metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

6,6′-Di­methyl-2,2′-bipyridin-1-ium tetra­chloridoaurate(III)

aDepartment of Chemistry, North Tehran Branch, Islamic Azad University, Tehran, Iran
*Correspondence e-mail: anita_abedi@yahoo.com

(Received 11 June 2012; accepted 23 June 2012; online 30 June 2012)

In the anion of the title compound, (C12H13N2)[AuCl4], the AuIII atom has a square-planar coordination. In the crystal, inter­molecular N—H⋯Cl and C—H⋯Cl hydrogen bonds and ππ contacts between the pyridine rings [centroid–centroid distance = 3.5419 (19) Å] result in the formation of a supra­molecular structure.

Related literature

For related structures, see: Abedi et al. (2008[Abedi, A., Bahrami Shabestari, A. & Amani, V. (2008). Acta Cryst. E64, o990.], 2011[Abedi, A., Dabbaghi, A. & Amani, V. (2011). Acta Cryst. E67, m1375-m1376.]); Amani et al. (2010[Amani, V., Safari, N. & Khavasi, H. R. (2010). Acta Cryst. E66, m345.]); Calleja et al. (2001[Calleja, M., Johnson, K., Belcher, W. J. & Steed, W. (2001). Inorg. Chem. 40, 4978-4985.]); Faza­eli et al. (2010[Fazaeli, Y., Amani, V., Amini, M. M. & Khavasi, H. R. (2010). Acta Cryst. E66, m212.]); Hasan et al. (1999[Hasan, M., Kozhevnikov, I. V., Siddiqu, M. R. H., Steiner, A. & Winterton, N. (1999). Inorg. Chem. 38, 5637-5641.]); Hojjat Kashani et al. (2008[Hojjat Kashani, L., Yousefi, M., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m840-m841.]); Johnson & Steed (1998[Johnson, K. & Steed, J. W. (1998). Chem. Commun. pp. 1479-1480.]); Kalateh et al. (2008[Kalateh, K., Ebadi, A., Abedi, A., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1267-m1268.]); Safari et al. (2009[Safari, N., Amani, V., Notash, B. & Ng, S. W. (2009). Acta Cryst. E65, m344.]); Yap et al. (1995[Yap, G. P. A., Rheingold, A. R., Das, P. & Crabtree, R. H. (1995). Inorg. Chem. 34, 3474-3476.]); Yıldırım et al. (2009a[Yıldırım, S. Ö., Akkurt, M., Safari, N., Abedi, A., Amani, V. & McKee, V. (2009a). Acta Cryst. E65, m479-m480.],b[Yıldırım, S. Ö., Akkurt, M., Safari, N., Amani, V. & McKee, V. (2009b). Acta Cryst. E65, m491-m492.]); Zhang et al. (2006[Zhang, X.-P., Yang, G. & Ng, S. W. (2006). Acta Cryst. E62, m2018-m2020.]).

[Scheme 1]

Experimental

Crystal data
  • (C12H13N2)[AuCl4]

  • Mr = 524.01

  • Monoclinic, P 21 /n

  • a = 10.8942 (9) Å

  • b = 11.6784 (10) Å

  • c = 12.2866 (11) Å

  • β = 95.772 (5)°

  • V = 1555.3 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 10.13 mm−1

  • T = 100 K

  • 0.20 × 0.15 × 0.15 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.182, Tmax = 0.227

  • 12293 measured reflections

  • 4101 independent reflections

  • 3699 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.023

  • wR(F2) = 0.049

  • S = 1.00

  • 4101 reflections

  • 174 parameters

  • H-atom parameters constrained

  • Δρmax = 0.83 e Å−3

  • Δρmin = −1.15 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2N⋯Cl3i 0.82 2.80 3.419 (2) 134
C4—H4A⋯Cl2ii 0.95 2.79 3.434 (4) 126
Symmetry codes: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) x, y-1, z-1.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In the recent years, we reported the synthesis and crystal structures of two proton transfer complexes (Abedi et al., 2008; Kalateh et al., 2008). Several proton transfer systems using HAuCl4 as proton acceptor molecule, such as [EMI][AuCl4], (II), [BMI]2[AuCl4].2H2O, (III), (Hasan et al., 1999), [H2bipy][AuCl4]Cl, (IV), (Zhang et al., 2006), [H7O3][15-crown-5][AuCl4], (V), [H5O2][benzo-15-crown-5]2[AuCl4], (VI), (Johnson & Steed, 1998), [H5O2]2[12-crown-4]2[AuCl4]2, (VII), [H3O][18-crown-6][AuCl4], (VIII), [H3O][4-nitrobenzo-18-crown-6][AuCl4], (IX), (Calleja et al., 2001), [Ph2py.H][AuCl4], (X), (Yap et al., 1995), [H2DA18C6][AuCl4], (XI), (Hojjat Kashani et al., 2008), [Me2Ph2phen.H][AuCl4], (XII), (Yıldırım et al., 2009a), [pz(py)2.H][AuCl4], (XIII), (Yıldırım et al., 2009b), [Phpy.H][AuCl4], (XIV), (Amani et al., 2010), [Dafonium][AuCl4].[dafone], (XV), (Safari et al., 2009), [tppzH2][AuCl4]2, (XVI), (Abedi et al., 2011) and [TBA]2[AuCl4][Cl], (XVII), (Fazaeli et al., 2010) (EMI = 1-ethyl-3-methylimidazolium, BMI = 1-butyl-3-methylimidazolium, H2bipy = 2,2'-bipyridinium, Ph2py.H = 2,6-diphenylpyridinium, H2DA18C6 = 1,10-diazonia-18-crown-6, Me2Ph2phen.H = 2,9-dimethyl-4,7-diphenyl-1,10-phenanthrolin-1-ium, pz(py)2.H = 2-[3-(2-pyridyl)pyrazin-2-yl]pyridinium, Phpy.H = 3-phenylpyridinium, Dafonium = 9-oxo-4,5-diazafluoren-4-ium, dafone = 4,5-diazafluoren-9-one, tppzH2 = 2,5-bis(pyridinium-2-yl)-3,6-bis(2-pyridyl)pyrazine and TBA = tribenzylammonium) have been synthesized and characterized by single-crystal X-ray diffraction methods. We report herein the synthesis and crystal structure of the title compound, (I).

In the anion of the title compound (Fig. 1), the AuIII atom has a square-planar coordination. The Au—Cl bond lengths and angles are within normal range (XII–XVII). In the crystal, intermolecular N—H···Cl and C—H···Cl hydrogen bonds (Table 1) and ππ contacts between the pyridine rings, Cg1···Cg2i [Cg1 and Cg2 are the centroids of the rings N1/C1–C5 and N2/C7–C11, respectively. Symmetry code: (i) 2-x, -y, -z], with a centroid–centroid distance of 3.5419 (19) Å, are effective in the stabilization of the crystal structure, resulting in the formation of a supramolecular structure.

Related literature top

For related structures, see: Abedi et al. (2008, 2011); Amani et al. (2010); Calleja et al. (2001); Fazaeli et al. (2010); Hasan et al. (1999); Hojjat Kashani et al. (2008); Johnson & Steed (1998); Kalateh et al. (2008); Safari et al. (2009); Yap et al. (1995); Yıldırım et al. (2009a,b); Zhang et al. (2006).

Experimental top

For the preparation of the title compound, a solution of 6,6'-dimethyl-2,2'-bipyridine (0.21 g, 1.11 mmol) in methanol (10 ml) was added to a solution of HAuCl4.3H2O, (0.58 g, 1.11 mmol) in acetonitrile (10 ml) and the resulting yellow solution was stirred for 15 min at 313 K. This solution was left to evaporate slowly at room temperature. After one week, yellow prismatic crystals of the title compound were isolated (yield: 0.46 g, 79.1%; m. p. 453 K).

Refinement top

H atom of NH group was found in a difference Fourier map and refined as riding, with Uiso(H) = 1.2Ueq(N). H atoms on C atoms were positioned geometrically and refined as riding atoms, with C—H = 0.95 (aromatic) and 0.98 (methyl) Å and with Uiso(H) = 1.2(1.5 for methyl)Ueq(C).

