metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[tetra­aqua­(μ6-9,10-dioxo-9,10-di­hydro­anthracene-1,4,5,8-tetra­carboxyl­ato)dimanganese(II)]

aDepartment of Applied Chemistry, College of Science, Nanjing University of Technology, Nanjing 210009, People's Republic of China
*Correspondence e-mail: zsp200109@126.com

(Received 25 May 2012; accepted 15 June 2012; online 20 June 2012)

The title complex, [Mn2(C18H4O10)(H2O)4]n, was synthesized from manganese(II) chloride tetra­hydrate and 9,10-dioxo-9,10-dihydro­anthracene-1,4,5,8-tetra­carb­oxy­lic acid (H4AQTC) in water. The anthraquinone unit is located about a crystallographic center of inversion. Each asymmetric unit therefore contains one MnII atom, two water ligands and one half AQTC4− anion. The MnII atom is coordinated in a distorted octa­hedral geometry by four O atoms from three AQTC4− ligands and two water O atoms. Two of the carboxyl­ate groups coordinate one MnII atom in a chelating mode, whereas the others each coordinate two MnII atoms. Each AQTC4− tetra-anion therefore coordinates six different MnII ions and, as a result, a three-dimensional coordination polymer is formed. O—H⋯O hydrogen bonds, some of them bifurcated, between water ligands and neighboring water or anthraquinone ligands are observed in the crystal structure.

Related literature

For general background to metal-organic frameworks, see: Li et al. (1999[Li, H., Eddaoudi, M., O'Keeffe, M. & Yaghi, O. M. (1999). Nature (London), 402, 276-279.], 2012[Li, J. R., Sculley, J. & Zhou, H. C. (2012). Chem. Rev. 112, 869-932.]); Cheng et al. (2010[Cheng, X. N., Xue, W. & Chen, X. M. (2010). Eur. J. Inorg. Chem. 24, 3850-3855.]); Hong et al. (2009[Hong, D. Y., Hwang, Y. K., Serre, C., Ferey, G. & Chang, J. S. (2009). Adv. Funct. Mater. 19, 1537-1552.]); Miller & Gatteschi (2011[Miller, J. S. & Gatteschi, D. (2011). Chem. Soc. Rev. 40, 3065-3066.]); Liu et al. (2010[Liu, Y. M., He, R., Wang, F. M., Lu, C. S. & Meng, Q. J. (2010). Inorg. Chem. Commun. 13, 1375-1379.]).

[Scheme 1]

Experimental

Crystal data
  • [Mn2(C18H4O10)(H2O)4]

  • Mr = 562.16

  • Monoclinic, P 21 /c

  • a = 11.2255 (16) Å

  • b = 8.4153 (13) Å

  • c = 9.7252 (14) Å

  • β = 92.355 (2)°

  • V = 917.9 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.46 mm−1

  • T = 273 K

  • 0.46 × 0.32 × 0.26 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.553, Tmax = 0.702

  • 4340 measured reflections

  • 1609 independent reflections

  • 1499 reflections with I > 2σ(I)

  • Rint = 0.065

Refinement
  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.076

  • S = 1.08

  • 1609 reflections

  • 170 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.41 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O8—H3⋯O2i 0.78 (3) 2.03 (3) 2.775 (2) 160 (3)
O8—H4⋯O3ii 0.89 (4) 1.86 (4) 2.742 (2) 174 (3)
O8—H4⋯O6ii 0.89 (4) 2.60 (3) 3.159 (2) 121 (3)
O9—H5⋯O8iii 0.81 (1) 2.03 (1) 2.832 (3) 168 (4)
O9—H6⋯O6ii 0.81 (1) 2.38 (2) 3.135 (3) 157 (5)
O9—H6⋯O7iii 0.81 (1) 2.50 (4) 3.031 (3) 124 (4)
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [x-1, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Porous solid materials, such as MOFs (metal-organic frameworks) have been widely studied for their potential applications in gas absorption, separation, catalysis and magnetic materials. Explorations of advanced porous materials for these applications are an intense subject of scientific research (Li et al.,1999; Li et al., 2012; Cheng et al., 2010; Hong et al., 2009; Miller & Gatteschi, 2011; Liu et al., 2010.) Herein we report the crystal structure of the title compound.

The molecular structure of (I) is illustrated in Fig. 1., a summary of the observed hydrogen bonds and the corresponding angles are given in Table 1.

Each asymmetric unit therefore contains one manganese(II) atom, two water ligands and one half AQTC4- ligand. The coordination sphere around manganese is distorted octahedral due to the coordination of four O atoms from three AQTC4- ligands and two O atoms from two water molecules. Two of the carboxylate groups coordinate one manganese in a chelating mode whereas the others each coordinate two manganese center. Each AQTC4- therefore coordinates six different manganese ions and as a result a three-dimensional coordination polymer is formed.

Related literature top

For general background to metal-organic frameworks, see: Li et al. (1999, 2012); Cheng et al. (2010); Hong et al. (2009); Miller & Gatteschi (2011); Liu et al. (2010).

Experimental top

A mixture of 9,10-dioxo-9,10-dihydroanthracene-1,4,5,8-tetracarboxylic acid (H4AQTC; 0.025 mmol, 9.8 mg) was added to distilled water (4 ml) and ultra-sounded for 10 min. The pH value of the mixture was then adjusted to 7.0 with sodium hydroxide (0.5 mol L-1), prior to the addition of manganese(II) chloride tetrahydrate (0.05 mmol, 9.9 mg). The reactants were placed in a Teflon-lined stainless steel vessel, heated for 3 days, and then cooled to ambient temperature over 12 h. The solution was exposed to air for three days leading to the precipitation of brown crystals (yield 10%).

Refinement top

All non-hydrogen atoms were refined anisotropically. H atoms of the H2O ligands were determined in difference Fourier maps and refined isotropically with distance restraints for O9—H5 and O9—H6 of 0.82 Å. H atoms of AQTC4- ligands calculated in idealized positions with C—H = 0.93 Å and refined as riding atoms, with Uiso(H) = 1.2Ueq(C).

Structure description top

Porous solid materials, such as MOFs (metal-organic frameworks) have been widely studied for their potential applications in gas absorption, separation, catalysis and magnetic materials. Explorations of advanced porous materials for these applications are an intense subject of scientific research (Li et al.,1999; Li et al., 2012; Cheng et al., 2010; Hong et al., 2009; Miller & Gatteschi, 2011; Liu et al., 2010.) Herein we report the crystal structure of the title compound.

The molecular structure of (I) is illustrated in Fig. 1., a summary of the observed hydrogen bonds and the corresponding angles are given in Table 1.

Each asymmetric unit therefore contains one manganese(II) atom, two water ligands and one half AQTC4- ligand. The coordination sphere around manganese is distorted octahedral due to the coordination of four O atoms from three AQTC4- ligands and two O atoms from two water molecules. Two of the carboxylate groups coordinate one manganese in a chelating mode whereas the others each coordinate two manganese center. Each AQTC4- therefore coordinates six different manganese ions and as a result a three-dimensional coordination polymer is formed.

For general background to metal-organic frameworks, see: Li et al. (1999, 2012); Cheng et al. (2010); Hong et al. (2009); Miller & Gatteschi (2011); Liu et al. (2010).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. One repeating unit of the coordination polymer, showing displacement ellipsoids at the 30% probability level. [Symmetry codes: (#1) x + 1,-y,-z + 1; (#2) x + 1,y + 1/2,-z + 1/2; (#3) x + 1,-y + 1,-z + 1; (#4) x + 1,y - 1/2,-z + 1/2.]
[Figure 2] Fig. 2. A view of the crystal structure of the title compound.
Poly[tetraaqua(µ6-9,10-dioxo-9,10-dihydroanthracene-1,4,5,8- tetracarboxylato)dimanganese(II)] top
Crystal data top
[Mn2(C18H4O10)(H2O)4]F(000) = 564
Mr = 562.16Dx = 2.034 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5133 reflections
a = 11.2255 (16) Åθ = 2.2–27.6°
b = 8.4153 (13) ŵ = 1.46 mm1
c = 9.7252 (14) ÅT = 273 K
β = 92.355 (2)°Block, brown
V = 917.9 (2) Å30.46 × 0.32 × 0.26 mm
Z = 2
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
1609 independent reflections
Radiation source: fine-focus sealed tube1499 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.065
phi and ω scansθmax = 25.0°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1213
Tmin = 0.553, Tmax = 0.702k = 107
4340 measured reflectionsl = 1111
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.076H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0357P)2 + 0.3487P]
where P = (Fo2 + 2Fc2)/3
1609 reflections(Δ/σ)max < 0.001
170 parametersΔρmax = 0.35 e Å3
2 restraintsΔρmin = 0.41 e Å3
Crystal data top
[Mn2(C18H4O10)(H2O)4]V = 917.9 (2) Å3
Mr = 562.16Z = 2
Monoclinic, P21/cMo Kα radiation
a = 11.2255 (16) ŵ = 1.46 mm1
b = 8.4153 (13) ÅT = 273 K
c = 9.7252 (14) Å0.46 × 0.32 × 0.26 mm
β = 92.355 (2)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
1609 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
1499 reflections with I > 2σ(I)
Tmin = 0.553, Tmax = 0.702Rint = 0.065
4340 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0282 restraints
wR(F2) = 0.076H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.35 e Å3
1609 reflectionsΔρmin = 0.41 e Å3
170 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.32095 (18)0.3515 (2)0.3203 (2)0.0199 (4)
C20.44180 (17)0.2999 (2)0.37593 (19)0.0182 (4)
C30.47029 (17)0.1544 (2)0.43842 (19)0.0174 (4)
C40.58569 (16)0.1290 (2)0.49497 (19)0.0168 (4)
C50.67291 (17)0.2464 (2)0.4857 (2)0.0176 (4)
C60.64515 (18)0.3863 (2)0.4181 (2)0.0214 (4)
H10.70360.46320.40810.026*
C70.53093 (18)0.4128 (2)0.3654 (2)0.0214 (4)
H20.51330.50870.32170.026*
C80.79987 (17)0.2271 (2)0.5408 (2)0.0187 (4)
C90.38273 (18)0.0223 (2)0.4344 (2)0.0173 (4)
Mn10.14215 (3)0.50978 (3)0.21336 (3)0.02054 (15)
O10.31881 (13)0.4118 (2)0.20209 (15)0.0305 (4)
O20.23044 (12)0.35278 (18)0.39148 (15)0.0261 (4)
O30.87242 (12)0.15778 (18)0.46563 (15)0.0245 (3)
O60.82943 (13)0.28802 (18)0.65405 (15)0.0274 (4)
O70.28972 (13)0.03344 (17)0.36714 (16)0.0244 (4)
O80.09489 (15)0.2961 (2)0.08600 (17)0.0267 (4)
O90.04028 (17)0.5190 (3)0.2639 (2)0.0489 (6)
H30.143 (3)0.273 (4)0.034 (3)0.053 (10)*
H40.024 (3)0.306 (4)0.042 (4)0.068 (10)*
H50.064 (3)0.590 (3)0.312 (3)0.079 (13)*
H60.091 (3)0.457 (5)0.239 (5)0.114 (17)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0197 (10)0.0151 (10)0.0247 (11)0.0006 (8)0.0031 (8)0.0011 (8)
C20.0176 (10)0.0206 (10)0.0166 (10)0.0002 (8)0.0007 (7)0.0003 (8)
C30.0157 (9)0.0201 (10)0.0163 (10)0.0020 (8)0.0004 (7)0.0001 (8)
C40.0171 (9)0.0186 (10)0.0147 (10)0.0016 (8)0.0007 (7)0.0010 (7)
C50.0172 (10)0.0191 (10)0.0163 (10)0.0015 (8)0.0002 (7)0.0031 (8)
C60.0183 (10)0.0225 (11)0.0233 (11)0.0042 (8)0.0000 (8)0.0011 (8)
C70.0223 (10)0.0191 (10)0.0225 (10)0.0012 (8)0.0008 (8)0.0042 (8)
C80.0177 (10)0.0154 (10)0.0228 (11)0.0029 (8)0.0027 (8)0.0029 (8)
C90.0158 (10)0.0183 (10)0.0178 (10)0.0016 (8)0.0002 (8)0.0015 (8)
Mn10.0173 (2)0.0225 (2)0.0215 (2)0.00180 (12)0.00320 (14)0.00052 (12)
O10.0221 (8)0.0426 (10)0.0265 (8)0.0031 (7)0.0023 (6)0.0113 (7)
O20.0205 (8)0.0280 (8)0.0299 (8)0.0030 (6)0.0035 (6)0.0038 (6)
O30.0166 (7)0.0319 (8)0.0247 (8)0.0000 (6)0.0016 (6)0.0063 (6)
O60.0260 (8)0.0289 (8)0.0266 (8)0.0003 (7)0.0069 (6)0.0097 (7)
O70.0183 (8)0.0225 (7)0.0315 (9)0.0000 (6)0.0105 (6)0.0041 (6)
O80.0185 (8)0.0339 (9)0.0276 (9)0.0005 (7)0.0007 (7)0.0065 (7)
O90.0217 (9)0.0638 (14)0.0617 (14)0.0095 (9)0.0059 (9)0.0353 (11)
Geometric parameters (Å, º) top
C1—O21.253 (3)C8—O31.260 (2)
C1—O11.256 (2)C9—O71.212 (2)
C1—C21.504 (3)C9—C4i1.483 (3)
C2—C71.386 (3)Mn1—O92.1270 (19)
C2—C31.398 (3)Mn1—O3ii2.1412 (15)
C3—C41.403 (3)Mn1—O6iii2.1508 (15)
C3—C91.483 (3)Mn1—O12.1547 (15)
C4—C51.396 (3)Mn1—O82.2350 (16)
C4—C9i1.483 (3)Mn1—O22.3637 (15)
C5—C61.378 (3)O3—Mn1iv2.1412 (15)
C5—C81.511 (3)O6—Mn1iii2.1508 (15)
C6—C71.379 (3)O8—H30.78 (3)
C6—H10.9300O8—H40.89 (4)
C7—H20.9300O9—H50.812 (10)
C8—O61.247 (2)O9—H60.809 (10)
O2—C1—O1121.11 (18)C4i—C9—C3119.05 (17)
O2—C1—C2122.96 (18)O9—Mn1—O3ii97.16 (8)
O1—C1—C2115.40 (17)O9—Mn1—O6iii87.31 (7)
C7—C2—C3118.63 (18)O3ii—Mn1—O6iii91.81 (6)
C7—C2—C1114.76 (17)O9—Mn1—O1157.30 (8)
C3—C2—C1126.59 (18)O3ii—Mn1—O1102.77 (5)
C2—C3—C4119.69 (18)O6iii—Mn1—O1102.67 (6)
C2—C3—C9120.34 (17)O9—Mn1—O887.05 (7)
C4—C3—C9119.75 (18)O3ii—Mn1—O890.52 (6)
C5—C4—C3120.36 (18)O6iii—Mn1—O8174.13 (6)
C5—C4—C9i118.84 (17)O1—Mn1—O882.05 (6)
C3—C4—C9i120.80 (17)O9—Mn1—O2103.28 (8)
C6—C5—C4119.34 (17)O3ii—Mn1—O2159.49 (5)
C6—C5—C8116.90 (17)O6iii—Mn1—O287.45 (6)
C4—C5—C8123.71 (17)O1—Mn1—O257.61 (5)
C5—C6—C7120.24 (19)O8—Mn1—O292.25 (6)
C5—C6—H1119.9C1—O1—Mn195.23 (12)
C7—C6—H1119.9C1—O2—Mn185.71 (12)
C6—C7—C2121.64 (19)C8—O3—Mn1iv135.36 (13)
C6—C7—H2119.2C8—O6—Mn1iii151.88 (14)
C2—C7—H2119.2Mn1—O8—H3114 (2)
O6—C8—O3123.22 (18)Mn1—O8—H4112 (2)
O6—C8—C5118.82 (17)H3—O8—H4110 (3)
O3—C8—C5117.82 (17)Mn1—O9—H5120 (3)
O7—C9—C4i120.01 (18)Mn1—O9—H6126 (4)
O7—C9—C3120.77 (18)H5—O9—H6114 (5)
O2—C1—C2—C7122.6 (2)C4—C5—C8—O384.0 (2)
O1—C1—C2—C749.1 (3)C2—C3—C9—O76.4 (3)
O2—C1—C2—C355.6 (3)C4—C3—C9—O7168.17 (19)
O1—C1—C2—C3132.7 (2)C2—C3—C9—C4i178.27 (17)
C7—C2—C3—C43.3 (3)C4—C3—C9—C4i7.1 (3)
C1—C2—C3—C4174.94 (18)O2—C1—O1—Mn16.2 (2)
C7—C2—C3—C9171.33 (17)C2—C1—O1—Mn1165.70 (15)
C1—C2—C3—C910.5 (3)O9—Mn1—O1—C139.0 (2)
C2—C3—C4—C51.8 (3)O3ii—Mn1—O1—C1170.17 (12)
C9—C3—C4—C5172.81 (17)O6iii—Mn1—O1—C175.34 (13)
C2—C3—C4—C9i178.11 (17)O8—Mn1—O1—C1101.11 (13)
C9—C3—C4—C9i7.3 (3)O2—Mn1—O1—C13.32 (11)
C3—C4—C5—C61.2 (3)O1—C1—O2—Mn15.63 (19)
C9i—C4—C5—C6178.86 (18)C2—C1—O2—Mn1165.63 (18)
C3—C4—C5—C8178.52 (18)O9—Mn1—O2—C1169.94 (12)
C9i—C4—C5—C81.6 (3)O3ii—Mn1—O2—C115.1 (2)
C4—C5—C6—C72.8 (3)O6iii—Mn1—O2—C1103.43 (12)
C8—C5—C6—C7179.76 (18)O1—Mn1—O2—C13.32 (11)
C5—C6—C7—C21.3 (3)O8—Mn1—O2—C182.44 (12)
C3—C2—C7—C61.8 (3)O6—C8—O3—Mn1iv168.36 (14)
C1—C2—C7—C6176.64 (19)C5—C8—O3—Mn1iv15.9 (3)
C6—C5—C8—O682.5 (2)O3—C8—O6—Mn1iii112.0 (3)
C4—C5—C8—O6100.1 (2)C5—C8—O6—Mn1iii63.7 (4)
C6—C5—C8—O393.4 (2)
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y+1/2, z+1/2; (iii) x+1, y+1, z+1; (iv) x+1, y1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O8—H3···O2v0.78 (3)2.03 (3)2.775 (2)160 (3)
O8—H4···O3vi0.89 (4)1.86 (4)2.742 (2)174 (3)
O8—H4···O6vi0.89 (4)2.60 (3)3.159 (2)121 (3)
O9—H5···O8vii0.81 (1)2.03 (1)2.832 (3)168 (4)
O9—H6···O6vi0.81 (1)2.38 (2)3.135 (3)157 (5)
O9—H6···O7vii0.81 (1)2.50 (4)3.031 (3)124 (4)
Symmetry codes: (v) x, y+1/2, z1/2; (vi) x1, y+1/2, z1/2; (vii) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Mn2(C18H4O10)(H2O)4]
Mr562.16
Crystal system, space groupMonoclinic, P21/c
Temperature (K)273
a, b, c (Å)11.2255 (16), 8.4153 (13), 9.7252 (14)
β (°) 92.355 (2)
V3)917.9 (2)
Z2
Radiation typeMo Kα
µ (mm1)1.46
Crystal size (mm)0.46 × 0.32 × 0.26
Data collection
DiffractometerBruker SMART APEX CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.553, 0.702
No. of measured, independent and
observed [I > 2σ(I)] reflections
4340, 1609, 1499
Rint0.065
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.076, 1.08
No. of reflections1609
No. of parameters170
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.35, 0.41

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O8—H3···O2i0.78 (3)2.03 (3)2.775 (2)160 (3)
O8—H4···O3ii0.89 (4)1.86 (4)2.742 (2)174 (3)
O8—H4···O6ii0.89 (4)2.60 (3)3.159 (2)121 (3)
O9—H5···O8iii0.812 (10)2.033 (13)2.832 (3)168 (4)
O9—H6···O6ii0.809 (10)2.38 (2)3.135 (3)157 (5)
O9—H6···O7iii0.809 (10)2.50 (4)3.031 (3)124 (4)
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x1, y+1/2, z1/2; (iii) x, y+1/2, z+1/2.
 

Acknowledgements

The authors thank the Center of Testing and Analysis, Nanjing University, for support.

References

First citationBruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCheng, X. N., Xue, W. & Chen, X. M. (2010). Eur. J. Inorg. Chem. 24, 3850–3855.  Web of Science CSD CrossRef Google Scholar
First citationHong, D. Y., Hwang, Y. K., Serre, C., Ferey, G. & Chang, J. S. (2009). Adv. Funct. Mater. 19, 1537–1552.  Web of Science CrossRef CAS Google Scholar
First citationLi, H., Eddaoudi, M., O'Keeffe, M. & Yaghi, O. M. (1999). Nature (London), 402, 276–279.  CAS Google Scholar
First citationLi, J. R., Sculley, J. & Zhou, H. C. (2012). Chem. Rev. 112, 869–932.  Web of Science CrossRef CAS PubMed Google Scholar
First citationLiu, Y. M., He, R., Wang, F. M., Lu, C. S. & Meng, Q. J. (2010). Inorg. Chem. Commun. 13, 1375–1379.  Web of Science CSD CrossRef CAS Google Scholar
First citationMiller, J. S. & Gatteschi, D. (2011). Chem. Soc. Rev. 40, 3065–3066.  Web of Science CrossRef PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds