metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[1,2,2-tri­methyl­cyclo­pentane-1,3-di­ammonium [aluminate(III)-μ-(hydrogen phosphato)-μ-phosphato]]

aDepartment of Chemistry, Bengbu Medical College, Bengbu 233030, People's Republic of China
*Correspondence e-mail: liangjyt@163.com

(Received 31 May 2012; accepted 25 June 2012; online 30 June 2012)

In the title compound, {(C8H20N2)[Al(HPO4)(PO4)]}n, the AlIII atom is coordinated by four O atoms from two HPO42− and two PO43− groups in a distorted tetra­hedral geometry. Each AlO4 unit shares four O atoms with four adjacent PO4 units, leading to an anionic chain along [100]. The negative charge of the chain is compensated by doubly protonated camphoric amine cations. N—H⋯O hydrogen bonds connect the cations and the anionic chains. O—H⋯O hydrogen bonds are present in the chain.

Related literature

For the synthesis and applications of chiral inorganic framework materials, see: Viter & Nagornyi (2009[Viter, V. N. & Nagornyi, P. G. (2009). Russ. J. Appl. Chem. 82, 935-939.]). For information about aluminophosphate chains, see: Jones et al. (1990[Jones, R. H., Thomas, J. M., Xu, R., Huo, Q., Xu, Y., Cheetham, A. K. & Bieber, D. (1990). J. Chem. Soc. Chem. Commun. pp. 1170-1172.]); Oliver et al. (1998[Oliver, S., Kuperman, A. & Ozin, G. A. (1998). Angew. Chem. Int. Ed. 37, 46-62.]); Williams et al. (1997[Williams, I D., Yu, J., Gao, Q., Chen, J. & Xu, R. (1997). Chem. Commun. pp. 1273-1274.]).

[Scheme 1]

Experimental

Crystal data
  • (C8H20N2)[Al(HPO4)(PO4)]

  • Mr = 362.19

  • Monoclinic, P 21 /n

  • a = 8.0102 (10) Å

  • b = 16.862 (2) Å

  • c = 10.5164 (12) Å

  • β = 93.203 (2)°

  • V = 1418.2 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.41 mm−1

  • T = 293 K

  • 0.22 × 0.19 × 0.18 mm

Data collection
  • Bruker APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.915, Tmax = 0.930

  • 8701 measured reflections

  • 3386 independent reflections

  • 2442 reflections with I > 2σ(I)

  • Rint = 0.078

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.098

  • S = 1.02

  • 3386 reflections

  • 195 parameters

  • H-atom parameters constrained

  • Δρmax = 0.47 e Å−3

  • Δρmin = −0.47 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O3 0.89 1.87 2.751 (2) 168
N1—H1B⋯O5i 0.89 2.06 2.910 (3) 158
N1—H1C⋯O8ii 0.89 1.85 2.709 (3) 162
N2—H2A⋯O3iii 0.89 2.00 2.858 (2) 160
N2—H2B⋯O8iv 0.89 2.14 3.010 (2) 167
N2—H2C⋯O7v 0.89 1.89 2.766 (3) 169
O5—H5B⋯O7vi 0.96 1.59 2.498 (2) 156
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) x-1, y, z; (iv) -x, -y+1, -z+2; (v) [-x-{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (vi) x+1, y, z.

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

There are considerable interests in the synthesis of chiral inorganic framework materials for their potential applications in separation and catalysis (Viter & Nagornyi, 2009). Our interest is particularly focused on the synthesis of microporous aluminophosphate. We used organic camphoric amine as the template and hydrothermally synthesized the title compound (Fig. 1).

The structure consists of aluminophosphate chains of formula [Al(HPO4)(PO4)]n, running along the a axis, and doubly protonated camphoric amine cations (Fig. 2). The chain is constructed from AlO4 tetrahedra and PO4 tetrahedra. Each AlO4 tetrahedron shares four O atoms with adjacent PO4 tetrahedra, whereas each PO4 tetrahedron shares two O atoms with adjacent AlO4 tetrahedra, leaving the other two O atoms terminal. The structure denotes that AlPO-CSC (Corner-Sharing Chain) is one of the fundamental chains in the known aluminophosphate compounds (Jones et al., 1990; Oliver et al., 1998; Williams et al., 1997). The negative charge of the chain is compensated by protonated organic camphoric amine cations, which are connected to the chains through N—H···O hydrogen bonds (Table 1).