Structure description top

In the recent years, we reported the synthesis and crystal structures of two proton transfer complexes (Abedi et al., 2008; Kalateh et al., 2008). Several proton transfer systems using HAuCl4 as proton acceptor molecule, such as [EMI][AuCl4], (II), [BMI]2[AuCl4].2H2O, (III), (Hasan et al., 1999), [H2bipy][AuCl4]Cl, (IV), (Zhang et al., 2006), [H7O3][15-crown-5][AuCl4], (V), [H5O2][benzo-15-crown-5]2[AuCl4], (VI), (Johnson & Steed, 1998), [H5O2]2[12-crown-4]2[AuCl4]2, (VII), [H3O][18-crown-6][AuCl4], (VIII), [H3O][4-nitrobenzo-18-crown-6][AuCl4], (IX), (Calleja et al., 2001), [Ph2py.H][AuCl4], (X), (Yap et al., 1995), [H2DA18C6][AuCl4], (XI), (Hojjat Kashani et al., 2008), [Me2Ph2phen.H][AuCl4], (XII), (Yıldırım et al., 2009a), [pz(py)2.H][AuCl4], (XIII), (Yıldırım et al., 2009b), [Phpy.H][AuCl4], (XIV), (Amani et al., 2010), [Dafonium][AuCl4].[dafone], (XV), (Safari et al., 2009), [tppzH2][AuCl4]2, (XVI), (Abedi et al., 2011) and [TBA]2[AuCl4][Cl], (XVII), (Fazaeli et al., 2010) (EMI = 1-ethyl-3-methylimidazolium, BMI = 1-butyl-3-methylimidazolium, H2bipy = 2,2'-bipyridinium, Ph2py.H = 2,6-diphenylpyridinium, H2DA18C6 = 1,10-diazonia-18-crown-6, Me2Ph2phen.H = 2,9-dimethyl-4,7-diphenyl-1,10-phenanthrolin-1-ium, pz(py)2.H = 2-[3-(2-pyridyl)pyrazin-2-yl]pyridinium, Phpy.H = 3-phenylpyridinium, Dafonium = 9-oxo-4,5-diazafluoren-4-ium, dafone = 4,5-diazafluoren-9-one, tppzH2 = 2,5-bis(pyridinium-2-yl)-3,6-bis(2-pyridyl)pyrazine and TBA = tribenzylammonium) have been synthesized and characterized by single-crystal X-ray diffraction methods. We report herein the synthesis and crystal structure of the title compound, (I).

In the anion of the title compound (Fig. 1), the AuIII atom has a square-planar coordination. The Au—Cl bond lengths and angles are within normal range (XII–XVII). In the crystal, intermolecular N—H···Cl and C—H···Cl hydrogen bonds (Table 1) and ππ contacts between the pyridine rings, Cg1···Cg2i [Cg1 and Cg2 are the centroids of the rings N1/C1–C5 and N2/C7–C11, respectively. Symmetry code: (i) 2-x, -y, -z], with a centroid–centroid distance of 3.5419 (19) Å, are effective in the stabilization of the crystal structure, resulting in the formation of a supramolecular structure.

For related structures, see: Abedi et al. (2008, 2011); Amani et al. (2010); Calleja et al. (2001); Fazaeli et al. (2010); Hasan et al. (1999); Hojjat Kashani et al. (2008); Johnson & Steed (1998); Kalateh et al. (2008); Safari et al. (2009); Yap et al. (1995); Yıldırım et al. (2009a,b); Zhang et al. (2006).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Crystal packing diagram for the title compound. Hydrogen bonds are shown as dashed lines.
6,6'-Dimethyl-2,2'-bipyridin-1-ium tetrachloridoaurate(III) top
Crystal data top
(C12H13N2)[AuCl4]F(000) = 984
Mr = 524.01Dx = 2.238 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1542 reflections
a = 10.8942 (9) Åθ = 3.0–30.0°
b = 11.6784 (10) ŵ = 10.13 mm1
c = 12.2866 (11) ÅT = 100 K
β = 95.772 (5)°Prism, yellow
V = 1555.3 (2) Å30.20 × 0.15 × 0.15 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
4101 independent reflections
Radiation source: fine-focus sealed tube3699 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
φ and ω scansθmax = 29.0°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1414
Tmin = 0.182, Tmax = 0.227k = 1515
12293 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.023Hydrogen site location: mixed
wR(F2) = 0.049H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0228P)2 + 0.3281P]
where P = (Fo2 + 2Fc2)/3
4101 reflections(Δ/σ)max = 0.002
174 parametersΔρmax = 0.83 e Å3
0 restraintsΔρmin = 1.15 e Å3
Crystal data top
(C12H13N2)[AuCl4]V = 1555.3 (2) Å3
Mr = 524.01Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.8942 (9) ŵ = 10.13 mm1
b = 11.6784 (10) ÅT = 100 K
c = 12.2866 (11) Å0.20 × 0.15 × 0.15 mm
β = 95.772 (5)°
Data collection top
Bruker APEXII CCD
diffractometer
4101 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
3699 reflections with I > 2σ(I)
Tmin = 0.182, Tmax = 0.227Rint = 0.032
12293 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0230 restraints
wR(F2) = 0.049H-atom parameters constrained
S = 1.00Δρmax = 0.83 e Å3
4101 reflectionsΔρmin = 1.15 e Å3
174 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Au10.910926 (11)0.846230 (10)0.536181 (9)0.00895 (4)
Cl11.05716 (8)0.80777 (8)0.67847 (7)0.01993 (18)
Cl20.76133 (7)0.82538 (7)0.65184 (6)0.01523 (16)
Cl30.76425 (7)0.88766 (7)0.39541 (6)0.01501 (16)
Cl41.05950 (7)0.86081 (7)0.41815 (7)0.01552 (16)
N10.7935 (2)0.0942 (2)0.0534 (2)0.0096 (5)
N20.9773 (2)0.2313 (2)0.0264 (2)0.0102 (5)
H2N0.92240.23230.06760.012*
C10.8500 (3)0.0735 (3)0.0370 (2)0.0089 (6)
C20.6953 (3)0.0310 (3)0.0722 (2)0.0107 (6)
C30.6523 (3)0.0561 (3)0.0007 (3)0.0136 (6)
H3A0.58320.10100.01580.016*
C40.7107 (3)0.0771 (3)0.0928 (3)0.0154 (7)
H4A0.68180.13610.14220.018*
C50.8112 (3)0.0112 (3)0.1130 (3)0.0131 (6)
H5A0.85260.02310.17660.016*
C60.6349 (3)0.0588 (3)0.1736 (3)0.0146 (7)
H6A0.69780.06350.23630.022*
H6B0.57540.00130.18670.022*
H6C0.59200.13250.16400.022*
C70.9564 (3)0.1483 (3)0.0502 (3)0.0098 (6)
C81.0677 (3)0.3099 (3)0.0276 (3)0.0129 (6)
C91.1446 (3)0.3059 (3)0.0547 (3)0.0144 (7)
H9A1.20880.36050.05710.017*
C101.1274 (3)0.2212 (3)0.1343 (3)0.0148 (7)
H10A1.18080.21830.19080.018*
C111.0340 (3)0.1407 (3)0.1328 (3)0.0124 (6)
H11A1.02340.08220.18670.015*
C121.0788 (3)0.3951 (3)0.1189 (3)0.0185 (7)
H12A1.14310.45100.10670.028*
H12B1.10070.35550.18850.028*
H12C0.99990.43480.12150.028*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Au10.00970 (6)0.00822 (7)0.00884 (6)0.00079 (4)0.00044 (4)0.00109 (4)
Cl10.0138 (4)0.0335 (5)0.0120 (4)0.0015 (4)0.0011 (3)0.0048 (3)
Cl20.0142 (4)0.0191 (4)0.0129 (3)0.0038 (3)0.0041 (3)0.0045 (3)
Cl30.0141 (4)0.0159 (4)0.0143 (3)0.0012 (3)0.0021 (3)0.0022 (3)
Cl40.0134 (4)0.0201 (4)0.0136 (4)0.0027 (3)0.0039 (3)0.0017 (3)
N10.0119 (13)0.0076 (13)0.0093 (12)0.0009 (10)0.0004 (10)0.0012 (10)
N20.0088 (12)0.0109 (13)0.0113 (12)0.0010 (10)0.0022 (10)0.0012 (10)
C10.0084 (14)0.0084 (14)0.0098 (13)0.0040 (11)0.0010 (11)0.0008 (11)
C20.0134 (15)0.0090 (15)0.0096 (13)0.0033 (12)0.0002 (11)0.0027 (12)
C30.0116 (15)0.0122 (16)0.0167 (15)0.0024 (13)0.0002 (12)0.0004 (13)
C40.0167 (16)0.0137 (16)0.0153 (15)0.0034 (13)0.0009 (13)0.0062 (13)
C50.0175 (16)0.0119 (16)0.0099 (14)0.0000 (13)0.0022 (12)0.0024 (12)
C60.0161 (16)0.0156 (17)0.0125 (15)0.0028 (13)0.0036 (12)0.0015 (13)
C70.0099 (14)0.0092 (15)0.0099 (14)0.0004 (12)0.0013 (11)0.0001 (12)
C80.0138 (15)0.0088 (15)0.0157 (15)0.0023 (13)0.0009 (12)0.0009 (12)
C90.0104 (15)0.0160 (17)0.0167 (16)0.0015 (13)0.0004 (13)0.0040 (13)
C100.0125 (15)0.0185 (17)0.0137 (15)0.0027 (13)0.0027 (12)0.0033 (13)
C110.0143 (15)0.0129 (16)0.0098 (14)0.0010 (13)0.0006 (12)0.0008 (12)
C120.0186 (17)0.0157 (17)0.0215 (17)0.0050 (14)0.0032 (14)0.0072 (14)
Geometric parameters (Å, º) top
Au1—Cl22.2804 (8)C4—H4A0.9500
Au1—Cl32.2854 (8)C5—H5A0.9500
Au1—Cl42.2856 (8)C6—H6A0.9800
Au1—Cl12.2882 (8)C6—H6B0.9800
N1—C21.339 (4)C6—H6C0.9800
N1—C11.345 (4)C7—C111.388 (5)
N2—C81.345 (4)C8—C91.378 (5)
N2—C71.353 (4)C8—C121.496 (5)
N2—H2N0.8221C9—C101.390 (5)
C1—C51.396 (4)C9—H9A0.9500
C1—C71.474 (4)C10—C111.387 (5)
C2—C31.395 (4)C10—H10A0.9500
C2—C61.502 (4)C11—H11A0.9500
C3—C41.390 (5)C12—H12A0.9800
C3—H3A0.9500C12—H12B0.9800
C4—C51.382 (5)C12—H12C0.9800
Cl2—Au1—Cl390.29 (3)C2—C6—H6B109.5
Cl2—Au1—Cl4178.02 (3)H6A—C6—H6B109.5
Cl3—Au1—Cl489.42 (3)C2—C6—H6C109.5
Cl2—Au1—Cl189.38 (3)H6A—C6—H6C109.5
Cl3—Au1—Cl1179.00 (3)H6B—C6—H6C109.5
Cl4—Au1—Cl190.94 (3)N2—C7—C11118.8 (3)
C2—N1—C1118.9 (3)N2—C7—C1115.3 (3)
C8—N2—C7124.6 (3)C11—C7—C1125.8 (3)
C8—N2—H2N124.1N2—C8—C9117.8 (3)
C7—N2—H2N110.9N2—C8—C12117.8 (3)
N1—C1—C5123.1 (3)C9—C8—C12124.3 (3)
N1—C1—C7114.5 (3)C8—C9—C10119.5 (3)
C5—C1—C7122.4 (3)C8—C9—H9A120.3
N1—C2—C3121.1 (3)C10—C9—H9A120.3
N1—C2—C6116.6 (3)C11—C10—C9121.3 (3)
C3—C2—C6122.2 (3)C11—C10—H10A119.3
C4—C3—C2119.8 (3)C9—C10—H10A119.3
C4—C3—H3A120.1C10—C11—C7117.9 (3)
C2—C3—H3A120.1C10—C11—H11A121.1
C5—C4—C3119.2 (3)C7—C11—H11A121.1
C5—C4—H4A120.4C8—C12—H12A109.5
C3—C4—H4A120.4C8—C12—H12B109.5
C4—C5—C1117.8 (3)H12A—C12—H12B109.5
C4—C5—H5A121.1C8—C12—H12C109.5
C1—C5—H5A121.1H12A—C12—H12C109.5
C2—C6—H6A109.5H12B—C12—H12C109.5
C2—N1—C1—C50.0 (4)N1—C1—C7—N23.9 (4)
C2—N1—C1—C7179.6 (3)C5—C1—C7—N2175.6 (3)
C1—N1—C2—C30.8 (4)N1—C1—C7—C11176.4 (3)
C1—N1—C2—C6179.2 (3)C5—C1—C7—C114.1 (5)
N1—C2—C3—C41.0 (5)C7—N2—C8—C90.0 (5)
C6—C2—C3—C4179.1 (3)C7—N2—C8—C12179.4 (3)
C2—C3—C4—C50.3 (5)N2—C8—C9—C100.8 (5)
C3—C4—C5—C10.6 (5)C12—C8—C9—C10178.6 (3)
N1—C1—C5—C40.7 (5)C8—C9—C10—C110.3 (5)
C7—C1—C5—C4179.7 (3)C9—C10—C11—C71.0 (5)
C8—N2—C7—C111.3 (5)N2—C7—C11—C101.8 (4)
C8—N2—C7—C1178.4 (3)C1—C7—C11—C10177.9 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2N···Cl3i0.822.803.419 (2)134
C4—H4A···Cl2ii0.952.793.434 (4)126
Symmetry codes: (i) x+3/2, y1/2, z+1/2; (ii) x, y1, z1.

Experimental details

Crystal data
Chemical formula(C12H13N2)[AuCl4]
Mr524.01
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)10.8942 (9), 11.6784 (10), 12.2866 (11)
β (°) 95.772 (5)
V3)1555.3 (2)
Z4
Radiation typeMo Kα
µ (mm1)10.13
Crystal size (mm)0.20 × 0.15 × 0.15
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.182, 0.227
No. of measured, independent and
observed [I > 2σ(I)] reflections
12293, 4101, 3699
Rint0.032
(sin θ/λ)max1)0.682
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.023, 0.049, 1.00
No. of reflections4101
No. of parameters174
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.83, 1.15

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), XP in SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2006).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2N···Cl3i0.822.803.419 (2)134
C4—H4A···Cl2ii0.952.793.434 (4)126
Symmetry codes: (i) x+3/2, y1/2, z+1/2; (ii) x, y1, z1.
 

Acknowledgements

We thank the Iranian National Science and Research Foundation (grant No. 89002417) and the Islamic Azad University, North Tehran Branch, for financial support.

References

First citationAbedi, A., Bahrami Shabestari, A. & Amani, V. (2008). Acta Cryst. E64, o990.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAbedi, A., Dabbaghi, A. & Amani, V. (2011). Acta Cryst. E67, m1375–m1376.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAmani, V., Safari, N. & Khavasi, H. R. (2010). Acta Cryst. E66, m345.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCalleja, M., Johnson, K., Belcher, W. J. & Steed, W. (2001). Inorg. Chem. 40, 4978–4985.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFazaeli, Y., Amani, V., Amini, M. M. & Khavasi, H. R. (2010). Acta Cryst. E66, m212.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHasan, M., Kozhevnikov, I. V., Siddiqu, M. R. H., Steiner, A. & Winterton, N. (1999). Inorg. Chem. 38, 5637–5641.  Web of Science CSD CrossRef CAS Google Scholar
First citationHojjat Kashani, L., Yousefi, M., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m840–m841.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJohnson, K. & Steed, J. W. (1998). Chem. Commun. pp. 1479–1480.  Web of Science CSD CrossRef Google Scholar
First citationKalateh, K., Ebadi, A., Abedi, A., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1267–m1268.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSafari, N., Amani, V., Notash, B. & Ng, S. W. (2009). Acta Cryst. E65, m344.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYap, G. P. A., Rheingold, A. R., Das, P. & Crabtree, R. H. (1995). Inorg. Chem. 34, 3474–3476.  CSD CrossRef CAS Web of Science Google Scholar
First citationYıldırım, S. Ö., Akkurt, M., Safari, N., Abedi, A., Amani, V. & McKee, V. (2009a). Acta Cryst. E65, m479–m480.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYıldırım, S. Ö., Akkurt, M., Safari, N., Amani, V. & McKee, V. (2009b). Acta Cryst. E65, m491–m492.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhang, X.-P., Yang, G. & Ng, S. W. (2006). Acta Cryst. E62, m2018–m2020.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds