metal-organic compounds
{(S)-2-[({2-[1-(Anthracen-9-ylmethyl)pyrrolidine-2-carboxamido]phenyl}(phenyl)methylidene)amino]acetato(2−)-κ4N,N′,N′′,O1}nickel(II)
aDepartment of General and Inorganic Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 53210 Pardubice, Czech Republic, and bNa Klínku 1082, 530 06 Pardubice, Czech Republic
*Correspondence e-mail: zdenka.padelkova@upce.cz
The title compound, [Ni(C35H29N3O3)], includes a Schiff base ligand derived from (S)-1-[(anthracen-9-yl)methyl]-N-(2-benzoylphenyl)pyrrolidine-2-carboxamide and glycine. The NiII atom is coordinated by three N atoms [Ni—N = 1.937 (3), 1.850 (3) and 1.850 (3) Å] and one O atom [Ni—O = 1.859 (2) Å], resulting in a pseudo-square-planar coordination environment.
Related literature
For preparation and evaluation of similar compounds in model reactions, see: Belokon et al. (1988); Kožíšek et al. (2004); Popkov et al. (2002, 2010). For an overview of application procedures, see: Popkov et al. (2005) and works cited therein. For NMR in solutions and similar highly unusual long-range spin–spin interactions, see: Jirman et al. (1998); Langer et al. (2007); Popkov et al. (1998, 2003). For the review of applications in positron emission tomography (PET), see: Popkov & De Spiegeleer (2012).
Experimental
Crystal data
|
Data collection: COLLECT (Hooft, 1998) and DENZO (Otwinowski & Minor, 1997); cell COLLECT and DENZO; data reduction: COLLECT and DENZO; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.
Supporting information
https://doi.org/10.1107/S1600536812026827/im2378sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536812026827/im2378Isup2.hkl
The title compound has been prepared according to a procedure described elsewhere (Popkov et al., 2010). Crystals suitable for the measurement were obtained by slow evaporation of the solvent from a solution of the title compound in toluene/methanol (2:1).
Hydrogen atoms were mostly localized on a difference Fourier map, however to ensure uniformity of treatment of crystal, all hydrogen were recalculated into idealized positions (riding model) and assigned temperature factors Uiso(H) = 1.2 Ueq(pivot atom) or of 1.5 Ueq for the methyl moiety with C-H = 0.97, 0.98 and 0.93 Å for methylene, methine and hydrogen atoms at ain aromatic ring, respectively.
Preparation of carbon-11 and fluorine-18 labelled amino acids for positron emission tomography (PET) is a big challenge for radiochemists. Due to time constrains brought by short half-life of the both isotopes, chromatographic separation steps should be avoided in PET radiosyntheses unless absolutely necessary (Popkov & De Spiegeleer (2012)). In order to meet this requirement we have been developing enantiospecific and highly enantioselective amino acid synthons based on Belokon's nickel(II) complexes (Belokon, et al., 1988). We already demonstrated the origin of the high stereoselectivity of the incorporation of amino acid side chains into these synthons. Intramolecular electrostatic interaction of the (substituted) benzyl ring and the nickel atom (Kožíšek et al., 2004) play a very important role as well as steric shielding by ortho-substituents of the benzyl ring (Popkov, et al., 2002). In this communication we describe the
of the nickel(II) complex with an electron-rich (9-antracenyl)methyl substituent at the nitrogen atom of the proline residue due to the fact that the Schiff base ligand was derived from (S)-N-(2-benzoylphenyl)1-(9-antracenyl)methylpyrrolidine-2-carboxamide and glycine (AMGK). This structure is a candidate for charge density measurement. Recently, we have shown such complexes to be very efficient synthons of glycine or alanine for the preparation of radiotracers for PET (Popkov et al., 2010). Similar complexes demonstrated highly unusual long-range spin-spin interactions in 13C-13C and 15N-13C NMR spectra (Jirman et al., 1998; Popkov et al., 1998; Langer et al., 2007). These interactions have been attributed to the influence of a diffuse electron cloud from the benzyl group (Popkov et al., 2003). We expect such interactions to be more pronounced in AMGK. For the future charge density measurement it is important that the conformation of AMGK described in this communication is similar to the conformation of the NiII complex of Schiff base of (S)-N-(2-benzoylphenyl)-1-benzylpyrrolidine-2-carboxamide and glycine (GK) (Popkov et al., 2003) which is the simplest complex in this class and which was comprehensively studied by diffraction of X-rays and by NMR in solutions (Popkov et al., 1998; Kožíšek et al., 2004). In the solid state both complexes exhibit no intra- or intermolecular hydrogen bonds. The crystal packing is therefore only determined by weak interactions. Packing of the molecules in both crystals as well as the conformations are very similar, although the conformations of the molecules themselves differ. In the [Ni(GK)] complex intramolecular interactions are weaker as exemplified by the distance Ni-C22 (2.9282 (17) Å) and the angles Ni-N1-C21 (107.53 (9)°) and N1-C21-C22 (114.04 (13)°), respectively. In the complex [Ni(AMGK)] (Fig. 1) much stronger intramolecular interactions are observed shown by the distance Ni-C22 (3.181 (3) Å) and the angles Ni-N1-C21 (111.82 (19)°) and N1-C21-C22 (114.9 (2)°). Bulkiness of the anthranylmethyl group practically does not change the conformation of the molecule. The interatomic distance Ni-C22 in the more sterically hindered complex is just 0.253Å longer which is not too big difference compared to the published data for (substituted) analogues of GK (Popkov et al. (2003)). MP2 ab initio modelling of the interactions is in progress.For preparation and evaluation of similar compounds in model reactions, see: Belokon et al. (1988); Kožíšek et al. (2004); Popkov et al. (2002, 2010). For an overview of application procedures, see: Popkov et al. (2005) and works cited therein. For NMR in solutions and similar highly unusual long-range spin–spin interactions, see: Jirman et al. (1998); Langer et al. (2007); Popkov et al. (1998, 2003). For the review of applications in positron emission tomography (PET), see: Popkov & De Spiegeleer (2012).
Data collection: COLLECT (Hooft, 1998) and DENZO (Otwinowski & Minor, 1997); cell
COLLECT (Hooft, 1998) and DENZO (Otwinowski & Minor, 1997); data reduction: COLLECT (Hooft, 1998) and DENZO (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).Fig. 1. Molecular structure of the title compounds with displacement ellipsoids shown at the 50% probability level. H atoms are shown as spheres with arbitrary radii. |
[Ni(C35H29N3O3)] | F(000) = 1248 |
Mr = 598.32 | Dx = 1.444 Mg m−3 |
Orthorhombic, P212121 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2ac 2ab | Cell parameters from 23827 reflections |
a = 8.9080 (5) Å | θ = 1–27.5° |
b = 16.5249 (12) Å | µ = 0.75 mm−1 |
c = 18.6981 (13) Å | T = 150 K |
V = 2752.4 (3) Å3 | Block, red |
Z = 4 | 0.31 × 0.26 × 0.14 mm |
Bruker–Nonius KappaCCD area-detector diffractometer | 6120 independent reflections |
Radiation source: fine-focus sealed tube | 5037 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.071 |
Detector resolution: 9.091 pixels mm-1 | θmax = 27.5°, θmin = 1.6° |
φ and ω scans to fill the Ewald sphere | h = −11→10 |
Absorption correction: gaussian (Coppens, 1970) | k = −19→21 |
Tmin = 0.856, Tmax = 0.925 | l = −22→24 |
23768 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.044 | H-atom parameters constrained |
wR(F2) = 0.087 | w = 1/[σ2(Fo2) + (0.0124P)2 + 2.2393P] where P = (Fo2 + 2Fc2)/3 |
S = 1.19 | (Δ/σ)max = 0.001 |
6120 reflections | Δρmax = 0.32 e Å−3 |
379 parameters | Δρmin = −0.38 e Å−3 |
0 restraints | Absolute structure: Flack (1983), 2615 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: −0.019 (14) |
[Ni(C35H29N3O3)] | V = 2752.4 (3) Å3 |
Mr = 598.32 | Z = 4 |
Orthorhombic, P212121 | Mo Kα radiation |
a = 8.9080 (5) Å | µ = 0.75 mm−1 |
b = 16.5249 (12) Å | T = 150 K |
c = 18.6981 (13) Å | 0.31 × 0.26 × 0.14 mm |
Bruker–Nonius KappaCCD area-detector diffractometer | 6120 independent reflections |
Absorption correction: gaussian (Coppens, 1970) | 5037 reflections with I > 2σ(I) |
Tmin = 0.856, Tmax = 0.925 | Rint = 0.071 |
23768 measured reflections |
R[F2 > 2σ(F2)] = 0.044 | H-atom parameters constrained |
wR(F2) = 0.087 | Δρmax = 0.32 e Å−3 |
S = 1.19 | Δρmin = −0.38 e Å−3 |
6120 reflections | Absolute structure: Flack (1983), 2615 Friedel pairs |
379 parameters | Absolute structure parameter: −0.019 (14) |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Ni1 | 0.24182 (5) | 0.29142 (2) | 0.341302 (19) | 0.01922 (9) | |
O2 | 0.3360 (2) | 0.30227 (14) | 0.42952 (11) | 0.0254 (5) | |
N3 | 0.0779 (3) | 0.34255 (16) | 0.38193 (14) | 0.0205 (6) | |
N1 | 0.4180 (3) | 0.24291 (16) | 0.29833 (14) | 0.0210 (6) | |
N2 | 0.1482 (3) | 0.27289 (15) | 0.25450 (14) | 0.0211 (6) | |
O3 | 0.2972 (2) | 0.34356 (15) | 0.54199 (12) | 0.0308 (6) | |
O1 | 0.1528 (3) | 0.17305 (14) | 0.16634 (15) | 0.0376 (6) | |
C7 | −0.0029 (4) | 0.3172 (2) | 0.15323 (19) | 0.0258 (7) | |
H7 | 0.0546 | 0.2854 | 0.1227 | 0.031* | |
C14 | −0.2558 (4) | 0.36460 (18) | 0.43374 (16) | 0.0243 (6) | |
H14 | −0.2499 | 0.3085 | 0.4308 | 0.029* | |
C5 | 0.2084 (3) | 0.2090 (2) | 0.21725 (17) | 0.0246 (7) | |
C20 | 0.2548 (4) | 0.33210 (17) | 0.48055 (15) | 0.0226 (6) | |
C18 | −0.1673 (4) | 0.4966 (2) | 0.3992 (2) | 0.0295 (8) | |
H18 | −0.1027 | 0.5289 | 0.3726 | 0.035* | |
C12 | −0.0396 (3) | 0.37223 (18) | 0.34982 (18) | 0.0210 (7) | |
C13 | −0.1571 (4) | 0.41254 (19) | 0.39428 (17) | 0.0210 (7) | |
C6 | 0.0284 (4) | 0.3172 (2) | 0.22744 (18) | 0.0216 (7) | |
C21 | 0.5180 (3) | 0.3056 (2) | 0.26366 (17) | 0.0249 (7) | |
H21A | 0.5682 | 0.3362 | 0.3009 | 0.030* | |
H21B | 0.5947 | 0.2777 | 0.2364 | 0.030* | |
C4 | 0.3570 (4) | 0.18159 (19) | 0.24694 (18) | 0.0248 (7) | |
H4 | 0.4284 | 0.1733 | 0.2078 | 0.030* | |
C22 | 0.4380 (4) | 0.3641 (2) | 0.21447 (18) | 0.0258 (8) | |
C2 | 0.4126 (4) | 0.1213 (2) | 0.36427 (19) | 0.0315 (8) | |
H2A | 0.3359 | 0.1345 | 0.3992 | 0.038* | |
H2B | 0.4709 | 0.0757 | 0.3816 | 0.038* | |
C15 | −0.3628 (4) | 0.4004 (2) | 0.47780 (19) | 0.0300 (8) | |
H15 | −0.4290 | 0.3684 | 0.5039 | 0.036* | |
C11 | −0.0600 (4) | 0.36713 (19) | 0.27272 (17) | 0.0210 (7) | |
C9 | −0.2021 (4) | 0.4135 (2) | 0.16876 (19) | 0.0297 (8) | |
H9 | −0.2780 | 0.4452 | 0.1493 | 0.036* | |
C1 | 0.5114 (3) | 0.1935 (2) | 0.34910 (18) | 0.0258 (7) | |
H1A | 0.5331 | 0.2235 | 0.3925 | 0.031* | |
H1B | 0.6051 | 0.1771 | 0.3270 | 0.031* | |
C16 | −0.3702 (4) | 0.4840 (2) | 0.4825 (2) | 0.0352 (9) | |
H16 | −0.4409 | 0.5080 | 0.5123 | 0.042* | |
C8 | −0.1158 (4) | 0.3641 (2) | 0.12543 (19) | 0.0291 (8) | |
H8 | −0.1348 | 0.3628 | 0.0765 | 0.035* | |
C30 | 0.3486 (5) | 0.4049 (2) | 0.0956 (2) | 0.0354 (9) | |
C10 | −0.1745 (4) | 0.4141 (2) | 0.24071 (19) | 0.0262 (7) | |
H10 | −0.2332 | 0.4471 | 0.2697 | 0.031* | |
C24 | 0.3850 (5) | 0.4572 (2) | 0.3174 (2) | 0.0379 (10) | |
H24 | 0.4428 | 0.4251 | 0.3476 | 0.045* | |
C35 | 0.4320 (4) | 0.3507 (2) | 0.13999 (18) | 0.0276 (8) | |
C19 | 0.0938 (4) | 0.3502 (2) | 0.45967 (17) | 0.0264 (8) | |
H19A | 0.0265 | 0.3128 | 0.4835 | 0.032* | |
H19B | 0.0678 | 0.4047 | 0.4743 | 0.032* | |
C34 | 0.5118 (4) | 0.2865 (3) | 0.10405 (19) | 0.0364 (8) | |
H34 | 0.5675 | 0.2500 | 0.1310 | 0.044* | |
C28 | 0.2807 (4) | 0.4858 (2) | 0.1981 (2) | 0.0341 (9) | |
C23 | 0.3690 (4) | 0.4337 (2) | 0.2440 (2) | 0.0283 (8) | |
C3 | 0.3427 (4) | 0.1027 (2) | 0.2911 (2) | 0.0319 (8) | |
H3A | 0.2380 | 0.0877 | 0.2963 | 0.038* | |
H3B | 0.3956 | 0.0586 | 0.2679 | 0.038* | |
C17 | −0.2732 (5) | 0.5318 (2) | 0.4430 (2) | 0.0355 (9) | |
H17 | −0.2786 | 0.5878 | 0.4464 | 0.043* | |
C25 | 0.3180 (5) | 0.5244 (2) | 0.3438 (3) | 0.0540 (12) | |
H25 | 0.3341 | 0.5394 | 0.3911 | 0.065* | |
C33 | 0.5074 (5) | 0.2784 (3) | 0.0321 (2) | 0.0535 (12) | |
H33 | 0.5601 | 0.2363 | 0.0107 | 0.064* | |
C31 | 0.3485 (6) | 0.3928 (3) | 0.0199 (2) | 0.0557 (13) | |
H31 | 0.2938 | 0.4279 | −0.0089 | 0.067* | |
C29 | 0.2727 (5) | 0.4695 (2) | 0.1259 (2) | 0.0407 (10) | |
H29 | 0.2140 | 0.5025 | 0.0969 | 0.049* | |
C26 | 0.2233 (6) | 0.5723 (3) | 0.2992 (3) | 0.0592 (15) | |
H26 | 0.1728 | 0.6165 | 0.3183 | 0.071* | |
C27 | 0.2067 (4) | 0.5540 (2) | 0.2292 (3) | 0.0501 (12) | |
H27 | 0.1455 | 0.5864 | 0.2009 | 0.060* | |
C32 | 0.4254 (6) | 0.3324 (3) | −0.0107 (2) | 0.0650 (15) | |
H32 | 0.4247 | 0.3262 | −0.0601 | 0.078* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ni1 | 0.02184 (17) | 0.02218 (17) | 0.01363 (16) | 0.0019 (2) | −0.00030 (18) | −0.00127 (17) |
O2 | 0.0269 (11) | 0.0340 (14) | 0.0153 (11) | 0.0000 (11) | −0.0023 (9) | −0.0030 (11) |
N3 | 0.0244 (14) | 0.0227 (14) | 0.0145 (14) | 0.0016 (11) | 0.0007 (11) | −0.0004 (11) |
N1 | 0.0241 (14) | 0.0218 (14) | 0.0170 (14) | 0.0009 (11) | 0.0001 (11) | −0.0008 (11) |
N2 | 0.0273 (14) | 0.0218 (15) | 0.0144 (13) | 0.0023 (11) | −0.0034 (11) | −0.0012 (11) |
O3 | 0.0336 (14) | 0.0419 (15) | 0.0170 (12) | −0.0017 (11) | −0.0014 (9) | −0.0034 (11) |
O1 | 0.0482 (14) | 0.0312 (13) | 0.0334 (15) | 0.0079 (11) | −0.0156 (13) | −0.0145 (12) |
C7 | 0.0321 (17) | 0.0277 (18) | 0.0176 (17) | 0.0001 (14) | −0.0030 (15) | −0.0016 (15) |
C14 | 0.0232 (15) | 0.0272 (15) | 0.0225 (15) | −0.0020 (17) | −0.0029 (16) | 0.0003 (12) |
C5 | 0.0318 (18) | 0.0224 (15) | 0.0197 (15) | 0.0027 (15) | −0.0005 (12) | −0.0036 (15) |
C20 | 0.0284 (15) | 0.0231 (14) | 0.0162 (14) | 0.0000 (17) | 0.0001 (17) | 0.0004 (11) |
C18 | 0.0340 (19) | 0.0246 (18) | 0.030 (2) | 0.0003 (16) | 0.0079 (16) | 0.0028 (16) |
C12 | 0.0255 (15) | 0.0153 (15) | 0.0220 (18) | −0.0023 (13) | 0.0019 (13) | 0.0014 (14) |
C13 | 0.0231 (16) | 0.0236 (17) | 0.0162 (16) | 0.0008 (14) | −0.0005 (13) | 0.0021 (13) |
C6 | 0.0266 (17) | 0.0208 (17) | 0.0173 (17) | −0.0006 (13) | 0.0010 (13) | −0.0006 (13) |
C21 | 0.0230 (16) | 0.032 (2) | 0.0196 (17) | −0.0019 (15) | 0.0011 (12) | −0.0032 (15) |
C4 | 0.0278 (17) | 0.0281 (18) | 0.0184 (17) | 0.0051 (14) | −0.0005 (14) | −0.0070 (14) |
C22 | 0.0250 (17) | 0.030 (2) | 0.0228 (18) | −0.0053 (15) | 0.0019 (14) | 0.0034 (15) |
C2 | 0.045 (2) | 0.0235 (19) | 0.026 (2) | 0.0072 (16) | 0.0020 (15) | 0.0050 (14) |
C15 | 0.0225 (17) | 0.045 (2) | 0.0225 (19) | −0.0059 (16) | 0.0019 (14) | 0.0027 (16) |
C11 | 0.0227 (16) | 0.0197 (17) | 0.0206 (17) | −0.0029 (13) | −0.0010 (13) | 0.0024 (13) |
C9 | 0.0333 (18) | 0.0305 (18) | 0.025 (2) | 0.0022 (14) | −0.0065 (14) | 0.0060 (16) |
C1 | 0.0287 (15) | 0.0320 (19) | 0.0165 (16) | 0.0092 (14) | −0.0006 (13) | −0.0007 (15) |
C16 | 0.0296 (19) | 0.048 (2) | 0.028 (2) | 0.0051 (17) | 0.0049 (16) | −0.0073 (18) |
C8 | 0.037 (2) | 0.032 (2) | 0.0185 (17) | 0.0005 (16) | −0.0059 (14) | 0.0037 (15) |
C30 | 0.044 (2) | 0.032 (2) | 0.029 (2) | −0.0119 (18) | −0.0077 (17) | 0.0065 (17) |
C10 | 0.0266 (17) | 0.0279 (18) | 0.0241 (19) | 0.0023 (14) | 0.0015 (14) | 0.0037 (15) |
C24 | 0.051 (2) | 0.031 (2) | 0.032 (2) | −0.0039 (18) | 0.0139 (18) | −0.0006 (17) |
C35 | 0.0278 (17) | 0.035 (2) | 0.0197 (19) | −0.0051 (15) | 0.0012 (13) | 0.0035 (14) |
C19 | 0.0296 (18) | 0.034 (2) | 0.0156 (17) | 0.0082 (15) | 0.0003 (13) | −0.0015 (14) |
C34 | 0.042 (2) | 0.045 (2) | 0.0228 (19) | −0.004 (2) | 0.0042 (15) | −0.0018 (19) |
C28 | 0.030 (2) | 0.0249 (18) | 0.047 (2) | −0.0092 (15) | 0.0032 (17) | 0.0067 (16) |
C23 | 0.0252 (17) | 0.0260 (18) | 0.034 (2) | −0.0071 (15) | 0.0066 (15) | 0.0019 (16) |
C3 | 0.033 (2) | 0.0241 (18) | 0.039 (2) | 0.0053 (16) | −0.0028 (16) | −0.0011 (16) |
C17 | 0.043 (2) | 0.0275 (17) | 0.037 (2) | 0.0073 (18) | 0.0062 (18) | −0.0041 (15) |
C25 | 0.080 (3) | 0.038 (2) | 0.043 (3) | −0.004 (2) | 0.029 (3) | −0.006 (2) |
C33 | 0.070 (3) | 0.062 (3) | 0.028 (2) | −0.003 (3) | 0.010 (2) | −0.008 (2) |
C31 | 0.080 (3) | 0.061 (3) | 0.025 (2) | −0.013 (3) | −0.018 (2) | 0.015 (2) |
C29 | 0.042 (2) | 0.035 (2) | 0.046 (2) | −0.008 (2) | −0.013 (2) | 0.0141 (17) |
C26 | 0.067 (4) | 0.033 (2) | 0.077 (4) | 0.005 (2) | 0.039 (3) | −0.002 (2) |
C27 | 0.041 (3) | 0.033 (2) | 0.076 (4) | −0.0018 (18) | 0.014 (2) | 0.013 (2) |
C32 | 0.103 (4) | 0.076 (4) | 0.015 (2) | −0.019 (3) | −0.008 (2) | 0.001 (2) |
Ni1—N2 | 1.850 (3) | C15—H15 | 0.9300 |
Ni1—N3 | 1.850 (3) | C11—C10 | 1.415 (4) |
Ni1—O2 | 1.859 (2) | C9—C10 | 1.368 (5) |
Ni1—N1 | 1.937 (3) | C9—C8 | 1.383 (5) |
O2—C20 | 1.295 (4) | C9—H9 | 0.9300 |
N3—C12 | 1.303 (4) | C1—H1A | 0.9701 |
N3—C19 | 1.466 (4) | C1—H1B | 0.9700 |
N1—C4 | 1.499 (4) | C16—C17 | 1.384 (5) |
N1—C1 | 1.503 (4) | C16—H16 | 0.9300 |
N1—C21 | 1.512 (4) | C8—H8 | 0.9300 |
N2—C5 | 1.374 (4) | C30—C29 | 1.385 (6) |
N2—C6 | 1.389 (4) | C30—C35 | 1.429 (5) |
O3—C20 | 1.224 (4) | C30—C31 | 1.431 (6) |
O1—C5 | 1.226 (4) | C10—H10 | 0.9300 |
C7—C8 | 1.372 (5) | C24—C25 | 1.354 (5) |
C7—C6 | 1.415 (5) | C24—C23 | 1.433 (5) |
C7—H7 | 0.9300 | C24—H24 | 0.9299 |
C14—C15 | 1.392 (5) | C35—C34 | 1.442 (5) |
C14—C13 | 1.395 (4) | C19—H19A | 0.9701 |
C14—H14 | 0.9299 | C19—H19B | 0.9701 |
C5—C4 | 1.505 (4) | C34—C33 | 1.353 (5) |
C20—C19 | 1.516 (5) | C34—H34 | 0.9301 |
C18—C17 | 1.378 (5) | C28—C29 | 1.379 (5) |
C18—C13 | 1.394 (5) | C28—C27 | 1.429 (6) |
C18—H18 | 0.9300 | C28—C23 | 1.447 (5) |
C12—C11 | 1.455 (4) | C3—H3A | 0.9701 |
C12—C13 | 1.493 (4) | C3—H3B | 0.9700 |
C6—C11 | 1.421 (4) | C17—H17 | 0.9299 |
C21—C22 | 1.513 (5) | C25—C26 | 1.426 (7) |
C21—H21A | 0.9700 | C25—H25 | 0.9300 |
C21—H21B | 0.9700 | C33—C32 | 1.403 (7) |
C4—C3 | 1.548 (5) | C33—H33 | 0.9300 |
C4—H4 | 0.9800 | C31—C32 | 1.339 (7) |
C22—C35 | 1.411 (5) | C31—H31 | 0.9300 |
C22—C23 | 1.417 (5) | C29—H29 | 0.9300 |
C2—C1 | 1.511 (5) | C26—C27 | 1.350 (7) |
C2—C3 | 1.534 (5) | C26—H26 | 0.9300 |
C2—H2A | 0.9701 | C27—H27 | 0.9300 |
C2—H2B | 0.9701 | C32—H32 | 0.9300 |
C15—C16 | 1.386 (5) | ||
N2—Ni1—N3 | 94.59 (12) | C10—C9—H9 | 120.7 |
N2—Ni1—O2 | 176.00 (11) | C8—C9—H9 | 120.5 |
N3—Ni1—O2 | 87.01 (11) | N1—C1—C2 | 103.0 (3) |
N2—Ni1—N1 | 86.14 (11) | N1—C1—H1A | 111.2 |
N3—Ni1—N1 | 177.26 (12) | C2—C1—H1A | 111.3 |
O2—Ni1—N1 | 92.43 (11) | N1—C1—H1B | 111.1 |
C20—O2—Ni1 | 116.0 (2) | C2—C1—H1B | 111.1 |
C12—N3—C19 | 120.2 (3) | H1A—C1—H1B | 109.2 |
C12—N3—Ni1 | 128.1 (2) | C17—C16—C15 | 120.4 (3) |
C19—N3—Ni1 | 111.7 (2) | C17—C16—H16 | 119.9 |
C4—N1—C1 | 103.8 (2) | C15—C16—H16 | 119.8 |
C4—N1—C21 | 113.7 (3) | C7—C8—C9 | 121.2 (3) |
C1—N1—C21 | 108.4 (2) | C7—C8—H8 | 119.5 |
C4—N1—Ni1 | 104.59 (19) | C9—C8—H8 | 119.2 |
C1—N1—Ni1 | 114.3 (2) | C29—C30—C35 | 120.0 (3) |
C21—N1—Ni1 | 111.8 (2) | C29—C30—C31 | 120.8 (4) |
C5—N2—C6 | 121.3 (3) | C35—C30—C31 | 119.2 (4) |
C5—N2—Ni1 | 113.3 (2) | C9—C10—C11 | 122.8 (3) |
C6—N2—Ni1 | 125.3 (2) | C9—C10—H10 | 118.5 |
C8—C7—C6 | 121.1 (3) | C11—C10—H10 | 118.7 |
C8—C7—H7 | 119.4 | C25—C24—C23 | 121.8 (4) |
C6—C7—H7 | 119.6 | C25—C24—H24 | 119.4 |
C15—C14—C13 | 120.2 (3) | C23—C24—H24 | 118.8 |
C15—C14—H14 | 119.8 | C22—C35—C30 | 119.6 (3) |
C13—C14—H14 | 120.0 | C22—C35—C34 | 123.8 (3) |
O1—C5—N2 | 127.5 (3) | C30—C35—C34 | 116.5 (3) |
O1—C5—C4 | 119.7 (3) | N3—C19—C20 | 109.3 (3) |
N2—C5—C4 | 112.8 (3) | N3—C19—H19A | 110.0 |
O3—C20—O2 | 125.3 (3) | C20—C19—H19A | 109.9 |
O3—C20—C19 | 120.2 (3) | N3—C19—H19B | 109.7 |
O2—C20—C19 | 114.4 (3) | C20—C19—H19B | 109.6 |
C17—C18—C13 | 120.3 (3) | H19A—C19—H19B | 108.3 |
C17—C18—H18 | 119.9 | C33—C34—C35 | 121.5 (4) |
C13—C18—H18 | 119.8 | C33—C34—H34 | 119.4 |
N3—C12—C11 | 122.3 (3) | C35—C34—H34 | 119.2 |
N3—C12—C13 | 118.3 (3) | C29—C28—C27 | 121.9 (4) |
C11—C12—C13 | 119.3 (3) | C29—C28—C23 | 119.6 (4) |
C18—C13—C14 | 119.3 (3) | C27—C28—C23 | 118.5 (4) |
C18—C13—C12 | 121.8 (3) | C22—C23—C24 | 123.3 (3) |
C14—C13—C12 | 118.9 (3) | C22—C23—C28 | 119.2 (3) |
N2—C6—C7 | 120.6 (3) | C24—C23—C28 | 117.5 (3) |
N2—C6—C11 | 121.0 (3) | C2—C3—C4 | 105.9 (3) |
C7—C6—C11 | 118.3 (3) | C2—C3—H3A | 110.6 |
N1—C21—C22 | 114.9 (3) | C4—C3—H3A | 110.4 |
N1—C21—H21A | 108.8 | C2—C3—H3B | 110.5 |
C22—C21—H21A | 108.6 | C4—C3—H3B | 110.7 |
N1—C21—H21B | 108.4 | H3A—C3—H3B | 108.7 |
C22—C21—H21B | 108.4 | C18—C17—C16 | 120.2 (3) |
H21A—C21—H21B | 107.5 | C18—C17—H17 | 119.7 |
N1—C4—C5 | 110.6 (3) | C16—C17—H17 | 120.0 |
N1—C4—C3 | 104.9 (3) | C24—C25—C26 | 120.1 (5) |
C5—C4—C3 | 112.2 (3) | C24—C25—H25 | 119.8 |
N1—C4—H4 | 109.7 | C26—C25—H25 | 120.0 |
C5—C4—H4 | 109.7 | C34—C33—C32 | 121.3 (5) |
C3—C4—H4 | 109.6 | C34—C33—H33 | 119.2 |
C35—C22—C23 | 119.7 (3) | C32—C33—H33 | 119.5 |
C35—C22—C21 | 121.2 (3) | C32—C31—C30 | 121.8 (4) |
C23—C22—C21 | 119.1 (3) | C32—C31—H31 | 119.1 |
C1—C2—C3 | 103.1 (3) | C30—C31—H31 | 119.1 |
C1—C2—H2A | 111.0 | C28—C29—C30 | 121.7 (4) |
C3—C2—H2A | 111.1 | C28—C29—H29 | 119.1 |
C1—C2—H2B | 111.3 | C30—C29—H29 | 119.3 |
C3—C2—H2B | 111.1 | C27—C26—C25 | 120.5 (4) |
H2A—C2—H2B | 109.1 | C27—C26—H26 | 119.7 |
C16—C15—C14 | 119.6 (3) | C25—C26—H26 | 119.8 |
C16—C15—H15 | 120.2 | C26—C27—C28 | 121.4 (4) |
C14—C15—H15 | 120.2 | C26—C27—H27 | 119.2 |
C10—C11—C6 | 117.8 (3) | C28—C27—H27 | 119.5 |
C10—C11—C12 | 118.5 (3) | C31—C32—C33 | 119.8 (4) |
C6—C11—C12 | 123.7 (3) | C31—C32—H32 | 120.1 |
C10—C9—C8 | 118.8 (3) | C33—C32—H32 | 120.1 |
Experimental details
Crystal data | |
Chemical formula | [Ni(C35H29N3O3)] |
Mr | 598.32 |
Crystal system, space group | Orthorhombic, P212121 |
Temperature (K) | 150 |
a, b, c (Å) | 8.9080 (5), 16.5249 (12), 18.6981 (13) |
V (Å3) | 2752.4 (3) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.75 |
Crystal size (mm) | 0.31 × 0.26 × 0.14 |
Data collection | |
Diffractometer | Bruker–Nonius KappaCCD area-detector |
Absorption correction | Gaussian (Coppens, 1970) |
Tmin, Tmax | 0.856, 0.925 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 23768, 6120, 5037 |
Rint | 0.071 |
(sin θ/λ)max (Å−1) | 0.650 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.044, 0.087, 1.19 |
No. of reflections | 6120 |
No. of parameters | 379 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.32, −0.38 |
Absolute structure | Flack (1983), 2615 Friedel pairs |
Absolute structure parameter | −0.019 (14) |
Computer programs: COLLECT (Hooft, 1998) and DENZO (Otwinowski & Minor, 1997), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).
Acknowledgements
ZP and MN would like to thank the Faculty of Chemical Technology, University of Pardubice, for financial support of this work.
References
Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435. CrossRef Web of Science IUCr Journals Google Scholar
Belokon, Y. N., Bakhmutov, V. I., Chernoglazova, N. I., Kochetkov, K. A., Vitt, S. V., Garbalinskaya, N. S. & Belikov, V. M. (1988). J. Chem. Soc. Perkin Trans. 1, pp. 305–312. CrossRef Web of Science Google Scholar
Coppens, P. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall & C. P. Huber, pp. 255–270. Copenhagen: Munksgaard. Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Hooft, R. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Jirman, J., Nádvorník, M., Sopková, J. & Popkov, A. (1998). Magn. Reson. Chem. 36, 351–355. CrossRef CAS Google Scholar
Kožíšek, J., Fronc, M., Skubák, P., Popkov, A., Breza, M., Fuess, H. & Paulmann, C. (2004). Acta Cryst. A60, 510–516. Web of Science CSD CrossRef IUCr Journals Google Scholar
Langer, V., Popkov, A., Nádvorník, M. & Lyčka, A. (2007). Polyhedron, 26, 911–917. Web of Science CSD CrossRef CAS Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Popkov, A., Císařová, I., Sopková, J., Jirman, J., Lyčka, A. & Kochetkov, K. A. (2005). Coll. Czech. Chem. Commun. 70, 1397–1410. Web of Science CSD CrossRef CAS Google Scholar
Popkov, A. & De Spiegeleer, B. (2012). Dalton Trans. 41, 1430–1440. Web of Science CrossRef CAS PubMed Google Scholar
Popkov, A., Gee, A. D., Nádvorník, M. & Lyčka, A. (2002). Transition Met. Chem. 27, 884–887. Web of Science CrossRef CAS Google Scholar
Popkov, A., Hanusek, J., Čermák, J., Langer, V., Jirásko, R., Holčapek, M. & Nádvorník, M. (2010). J. Radioanal. Nucl. Chem. 285, 621–626. Web of Science CrossRef CAS Google Scholar
Popkov, A., Jirman, J., Nádvorník, M. & Manorik, P. A. (1998). Coll. Czech. Chem. Commun. 63, 990–994. Web of Science CrossRef CAS Google Scholar
Popkov, A., Langer, V., Manorik, P. A. & Weidlich, T. (2003). Transition Met. Chem. 28, 475–481. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Preparation of carbon-11 and fluorine-18 labelled amino acids for positron emission tomography (PET) is a big challenge for radiochemists. Due to time constrains brought by short half-life of the both isotopes, chromatographic separation steps should be avoided in PET radiosyntheses unless absolutely necessary (Popkov & De Spiegeleer (2012)). In order to meet this requirement we have been developing enantiospecific and highly enantioselective amino acid synthons based on Belokon's nickel(II) complexes (Belokon, et al., 1988). We already demonstrated the origin of the high stereoselectivity of the incorporation of amino acid side chains into these synthons. Intramolecular electrostatic interaction of the (substituted) benzyl ring and the nickel atom (Kožíšek et al., 2004) play a very important role as well as steric shielding by ortho-substituents of the benzyl ring (Popkov, et al., 2002). In this communication we describe the crystal structure of the nickel(II) complex with an electron-rich (9-antracenyl)methyl substituent at the nitrogen atom of the proline residue due to the fact that the Schiff base ligand was derived from (S)-N-(2-benzoylphenyl)1-(9-antracenyl)methylpyrrolidine-2-carboxamide and glycine (AMGK). This structure is a candidate for charge density measurement. Recently, we have shown such complexes to be very efficient synthons of glycine or alanine for the preparation of radiotracers for PET (Popkov et al., 2010). Similar complexes demonstrated highly unusual long-range spin-spin interactions in 13C-13C and 15N-13C NMR spectra (Jirman et al., 1998; Popkov et al., 1998; Langer et al., 2007). These interactions have been attributed to the influence of a diffuse electron cloud from the benzyl group (Popkov et al., 2003). We expect such interactions to be more pronounced in AMGK. For the future charge density measurement it is important that the conformation of AMGK described in this communication is similar to the conformation of the NiII complex of Schiff base of (S)-N-(2-benzoylphenyl)-1-benzylpyrrolidine-2-carboxamide and glycine (GK) (Popkov et al., 2003) which is the simplest complex in this class and which was comprehensively studied by diffraction of X-rays and by NMR in solutions (Popkov et al., 1998; Kožíšek et al., 2004). In the solid state both complexes exhibit no intra- or intermolecular hydrogen bonds. The crystal packing is therefore only determined by weak interactions. Packing of the molecules in both crystals as well as the conformations are very similar, although the conformations of the molecules themselves differ. In the [Ni(GK)] complex intramolecular interactions are weaker as exemplified by the distance Ni-C22 (2.9282 (17) Å) and the angles Ni-N1-C21 (107.53 (9)°) and N1-C21-C22 (114.04 (13)°), respectively. In the complex [Ni(AMGK)] (Fig. 1) much stronger intramolecular interactions are observed shown by the distance Ni-C22 (3.181 (3) Å) and the angles Ni-N1-C21 (111.82 (19)°) and N1-C21-C22 (114.9 (2)°). Bulkiness of the anthranylmethyl group practically does not change the conformation of the molecule. The interatomic distance Ni-C22 in the more sterically hindered complex is just 0.253Å longer which is not too big difference compared to the published data for (substituted) analogues of GK (Popkov et al. (2003)). MP2 ab initio modelling of the interactions is in progress.