Related literature top

For the synthesis and applications of chiral inorganic framework materials, see: Viter & Nagornyi (2009). For information about aluminophosphate chains, see: Jones et al. (1990); Oliver et al. (1998); Williams et al. (1997).

Experimental top

A mixture of aluminium isopropoxide (204 mg, 1 mmol), water (720 mg, 40 mmol), 85% H3PO4 (254 mg, 2.2 mmol), camphoric amine (143 mg, 1 mmol) and HF (13.0 mg, 0.65 mmol) was stirred to form a gel. The gel was sealed in a Teflon-lined stainless-steel autoclave and heated at 180°C for 10 days. Colorless crystals were collected by filtration, washed with distilled water and dried in air.

Refinement top

H atoms on C and N atoms were positioned geometrically and refined as riding atoms, with C—H = 0.98 (CH), 0.97 (CH2) and 0.96 (CH3) Å and N—H = 0.89 Å and with Uiso(H) = 1.2(1.5 for methyl and ammonium)Ueq(C,N). Hydroxyl H atom was located from a difference Fourier map and refined as riding, with O—H = 0.96 Å and Uiso(H) = 1.5Ueq(O).

Structure description top

There are considerable interests in the synthesis of chiral inorganic framework materials for their potential applications in separation and catalysis (Viter & Nagornyi, 2009). Our interest is particularly focused on the synthesis of microporous aluminophosphate. We used organic camphoric amine as the template and hydrothermally synthesized the title compound (Fig. 1).

The structure consists of aluminophosphate chains of formula [Al(HPO4)(PO4)]n, running along the a axis, and doubly protonated camphoric amine cations (Fig. 2). The chain is constructed from AlO4 tetrahedra and PO4 tetrahedra. Each AlO4 tetrahedron shares four O atoms with adjacent PO4 tetrahedra, whereas each PO4 tetrahedron shares two O atoms with adjacent AlO4 tetrahedra, leaving the other two O atoms terminal. The structure denotes that AlPO-CSC (Corner-Sharing Chain) is one of the fundamental chains in the known aluminophosphate compounds (Jones et al., 1990; Oliver et al., 1998; Williams et al., 1997). The negative charge of the chain is compensated by protonated organic camphoric amine cations, which are connected to the chains through N—H···O hydrogen bonds (Table 1).

For the synthesis and applications of chiral inorganic framework materials, see: Viter & Nagornyi (2009). For information about aluminophosphate chains, see: Jones et al. (1990); Oliver et al. (1998); Williams et al. (1997).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. The anionic chain and camphoric amine cation in the title compound.
catena-Poly[1,2,2-trimethylcyclopentane-1,3-diammonium [aluminate(III)-µ-(hydrogen phosphato)-µ-phosphato]] top
Crystal data top
(C8H20N2)[Al(HPO4)(PO4)]F(000) = 760
Mr = 362.19Dx = 1.696 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2335 reflections
a = 8.0102 (10) Åθ = 2.3–22.7°
b = 16.862 (2) ŵ = 0.41 mm1
c = 10.5164 (12) ÅT = 293 K
β = 93.203 (2)°Block, colourless
V = 1418.2 (3) Å30.22 × 0.19 × 0.18 mm
Z = 4
Data collection top
Bruker APEX CCD
diffractometer
3386 independent reflections
Radiation source: fine-focus sealed tube2442 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.078
φ and ω scansθmax = 28.2°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1010
Tmin = 0.915, Tmax = 0.930k = 1822
8701 measured reflectionsl = 1311
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.098H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0302P)2]
where P = (Fo2 + 2Fc2)/3
3386 reflections(Δ/σ)max = 0.001
195 parametersΔρmax = 0.47 e Å3
0 restraintsΔρmin = 0.47 e Å3
Crystal data top
(C8H20N2)[Al(HPO4)(PO4)]V = 1418.2 (3) Å3
Mr = 362.19Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.0102 (10) ŵ = 0.41 mm1
b = 16.862 (2) ÅT = 293 K
c = 10.5164 (12) Å0.22 × 0.19 × 0.18 mm
β = 93.203 (2)°
Data collection top
Bruker APEX CCD
diffractometer
3386 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
2442 reflections with I > 2σ(I)
Tmin = 0.915, Tmax = 0.930Rint = 0.078
8701 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.098H-atom parameters constrained
S = 1.02Δρmax = 0.47 e Å3
3386 reflectionsΔρmin = 0.47 e Å3
195 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Al10.23800 (9)0.51205 (4)0.94544 (6)0.01494 (17)
C10.1616 (3)0.26568 (17)0.7028 (3)0.0337 (7)
H1D0.09590.22570.74160.051*
H1E0.17890.30940.76060.051*
H1F0.26780.24370.68330.051*
C20.1662 (3)0.36187 (15)0.5190 (2)0.0223 (5)
H20.11590.37160.43330.027*
C30.0691 (3)0.29490 (14)0.5794 (2)0.0214 (5)
C40.0404 (4)0.22449 (17)0.4892 (3)0.0385 (7)
H4A0.00820.24290.40900.058*
H4B0.03400.18730.52580.058*
H4C0.14520.19910.47610.058*
C50.0927 (3)0.34152 (15)0.6070 (2)0.0215 (5)
C60.2124 (3)0.34974 (16)0.4893 (2)0.0270 (6)
H6A0.26630.29980.47140.041*
H6B0.15090.36540.41770.041*
H6C0.29530.38920.50490.041*
C70.0302 (3)0.42256 (15)0.6572 (2)0.0253 (6)
H7A0.10810.46420.63050.030*
H7B0.01790.42220.74950.030*
C80.1363 (3)0.43549 (16)0.6010 (3)0.0341 (7)
H8B0.22410.44080.66780.041*
H8A0.13400.48310.54910.041*
N10.3491 (2)0.34899 (12)0.50846 (18)0.0210 (5)
H1A0.40450.36810.57750.031*
H1B0.38260.37390.43970.031*
H1C0.36950.29730.50190.031*
N20.1918 (2)0.30479 (12)0.70978 (18)0.0229 (5)
H2A0.28030.33500.72310.034*
H2B0.12770.30110.78140.034*
H2C0.22580.25660.68540.034*
O20.3899 (2)0.51208 (10)0.83594 (16)0.0248 (4)
O30.5465 (2)0.42016 (10)0.69810 (15)0.0258 (4)
O40.6755 (2)0.46404 (10)0.90504 (15)0.0236 (4)
O50.6361 (2)0.56178 (11)0.72750 (15)0.0257 (4)
H5B0.71250.58720.78810.039*
O60.1454 (2)0.58055 (10)1.04650 (15)0.0256 (4)
O70.1712 (2)0.65708 (10)0.84337 (15)0.0240 (4)
O80.0256 (2)0.70185 (10)1.02657 (15)0.0238 (4)
O90.0880 (2)0.58103 (10)0.89830 (16)0.0246 (4)
P10.56043 (8)0.48755 (4)0.78985 (6)0.01633 (16)
P20.04921 (8)0.63267 (4)0.95434 (6)0.01681 (16)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Al10.0163 (4)0.0119 (4)0.0167 (4)0.0005 (3)0.0018 (3)0.0008 (3)
C10.0363 (16)0.0348 (17)0.0308 (15)0.0102 (13)0.0090 (12)0.0112 (13)
C20.0204 (13)0.0237 (14)0.0226 (13)0.0014 (10)0.0004 (10)0.0048 (10)
C30.0238 (13)0.0166 (13)0.0239 (13)0.0003 (10)0.0028 (10)0.0028 (10)
C40.0368 (17)0.0264 (16)0.0526 (19)0.0028 (13)0.0048 (14)0.0181 (14)
C50.0220 (13)0.0188 (13)0.0240 (13)0.0014 (10)0.0032 (10)0.0006 (10)
C60.0268 (15)0.0261 (15)0.0279 (14)0.0022 (11)0.0013 (11)0.0015 (11)
C70.0353 (15)0.0160 (13)0.0245 (14)0.0001 (11)0.0018 (11)0.0036 (10)
C80.0314 (16)0.0176 (14)0.0533 (19)0.0005 (11)0.0024 (14)0.0028 (13)
N10.0238 (11)0.0189 (11)0.0204 (11)0.0009 (9)0.0024 (9)0.0018 (8)
N20.0233 (11)0.0194 (11)0.0265 (11)0.0018 (9)0.0059 (9)0.0022 (9)
O20.0224 (10)0.0265 (10)0.0264 (10)0.0019 (8)0.0089 (8)0.0021 (8)
O30.0257 (10)0.0273 (11)0.0241 (9)0.0011 (8)0.0006 (8)0.0131 (8)
O40.0299 (10)0.0184 (9)0.0216 (9)0.0015 (8)0.0069 (8)0.0001 (7)
O50.0279 (10)0.0307 (11)0.0182 (9)0.0086 (8)0.0007 (7)0.0056 (7)
O60.0364 (11)0.0165 (9)0.0243 (9)0.0111 (8)0.0055 (8)0.0005 (7)
O70.0240 (9)0.0152 (9)0.0320 (10)0.0037 (7)0.0057 (8)0.0033 (7)
O80.0270 (10)0.0154 (9)0.0292 (10)0.0076 (7)0.0021 (8)0.0041 (7)
O90.0253 (10)0.0245 (10)0.0241 (9)0.0102 (8)0.0011 (7)0.0008 (7)
P10.0174 (3)0.0172 (3)0.0146 (3)0.0003 (2)0.0020 (2)0.0026 (2)
P20.0178 (3)0.0106 (3)0.0220 (3)0.0003 (2)0.0008 (2)0.0001 (2)
Geometric parameters (Å, º) top
Al1—O21.7215 (18)C7—C81.505 (4)
Al1—O91.7251 (17)C7—H7A0.9700
Al1—O4i1.7300 (17)C7—H7B0.9700
Al1—O6ii1.7326 (18)C8—H8B0.9700
C1—C31.540 (3)C8—H8A0.9700
C1—H1D0.9600N1—H1A0.8900
C1—H1E0.9600N1—H1B0.8900
C1—H1F0.9600N1—H1C0.8900
C2—N11.491 (3)N2—H2A0.8900
C2—C31.530 (3)N2—H2B0.8900
C2—C81.538 (4)N2—H2C0.8900
C2—H20.9800O2—P11.5315 (17)
C3—C41.529 (3)O3—P11.4908 (17)
C3—C51.557 (3)O4—P11.5329 (16)
C4—H4A0.9600O4—Al1i1.7300 (17)
C4—H4B0.9600O5—P11.5519 (18)
C4—H4C0.9600O5—H5B0.9600
C5—N21.509 (3)O6—P21.5458 (17)
C5—C61.529 (3)O6—Al1ii1.7326 (18)
C5—C71.539 (3)O7—P21.5359 (16)
C6—H6A0.9600O8—P21.4986 (17)
C6—H6B0.9600O9—P21.5446 (17)
C6—H6C0.9600
O2—Al1—O9108.34 (9)C8—C7—C5105.8 (2)
O2—Al1—O4i110.23 (9)C8—C7—H7A110.6
O9—Al1—O4i109.95 (9)C5—C7—H7A110.6
O2—Al1—O6ii110.69 (9)C8—C7—H7B110.6
O9—Al1—O6ii109.18 (9)C5—C7—H7B110.6
O4i—Al1—O6ii108.44 (9)H7A—C7—H7B108.7
C3—C1—H1D109.5C7—C8—C2105.8 (2)
C3—C1—H1E109.5C7—C8—H8B110.6
H1D—C1—H1E109.5C2—C8—H8B110.6
C3—C1—H1F109.5C7—C8—H8A110.6
H1D—C1—H1F109.5C2—C8—H8A110.6
H1E—C1—H1F109.5H8B—C8—H8A108.7
N1—C2—C3116.6 (2)C2—N1—H1A109.5
N1—C2—C8110.1 (2)C2—N1—H1B109.5
C3—C2—C8105.3 (2)H1A—N1—H1B109.5
N1—C2—H2108.2C2—N1—H1C109.5
C3—C2—H2108.2H1A—N1—H1C109.5
C8—C2—H2108.2H1B—N1—H1C109.5
C4—C3—C2112.2 (2)C5—N2—H2A109.5
C4—C3—C1108.9 (2)C5—N2—H2B109.5
C2—C3—C1110.7 (2)H2A—N2—H2B109.5
C4—C3—C5114.2 (2)C5—N2—H2C109.5
C2—C3—C598.78 (19)H2A—N2—H2C109.5
C1—C3—C5111.8 (2)H2B—N2—H2C109.5
C3—C4—H4A109.5P1—O2—Al1152.61 (12)
C3—C4—H4B109.5P1—O4—Al1i148.27 (12)
H4A—C4—H4B109.5P1—O5—H5B109.2
C3—C4—H4C109.5P2—O6—Al1ii140.61 (11)
H4A—C4—H4C109.5P2—O9—Al1140.31 (11)
H4B—C4—H4C109.5O3—P1—O2112.02 (10)
N2—C5—C6106.61 (19)O3—P1—O4109.53 (10)
N2—C5—C7107.00 (19)O2—P1—O4109.11 (10)
C6—C5—C7112.0 (2)O3—P1—O5110.98 (10)
N2—C5—C3113.7 (2)O2—P1—O5106.98 (10)
C6—C5—C3112.7 (2)O4—P1—O5108.10 (9)
C7—C5—C3104.73 (19)O8—P2—O7113.33 (10)
C5—C6—H6A109.5O8—P2—O9111.06 (10)
C5—C6—H6B109.5O7—P2—O9107.29 (9)
H6A—C6—H6B109.5O8—P2—O6108.91 (10)
C5—C6—H6C109.5O7—P2—O6108.08 (10)
H6A—C6—H6C109.5O9—P2—O6108.00 (10)
H6B—C6—H6C109.5
Symmetry codes: (i) x+1, y+1, z+2; (ii) x, y+1, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O30.891.872.751 (2)168
N1—H1B···O5iii0.892.062.910 (3)158
N1—H1C···O8iv0.891.852.709 (3)162
N2—H2A···O3v0.892.002.858 (2)160
N2—H2B···O8ii0.892.143.010 (2)167
N2—H2C···O7vi0.891.892.766 (3)169
O5—H5B···O7vii0.961.592.498 (2)156
Symmetry codes: (ii) x, y+1, z+2; (iii) x+1, y+1, z+1; (iv) x+1/2, y1/2, z+3/2; (v) x1, y, z; (vi) x1/2, y1/2, z+3/2; (vii) x+1, y, z.

Experimental details

Crystal data
Chemical formula(C8H20N2)[Al(HPO4)(PO4)]
Mr362.19
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)8.0102 (10), 16.862 (2), 10.5164 (12)
β (°) 93.203 (2)
V3)1418.2 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.41
Crystal size (mm)0.22 × 0.19 × 0.18
Data collection
DiffractometerBruker APEX CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.915, 0.930
No. of measured, independent and
observed [I > 2σ(I)] reflections
8701, 3386, 2442
Rint0.078
(sin θ/λ)max1)0.664
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.098, 1.02
No. of reflections3386
No. of parameters195
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.47, 0.47

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 1999), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O30.891.872.751 (2)168
N1—H1B···O5i0.892.062.910 (3)158
N1—H1C···O8ii0.891.852.709 (3)162
N2—H2A···O3iii0.892.002.858 (2)160
N2—H2B···O8iv0.892.143.010 (2)167
N2—H2C···O7v0.891.892.766 (3)169
O5—H5B···O7vi0.961.592.498 (2)156
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1/2, y1/2, z+3/2; (iii) x1, y, z; (iv) x, y+1, z+2; (v) x1/2, y1/2, z+3/2; (vi) x+1, y, z.
 

Acknowledgements

The author thanks Bengbu Medical College for supporting this work.

References

First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationJones, R. H., Thomas, J. M., Xu, R., Huo, Q., Xu, Y., Cheetham, A. K. & Bieber, D. (1990). J. Chem. Soc. Chem. Commun. pp. 1170–1172.  CrossRef Web of Science Google Scholar
First citationOliver, S., Kuperman, A. & Ozin, G. A. (1998). Angew. Chem. Int. Ed. 37, 46–62.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationViter, V. N. & Nagornyi, P. G. (2009). Russ. J. Appl. Chem. 82, 935–939.  Web of Science CrossRef CAS Google Scholar
First citationWilliams, I D., Yu, J., Gao, Q., Chen, J. & Xu, R. (1997). Chem. Commun. pp. 1273–1274.  CSD CrossRef Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds