A109.5
O12—V2—O789.3 (3)O6—C15—H15B109.5
O9—V2—O7155.0 (3)H15A—C15—H15B109.5
O10—V2—N294.4 (3)O6—C15—H15C109.5
O12—V2—N2161.5 (3)H15A—C15—H15C109.5
O9—V2—N285.9 (3)H15B—C15—H15C109.5
O7—V2—N277.5 (3)O8—C16—O7124.5 (9)
O10—V2—O11172.7 (3)O8—C16—C17119.1 (9)
O12—V2—O1186.6 (3)O7—C16—C17116.3 (8)
O9—V2—O1179.5 (2)N2—C17—C16105.7 (7)
O7—V2—O1178.9 (2)N2—C17—C18110.9 (7)
N2—V2—O1178.3 (2)C16—C17—C18111.4 (7)
C7—N1—C2117.7 (7)N2—C17—H17109.6
C7—N1—V1125.6 (6)C16—C17—H17109.6
C2—N1—V1116.7 (5)C18—C17—H17109.6
C22—N2—C17116.7 (8)C19—C18—C21111.1 (7)
C22—N2—V2126.6 (6)C19—C18—C17110.3 (8)
C17—N2—V2116.5 (5)C21—C18—C17113.3 (8)
C1—O1—V1124.6 (6)C19—C18—H18107.3
C9—O3—V1132.0 (6)C21—C18—H18107.3
C14—O5—V1133.5 (6)C17—C18—H18107.3
C15—O6—V1132.8 (6)C20—C19—C18114.8 (8)
C15—O6—H6109.6C20—C19—H19A108.6
V1—O6—H6117.4C18—C19—H19A108.6
C16—O7—V2123.6 (6)C20—C19—H19B108.6
C24—O9—V2130.5 (6)C18—C19—H19B108.6
C29—O11—V2128.9 (5)H19A—C19—H19B107.6
C29—O11—H11109.7C19—C20—H20A109.5
V2—O11—H11119.9C19—C20—H20B109.5
C30—O12—V2130.2 (6)H20A—C20—H20B109.5
O2—C1—O1124.1 (9)C19—C20—H20C109.5
O2—C1—C2119.9 (9)H20A—C20—H20C109.5
O1—C1—C2116.0 (8)H20B—C20—H20C109.5
N1—C2—C1105.3 (7)C18—C21—H21A109.5
N1—C2—C3114.0 (7)C18—C21—H21B109.5
C1—C2—C3112.1 (7)H21A—C21—H21B109.5
N1—C2—H2108.4C18—C21—H21C109.5
C1—C2—H2108.4H21A—C21—H21C109.5
C3—C2—H2108.4H21B—C21—H21C109.5
C6—C3—C4114.2 (8)N2—C22—C23122.6 (9)
C6—C3—C2112.1 (8)N2—C22—H22118.7
C4—C3—C2112.3 (7)C23—C22—H22118.7
C6—C3—H3105.8C24—C23—C28121.0 (9)
C4—C3—H3105.8C24—C23—C22123.6 (9)
C2—C3—H3105.8C28—C23—C22115.4 (9)
C5—C4—C3114.5 (8)O9—C24—C25119.1 (10)
C5—C4—H4A108.6O9—C24—C23121.4 (9)
C3—C4—H4A108.6C25—C24—C23119.4 (10)
C5—C4—H4B108.6C24—C25—C26120.2 (11)
C3—C4—H4B108.6C24—C25—H25119.9
H4A—C4—H4B107.6C26—C25—H25119.9
C4—C5—H5A109.5C27—C26—C25120.4 (10)
C4—C5—H5B109.5C27—C26—H26119.8
H5A—C5—H5B109.5C25—C26—H26119.8
C4—C5—H5C109.5C26—C27—C28121.9 (10)
H5A—C5—H5C109.5C26—C27—H27119.0
H5B—C5—H5C109.5C28—C27—H27119.0
C3—C6—H6A109.5C23—C28—C27117.0 (10)
C3—C6—H6B109.5C23—C28—H28121.5
H6A—C6—H6B109.5C27—C28—H28121.5
C3—C6—H6C109.5O11—C29—H29A109.5
H6A—C6—H6C109.5O11—C29—H29B109.5
H6B—C6—H6C109.5H29A—C29—H29B109.5
N1—C7—C8126.0 (9)O11—C29—H29C109.5
N1—C7—H7117.0H29A—C29—H29C109.5
C8—C7—H7117.0H29B—C29—H29C109.5
C9—C8—C13121.4 (9)O12—C30—H30A109.5
C9—C8—C7121.4 (9)O12—C30—H30B109.5
C13—C8—C7117.1 (9)H30A—C30—H30B109.5
O3—C9—C8122.4 (8)O12—C30—H30C109.5
O3—C9—C10117.1 (9)H30A—C30—H30C109.5
C8—C9—C10120.3 (9)H30B—C30—H30C109.5
C1—C2—C3—C478.7 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O5i0.982.523.388 (12)148
C7—H7···O4i0.932.483.395 (12)170
C17—H17···O12i0.982.393.328 (12)159
O6—H6···O80.821.892.688 (8)165
O11—H11···O20.821.862.668 (8)170
Symmetry code: (i) x+1, y, z.

Experimental details

Crystal data
Chemical formula[V(C13H15NO3)O(CH3O)(CH4O)]
Mr363.28
Crystal system, space groupOrthorhombic, P212121
Temperature (K)298
a, b, c (Å)6.6148 (9), 18.463 (2), 29.286 (3)
V3)3576.7 (7)
Z8
Radiation typeMo Kα
µ (mm1)0.58
Crystal size (mm)0.26 × 0.11 × 0.08
Data collection
DiffractometerBruker SMART 1000 CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.864, 0.955
No. of measured, independent and
observed [I > 2σ(I)] reflections
18864, 6295, 3229
Rint0.174
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.092, 0.215, 1.04
No. of reflections6295
No. of parameters423
No. of restraints1046
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.39, 0.41
Absolute structureFlack (1983), 2690 Friedel pairs
Absolute structure parameter0.09 (5)

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O5i0.982.523.388 (12)148.2
C7—H7···O4i0.932.483.395 (12)169.8
C17—H17···O12i0.982.393.328 (12)159.3
O6—H6···O80.821.892.688 (8)164.7
O11—H11···O20.821.862.668 (8)170.4
Symmetry code: (i) x+1, y, z.
 

References

First citationBian, L. & Li, L. (2011). Acta Cryst. E67, m274.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCao, Y.-Z., Zhao, H.-Y., Bai, F.-Y., Xing, Y.-H., Wei, D.-M., Niu, S.-Y. & Shi, Z. (2011). Inorg. Chim. Acta, 368, 223–230.  Web of Science CSD CrossRef CAS Google Scholar
First citationChen, C.-T., Lin, J.-S., Kuo, J.-H., Weng, S.-S., Cuo, T.-S., Lin, Y.-W., Cheng, C.-C., Huang, Y.-C., Yu, J.-K. & Chou, P.-T. (2004). Org. Lett. 6, 4471–4474.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHorn, A., Filgueiras, C. A. L., Wardell, J. L., Herbst, M. H., Vugman, N. V., Santos, P. S., Lopes, J. G. S. & Howie, R. A. (2004). Inorg. Chim. Acta, 357, 4240–4246.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationThompson, K. H., McNeill, J. H. & Orvig, C. (1999). Chem. Rev. 99, 2561–2571.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWikksky, G. R., Goldfine, A. B., Kostyniak, P. J., McNeill, J. H., Yang, L. Q., Khan, H. R. & Crans, D. C. (2001). J. Inorg. Biochem. 85, 33–42.  Web of Science CrossRef PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds