organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

6-Bromo-4-(2-cyclo­hexyl­idenehydrazin-1-yl­­idene)-1-methyl-2,2-dioxo-3,4-di­hydro-1H-2λ6,1-benzo­thia­zine

aDepartment of Chemistry, Government College University, Faisalabad 38040, Pakistan, bMaterials Chemistry Laboratory, Department of Chemistry, GC University, Lahore 54000, Pakistan, cApplied Chemistry Research Centre, PCSIR Laboratories Complex, Ferozpure Road, Lahore 54600, Pakistan, and dDepartment of Chemistry, University of Gujrat, Gujrat 50781, Pakistan
*Correspondence e-mail: hafizshafique@hotmail.com

(Received 26 May 2012; accepted 2 June 2012; online 13 June 2012)

The asymmetric unit of the title compound, C15H18BrN3O2S, contains two independent mol­ecules in both of which the (thia­zine)C=N—N double bond exhibits an E conformation. The cyclo­hexyl rings adopt chair conformations while the thia­zine rings are in sofa conformations. The mean planes of these rings are oriented at dihedral angles of 64.43 (13) and 28.6 (2)° in the two independent mol­ecules while the aromatic and thia­zine rings are twisted by dihedral angles of 8.73 (8) and 13.07 (2)°, respectively. In the crystal, C—H⋯O and C—H⋯Br inter­actions connect mol­ecules into chains propagating along the a axis.

Related literature

For the synthesis of benzothia­zines and their derivatives, see: Arshad et al. (2010[Arshad, M. N., Zia-ur-Rehman, M. & Khan, I. U. (2010). Acta Cryst. E66, o1070.]); Shafiq et al. (2011a[Shafiq, M., Khan, I. U., Arshad, M. N. & Siddiqui, W. A. (2011a). Asian J. Chem. 23, 2101-2105.],b[Shafiq, M., Zia-ur-Rehman, M., Khan, I. U., Arshad, M. N. & Khan, S. A. (2011b). J. Chil. Chem. Soc. 56, 527-531.]). For their biological activity, see: Zia-ur-Rehman et al. (2009)[Zia-ur-Rehman, M., Choudary, J. A., Elsegood, M. R. J., Siddiqui, H. L. & Khan, K. M. (2009). Eur. J. Med. Chem. 44, 1311-1316.]. For related structures, see: Shafiq et al. (2011c[Shafiq, M., Khan, I. U., Zia-ur-Rehman, M., Arshad, M. N. & Asiri, A. M. (2011c). Acta Cryst. E67, o2078.],d[Shafiq, M., Khan, I. U., Zia-ur-Rehman, M., Arshad, M. N. & Asiri, A. M. (2011d). Acta Cryst. E67, o2092.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C15H18BrN3O2S

  • Mr = 384.29

  • Triclinic, [P \overline 1]

  • a = 9.9357 (2) Å

  • b = 11.2614 (3) Å

  • c = 15.8263 (3) Å

  • α = 110.625 (1)°

  • β = 91.525 (3)°

  • γ = 102.879 (4)°

  • V = 1604.85 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.70 mm−1

  • T = 296 K

  • 0.25 × 0.21 × 0.13 mm

Data collection
  • Bruker KAPPA APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.552, Tmax = 0.720

  • 28996 measured reflections

  • 7939 independent reflections

  • 4380 reflections with I > 2σ(I)

  • Rint = 0.083

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.125

  • S = 0.90

  • 7939 reflections

  • 399 parameters

  • H-atom parameters constrained

  • Δρmax = 0.64 e Å−3

  • Δρmin = −0.82 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C25—H25A⋯Br2i 0.97 2.84 3.752 (4) 157
C8—H8A⋯Br1ii 0.97 3.21 4.081 (3) 151
C18—H18⋯O1iii 0.93 2.59 3.332 (4) 137
Symmetry codes: (i) x-1, y, z; (ii) -x+1, -y+1, -z+1; (iii) -x+2, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

In perpetuation of our research regarding the synthesis of benzothiazines (Shafiq et al., 2011a), (Arshad et al., 2010), their derivatives (Shafiq et al., 2011b) and biological evaluations (Zia-ur-Rehman et al., 2009) we herein report the structural analysis of the title compound.

The present structure is closely related to 6-bromo-4-hydrazinylidene-1-methyl-3H-2λ6,1-benzothiazine-2,2-dione (Shafiq et al., 2011c) and 6-bromo-1-methyl-4-[2- (4-methylbenzylidene) hydrazinylidene]-3H-2λ6,1-benzothiazine-2,2-dione (Shafiq et al., 2011d). The crystal structure comprises of two independent molecules A (C1—C15) and B (C16—C30) per asymmetric unit. The cyclohexyl moieties adopt chair conformations with r. m. s. deviations of 0.228 (3)° and 0.223 (4)° while sofa conformations are observed for the thiazine rings with r. m. s. deviavtions of 0.235 (2)° and 0.236 (2)° in A and B, respectively (Fig. 1). The point of difference between the two molecules is the dihedral angles between the fused aromatic and thiazine rings which are 8.73 (8)° and 13.07 (2)°. Moreover, cyclohexyl rings are oriented at dihedral angles of 64.43 (13)° and 28.64 (20)° with respect to thiazine rings in molecules A and B, respectively (Fig. 2). Both thiazine rings show different total ring puckering amplitude values as QT = 0.576 Å with (θ) = 50.8 (3)° and (π) = 353.7 (4)° for molecule A and QT = 0.578 Å with (θ) = 122.6 (3)° and (π) = 186.2 (4)° for molecule B (Cremer & Pople, 1975). The molecules do not show any classical hydrogen bonding although weak intermolecular interactions of the C—H···O and C—H···Br type have been observed (Table. 1, Fig. 3).

Related literature top

For the synthesis of benzothiazines and their derivatives, see: Arshad et al. (2010); Shafiq et al. (2011a,b). For their biological activity, see: Zia-ur-Rehman et al. (2009). For related structures, see: Shafiq et al. (2011c,d). For puckering parameters, see: Cremer & Pople (1975).

Experimental top

In the synthesis of title compound, 6-Bromo-4-hydrazinylidene-1- methyl-3H-2λ6,1-benzothiazine-2,2-dione (Shafiq et al., 2011c) was subjected to react with cyclohexanone according to a literature procedure (yield: 56.7%, Shafiq et al., 2011b). The product obtained was then recrystallized from ethyl acetate by slow evaporation of the solvent to obtain suitable crystals for diffraction studies.

Refinement top

All hydrogen atoms were positioned with idealized geometry with C—H = 0.96 Å for the methyl group, C—H = 0.93 Å for aromatic and C—H = 0.97 Å for methylene groups and were refined using a riding model with Uiso(H) = 1.2 Ueq(C) for aromatic & methylene and Uiso(H) = 1.5 Ueq(C) for methyl carbon atoms. Six reflections (-1 0 1), (0 - 1 1), (0 1 0), (0 0 1), (1 0 0), (1 - 1 1) have been omitted in the final refinement as these were obscured by the beam stop.

Structure description top

In perpetuation of our research regarding the synthesis of benzothiazines (Shafiq et al., 2011a), (Arshad et al., 2010), their derivatives (Shafiq et al., 2011b) and biological evaluations (Zia-ur-Rehman et al., 2009) we herein report the structural analysis of the title compound.

The present structure is closely related to 6-bromo-4-hydrazinylidene-1-methyl-3H-2λ6,1-benzothiazine-2,2-dione (Shafiq et al., 2011c) and 6-bromo-1-methyl-4-[2- (4-methylbenzylidene) hydrazinylidene]-3H-2λ6,1-benzothiazine-2,2-dione (Shafiq et al., 2011d). The crystal structure comprises of two independent molecules A (C1—C15) and B (C16—C30) per asymmetric unit. The cyclohexyl moieties adopt chair conformations with r. m. s. deviations of 0.228 (3)° and 0.223 (4)° while sofa conformations are observed for the thiazine rings with r. m. s. deviavtions of 0.235 (2)° and 0.236 (2)° in A and B, respectively (Fig. 1). The point of difference between the two molecules is the dihedral angles between the fused aromatic and thiazine rings which are 8.73 (8)° and 13.07 (2)°. Moreover, cyclohexyl rings are oriented at dihedral angles of 64.43 (13)° and 28.64 (20)° with respect to thiazine rings in molecules A and B, respectively (Fig. 2). Both thiazine rings show different total ring puckering amplitude values as QT = 0.576 Å with (θ) = 50.8 (3)° and (π) = 353.7 (4)° for molecule A and QT = 0.578 Å with (θ) = 122.6 (3)° and (π) = 186.2 (4)° for molecule B (Cremer & Pople, 1975). The molecules do not show any classical hydrogen bonding although weak intermolecular interactions of the C—H···O and C—H···Br type have been observed (Table. 1, Fig. 3).

For the synthesis of benzothiazines and their derivatives, see: Arshad et al. (2010); Shafiq et al. (2011a,b). For their biological activity, see: Zia-ur-Rehman et al. (2009). For related structures, see: Shafiq et al. (2011c,d). For puckering parameters, see: Cremer & Pople (1975).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I) with thermal allipsoids drawn at the 40% probability level.
[Figure 2] Fig. 2. Perspective view showing the difference in dihedral angles between cyclohexyl rings with thiazine rings in both molecules.
[Figure 3] Fig. 3. Unit cell packing showing weak interactions of hydrogen bonds using dashed lines.
6-Bromo-4-(2-cyclohexylidenehydrazin-1-ylidene)-1-methyl-2,2-dioxo- 3,4-dihydro-1H-2λ6,1-benzothiazine top
Crystal data top
C15H18BrN3O2SZ = 4
Mr = 384.29F(000) = 784
Triclinic, P1Dx = 1.591 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.9357 (2) ÅCell parameters from 8531 reflections
b = 11.2614 (3) Åθ = 2.6–24.9°
c = 15.8263 (3) ŵ = 2.70 mm1
α = 110.625 (1)°T = 296 K
β = 91.525 (3)°Block, light yellow
γ = 102.879 (4)°0.25 × 0.21 × 0.13 mm
V = 1604.85 (7) Å3
Data collection top
Bruker KAPPA APEXII CCD
diffractometer
7939 independent reflections
Radiation source: fine-focus sealed tube4380 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.083
φ and ω scansθmax = 28.3°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 1313
Tmin = 0.552, Tmax = 0.720k = 1415
28996 measured reflectionsl = 2120
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.125H-atom parameters constrained
S = 0.90 w = 1/[σ2(Fo2) + (0.0673P)2]
where P = (Fo2 + 2Fc2)/3
7939 reflections(Δ/σ)max = 0.001
399 parametersΔρmax = 0.64 e Å3
0 restraintsΔρmin = 0.82 e Å3
Crystal data top
C15H18BrN3O2Sγ = 102.879 (4)°
Mr = 384.29V = 1604.85 (7) Å3
Triclinic, P1Z = 4
a = 9.9357 (2) ÅMo Kα radiation
b = 11.2614 (3) ŵ = 2.70 mm1
c = 15.8263 (3) ÅT = 296 K
α = 110.625 (1)°0.25 × 0.21 × 0.13 mm
β = 91.525 (3)°
Data collection top
Bruker KAPPA APEXII CCD
diffractometer
7939 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
4380 reflections with I > 2σ(I)
Tmin = 0.552, Tmax = 0.720Rint = 0.083
28996 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.125H-atom parameters constrained
S = 0.90Δρmax = 0.64 e Å3
7939 reflectionsΔρmin = 0.82 e Å3
399 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.15281 (3)0.37923 (4)0.62774 (3)0.06860 (15)
Br20.91986 (3)0.07710 (3)0.13278 (3)0.06029 (14)
S10.87214 (8)0.61054 (8)0.64609 (6)0.0502 (2)
S20.35514 (8)0.29988 (8)0.04039 (6)0.0484 (2)
O10.8657 (2)0.5997 (2)0.73305 (15)0.0632 (6)
O20.9971 (2)0.6817 (2)0.62658 (19)0.0695 (7)
O30.3870 (2)0.2295 (2)0.04815 (15)0.0605 (6)
O40.2674 (2)0.3874 (2)0.04923 (19)0.0701 (7)
N10.7451 (3)0.6722 (3)0.62437 (18)0.0496 (7)
N20.6362 (3)0.2653 (3)0.55860 (18)0.0500 (7)
N30.7411 (3)0.1977 (3)0.53974 (19)0.0553 (7)
N40.4992 (3)0.3844 (2)0.1089 (2)0.0530 (7)
N50.3694 (3)0.0088 (3)0.11621 (19)0.0500 (7)
N60.2248 (3)0.0462 (3)0.1053 (2)0.0602 (8)
C10.6078 (3)0.6025 (3)0.62716 (19)0.0390 (7)
C20.5052 (3)0.6705 (3)0.6535 (2)0.0463 (8)
H20.52860.76120.67140.056*
C30.3695 (3)0.6060 (3)0.6537 (2)0.0479 (8)
H30.30180.65220.67100.058*
C40.3370 (3)0.4723 (3)0.6278 (2)0.0438 (7)
C50.4364 (3)0.4031 (3)0.6025 (2)0.0424 (7)
H50.41200.31260.58620.051*
C60.5730 (3)0.4666 (3)0.60093 (18)0.0365 (7)
C70.6755 (3)0.3872 (3)0.57341 (18)0.0401 (7)
C80.8190 (3)0.4518 (3)0.5629 (2)0.0483 (8)
H8A0.82090.45650.50290.058*
H8B0.88260.40050.56900.058*
C90.7090 (3)0.0879 (3)0.4734 (2)0.0500 (8)
C100.8150 (4)0.0082 (4)0.4558 (3)0.0683 (10)
H10A0.89980.05820.49620.082*
H10B0.78030.07070.46850.082*
C110.8463 (4)0.0284 (4)0.3592 (3)0.0821 (13)
H11A0.90640.08820.34770.099*
H11B0.89570.04960.34960.099*
C120.7159 (5)0.0924 (4)0.2927 (3)0.0837 (13)
H12A0.66920.17380.29890.100*
H12B0.73990.11240.23110.100*
C130.6195 (5)0.0004 (4)0.3113 (3)0.0828 (12)
H13A0.66540.07970.30310.099*
H13B0.53600.04140.26840.099*
C140.5809 (4)0.0316 (4)0.4074 (3)0.0654 (10)
H14A0.52370.09390.41960.078*
H14B0.52760.04740.41400.078*
C150.7765 (4)0.8096 (4)0.6379 (3)0.0755 (12)
H15A0.77280.86000.70060.113*
H15B0.70970.82450.60040.113*
H15C0.86800.83560.62190.113*
C160.5950 (3)0.3106 (3)0.1156 (2)0.0401 (7)
C170.7380 (3)0.3686 (3)0.1268 (2)0.0498 (8)
H170.76860.45410.12900.060*
C180.8332 (3)0.3004 (3)0.1347 (2)0.0500 (8)
H180.92800.33970.14340.060*
C190.7868 (3)0.1732 (3)0.1296 (2)0.0430 (7)
C200.6479 (3)0.1149 (3)0.11944 (18)0.0388 (7)
H200.61870.02880.11610.047*
C210.5492 (3)0.1845 (3)0.11393 (18)0.0367 (7)
C220.4002 (3)0.1204 (3)0.10748 (19)0.0382 (7)
C230.2919 (3)0.1877 (3)0.0914 (2)0.0475 (8)
H23A0.26120.23280.14900.057*
H23B0.21210.12230.05290.057*
C240.1940 (3)0.1601 (4)0.1095 (3)0.0572 (9)
C250.0414 (4)0.2278 (4)0.0967 (3)0.0832 (14)
H25A0.01340.16800.09310.100*
H25B0.02010.30280.03990.100*
C260.0037 (5)0.2716 (5)0.1723 (4)0.1089 (18)
H26A0.09170.32370.15870.131*
H26B0.00960.19560.22720.131*
C270.0976 (5)0.3516 (5)0.1886 (4)0.1043 (17)
H27A0.07380.37340.24130.125*
H27B0.08380.43280.13650.125*
C280.2471 (4)0.2771 (5)0.2039 (3)0.0858 (13)
H28A0.26200.19950.25880.103*
H28B0.30560.33120.21260.103*
C290.2878 (4)0.2377 (4)0.1263 (3)0.0639 (10)
H29A0.28170.31500.07230.077*
H29B0.38310.18560.13970.077*
C300.5410 (5)0.5235 (3)0.1337 (3)0.0853 (14)
H30A0.58470.56340.19520.128*
H30B0.46090.55600.12860.128*
H30C0.60550.54450.09390.128*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0334 (2)0.0842 (3)0.0951 (3)0.01748 (19)0.01696 (18)0.0388 (2)
Br20.03317 (19)0.0630 (2)0.0787 (3)0.01020 (16)0.00475 (16)0.02066 (19)
S10.0331 (4)0.0531 (5)0.0562 (5)0.0042 (4)0.0052 (4)0.0148 (4)
S20.0372 (4)0.0466 (5)0.0631 (5)0.0076 (4)0.0008 (4)0.0244 (4)
O10.0537 (15)0.0742 (16)0.0523 (14)0.0061 (13)0.0159 (11)0.0196 (12)
O20.0376 (14)0.0679 (16)0.095 (2)0.0009 (12)0.0068 (13)0.0282 (14)
O30.0568 (15)0.0702 (15)0.0562 (14)0.0085 (12)0.0007 (11)0.0302 (12)
O40.0488 (15)0.0611 (15)0.109 (2)0.0164 (12)0.0021 (14)0.0413 (15)
N10.0383 (15)0.0487 (16)0.0631 (17)0.0087 (13)0.0031 (13)0.0237 (13)
N20.0390 (15)0.0467 (16)0.0614 (17)0.0168 (13)0.0036 (13)0.0128 (13)
N30.0438 (16)0.0534 (17)0.0643 (18)0.0243 (14)0.0001 (13)0.0093 (15)
N40.0394 (16)0.0354 (15)0.0760 (19)0.0021 (12)0.0052 (14)0.0161 (13)
N50.0254 (13)0.0530 (17)0.0722 (19)0.0032 (12)0.0004 (12)0.0320 (15)
N60.0285 (15)0.0593 (19)0.098 (2)0.0002 (13)0.0013 (14)0.0416 (18)
C10.0361 (17)0.0449 (18)0.0365 (16)0.0088 (14)0.0001 (12)0.0166 (13)
C20.050 (2)0.0460 (18)0.0438 (17)0.0181 (16)0.0061 (15)0.0143 (14)
C30.0431 (19)0.059 (2)0.0473 (18)0.0260 (17)0.0089 (14)0.0182 (16)
C40.0361 (17)0.057 (2)0.0405 (16)0.0123 (15)0.0063 (13)0.0201 (15)
C50.0359 (17)0.0468 (18)0.0452 (17)0.0126 (14)0.0050 (13)0.0163 (14)
C60.0322 (16)0.0442 (17)0.0320 (14)0.0127 (13)0.0006 (12)0.0111 (13)
C70.0315 (16)0.051 (2)0.0338 (15)0.0125 (14)0.0008 (12)0.0095 (14)
C80.0338 (17)0.0529 (19)0.0552 (19)0.0145 (15)0.0023 (14)0.0143 (16)
C90.050 (2)0.053 (2)0.0495 (19)0.0191 (17)0.0053 (15)0.0184 (17)
C100.067 (3)0.062 (2)0.077 (3)0.034 (2)0.002 (2)0.0162 (19)
C110.072 (3)0.079 (3)0.096 (3)0.031 (2)0.028 (3)0.023 (3)
C120.110 (4)0.079 (3)0.054 (2)0.024 (3)0.027 (2)0.013 (2)
C130.081 (3)0.093 (3)0.060 (3)0.013 (3)0.009 (2)0.017 (2)
C140.049 (2)0.069 (2)0.071 (2)0.0138 (19)0.0004 (18)0.0177 (19)
C150.058 (2)0.063 (3)0.112 (3)0.008 (2)0.010 (2)0.044 (2)
C160.0337 (16)0.0363 (17)0.0435 (17)0.0012 (14)0.0001 (13)0.0114 (13)
C170.0394 (18)0.0411 (18)0.061 (2)0.0049 (15)0.0010 (15)0.0181 (16)
C180.0311 (17)0.054 (2)0.054 (2)0.0029 (15)0.0071 (14)0.0152 (16)
C190.0295 (16)0.0491 (19)0.0459 (17)0.0037 (14)0.0015 (13)0.0160 (14)
C200.0325 (16)0.0373 (16)0.0390 (16)0.0012 (13)0.0010 (12)0.0098 (13)
C210.0257 (15)0.0414 (17)0.0351 (15)0.0005 (13)0.0011 (12)0.0100 (13)
C220.0294 (15)0.0422 (18)0.0399 (16)0.0022 (13)0.0032 (12)0.0156 (13)
C230.0316 (17)0.0493 (19)0.062 (2)0.0033 (14)0.0055 (15)0.0249 (16)
C240.0360 (19)0.061 (2)0.080 (2)0.0020 (17)0.0003 (17)0.042 (2)
C250.038 (2)0.074 (3)0.145 (4)0.0092 (19)0.003 (2)0.063 (3)
C260.067 (3)0.098 (4)0.181 (5)0.020 (3)0.065 (3)0.071 (4)
C270.083 (3)0.110 (4)0.165 (5)0.033 (3)0.058 (3)0.097 (4)
C280.075 (3)0.109 (3)0.109 (4)0.037 (3)0.030 (3)0.073 (3)
C290.048 (2)0.070 (2)0.074 (2)0.0146 (19)0.0162 (18)0.027 (2)
C300.091 (3)0.041 (2)0.110 (3)0.010 (2)0.036 (3)0.018 (2)
Geometric parameters (Å, º) top
Br1—C41.895 (3)C12—H12A0.9700
Br2—C191.896 (3)C12—H12B0.9700
S1—O21.425 (2)C13—C141.516 (5)
S1—O11.426 (2)C13—H13A0.9700
S1—N11.652 (3)C13—H13B0.9700
S1—C81.758 (3)C14—H14A0.9700
S2—O41.429 (2)C14—H14B0.9700
S2—O31.430 (2)C15—H15A0.9600
S2—N41.647 (3)C15—H15B0.9600
S2—C231.742 (3)C15—H15C0.9600
N1—C11.425 (4)C16—C211.382 (4)
N1—C151.444 (4)C16—C171.403 (4)
N2—C71.273 (4)C17—C181.374 (4)
N2—N31.403 (3)C17—H170.9300
N3—C91.275 (4)C18—C191.376 (4)
N4—C161.420 (4)C18—H180.9300
N4—C301.432 (4)C19—C201.368 (4)
N5—C221.283 (4)C20—C211.404 (4)
N5—N61.411 (3)C20—H200.9300
N6—C241.276 (4)C21—C221.479 (4)
C1—C61.394 (4)C22—C231.510 (4)
C1—C21.395 (4)C23—H23A0.9700
C2—C31.382 (4)C23—H23B0.9700
C2—H20.9300C24—C291.489 (5)
C3—C41.371 (4)C24—C251.510 (5)
C3—H30.9300C25—C261.474 (6)
C4—C51.374 (4)C25—H25A0.9700
C5—C61.392 (4)C25—H25B0.9700
C5—H50.9300C26—C271.509 (6)
C6—C71.477 (4)C26—H26A0.9700
C7—C81.491 (4)C26—H26B0.9700
C8—H8A0.9700C27—C281.500 (6)
C8—H8B0.9700C27—H27A0.9700
C9—C141.488 (5)C27—H27B0.9700
C9—C101.502 (4)C28—C291.483 (5)
C10—C111.498 (5)C28—H28A0.9700
C10—H10A0.9700C28—H28B0.9700
C10—H10B0.9700C29—H29A0.9700
C11—C121.510 (6)C29—H29B0.9700
C11—H11A0.9700C30—H30A0.9600
C11—H11B0.9700C30—H30B0.9600
C12—C131.523 (6)C30—H30C0.9600
O2—S1—O1119.64 (16)C9—C14—H14A109.7
O2—S1—N1107.23 (15)C13—C14—H14A109.7
O1—S1—N1110.06 (14)C9—C14—H14B109.7
O2—S1—C8110.50 (16)C13—C14—H14B109.7
O1—S1—C8107.92 (15)H14A—C14—H14B108.2
N1—S1—C899.65 (15)N1—C15—H15A109.5
O4—S2—O3118.78 (15)N1—C15—H15B109.5
O4—S2—N4107.06 (15)H15A—C15—H15B109.5
O3—S2—N4110.31 (14)N1—C15—H15C109.5
O4—S2—C23110.93 (15)H15A—C15—H15C109.5
O3—S2—C23108.25 (15)H15B—C15—H15C109.5
N4—S2—C2399.86 (15)C21—C16—C17119.9 (3)
C1—N1—C15121.1 (3)C21—C16—N4120.9 (3)
C1—N1—S1116.1 (2)C17—C16—N4119.2 (3)
C15—N1—S1118.5 (2)C18—C17—C16120.6 (3)
C7—N2—N3115.1 (3)C18—C17—H17119.7
C9—N3—N2115.5 (3)C16—C17—H17119.7
C16—N4—C30121.9 (3)C17—C18—C19119.2 (3)
C16—N4—S2115.3 (2)C17—C18—H18120.4
C30—N4—S2119.6 (2)C19—C18—H18120.4
C22—N5—N6113.0 (3)C20—C19—C18121.3 (3)
C24—N6—N5113.2 (3)C20—C19—Br2120.2 (2)
C6—C1—C2119.3 (3)C18—C19—Br2118.5 (2)
C6—C1—N1121.0 (3)C19—C20—C21120.3 (3)
C2—C1—N1119.6 (3)C19—C20—H20119.9
C3—C2—C1121.4 (3)C21—C20—H20119.9
C3—C2—H2119.3C16—C21—C20118.7 (3)
C1—C2—H2119.3C16—C21—C22122.6 (3)
C4—C3—C2118.6 (3)C20—C21—C22118.7 (3)
C4—C3—H3120.7N5—C22—C21117.5 (3)
C2—C3—H3120.7N5—C22—C23123.1 (3)
C3—C4—C5121.2 (3)C21—C22—C23119.5 (3)
C3—C4—Br1120.3 (2)C22—C23—S2112.2 (2)
C5—C4—Br1118.6 (2)C22—C23—H23A109.2
C4—C5—C6120.9 (3)S2—C23—H23A109.2
C4—C5—H5119.6C22—C23—H23B109.2
C6—C5—H5119.6S2—C23—H23B109.2
C5—C6—C1118.6 (3)H23A—C23—H23B107.9
C5—C6—C7118.5 (3)N6—C24—C29129.2 (3)
C1—C6—C7122.9 (3)N6—C24—C25116.9 (3)
N2—C7—C6117.9 (3)C29—C24—C25114.0 (3)
N2—C7—C8122.9 (3)C26—C25—C24111.2 (4)
C6—C7—C8119.2 (3)C26—C25—H25A109.4
C7—C8—S1110.1 (2)C24—C25—H25A109.4
C7—C8—H8A109.6C26—C25—H25B109.4
S1—C8—H8A109.6C24—C25—H25B109.4
C7—C8—H8B109.6H25A—C25—H25B108.0
S1—C8—H8B109.6C25—C26—C27111.9 (3)
H8A—C8—H8B108.2C25—C26—H26A109.2
N3—C9—C14127.6 (3)C27—C26—H26A109.2
N3—C9—C10116.9 (3)C25—C26—H26B109.2
C14—C9—C10115.4 (3)C27—C26—H26B109.2
C11—C10—C9110.9 (3)H26A—C26—H26B107.9
C11—C10—H10A109.5C28—C27—C26110.7 (4)
C9—C10—H10A109.5C28—C27—H27A109.5
C11—C10—H10B109.5C26—C27—H27A109.5
C9—C10—H10B109.5C28—C27—H27B109.5
H10A—C10—H10B108.0C26—C27—H27B109.5
C10—C11—C12112.1 (3)H27A—C27—H27B108.1
C10—C11—H11A109.2C29—C28—C27111.8 (4)
C12—C11—H11A109.2C29—C28—H28A109.3
C10—C11—H11B109.2C27—C28—H28A109.3
C12—C11—H11B109.2C29—C28—H28B109.3
H11A—C11—H11B107.9C27—C28—H28B109.3
C11—C12—C13109.6 (3)H28A—C28—H28B107.9
C11—C12—H12A109.7C28—C29—C24109.7 (3)
C13—C12—H12A109.7C28—C29—H29A109.7
C11—C12—H12B109.7C24—C29—H29A109.7
C13—C12—H12B109.7C28—C29—H29B109.7
H12A—C12—H12B108.2C24—C29—H29B109.7
C14—C13—C12110.3 (3)H29A—C29—H29B108.2
C14—C13—H13A109.6N4—C30—H30A109.5
C12—C13—H13A109.6N4—C30—H30B109.5
C14—C13—H13B109.6H30A—C30—H30B109.5
C12—C13—H13B109.6N4—C30—H30C109.5
H13A—C13—H13B108.1H30A—C30—H30C109.5
C9—C14—C13109.9 (3)H30B—C30—H30C109.5
O2—S1—N1—C1171.4 (2)C14—C9—C10—C1150.5 (5)
O1—S1—N1—C157.0 (3)C9—C10—C11—C1252.2 (5)
C8—S1—N1—C156.3 (2)C10—C11—C12—C1357.8 (5)
O2—S1—N1—C1531.5 (3)C11—C12—C13—C1459.5 (5)
O1—S1—N1—C15100.1 (3)N3—C9—C14—C13123.9 (4)
C8—S1—N1—C15146.7 (3)C10—C9—C14—C1352.7 (4)
C7—N2—N3—C9135.3 (3)C12—C13—C14—C956.2 (5)
O4—S2—N4—C16174.6 (2)C30—N4—C16—C21163.4 (3)
O3—S2—N4—C1654.8 (3)S2—N4—C16—C2136.6 (4)
C23—S2—N4—C1659.0 (3)C30—N4—C16—C1714.6 (5)
O4—S2—N4—C3024.9 (4)S2—N4—C16—C17145.4 (3)
O3—S2—N4—C30105.7 (3)C21—C16—C17—C181.1 (5)
C23—S2—N4—C30140.5 (3)N4—C16—C17—C18179.2 (3)
C22—N5—N6—C24176.7 (3)C16—C17—C18—C191.3 (5)
C15—N1—C1—C6170.4 (3)C17—C18—C19—C201.8 (5)
S1—N1—C1—C633.2 (4)C17—C18—C19—Br2176.0 (2)
C15—N1—C1—C27.4 (4)C18—C19—C20—C210.0 (4)
S1—N1—C1—C2149.0 (2)Br2—C19—C20—C21177.8 (2)
C6—C1—C2—C30.4 (4)C17—C16—C21—C202.9 (4)
N1—C1—C2—C3177.4 (3)N4—C16—C21—C20179.1 (3)
C1—C2—C3—C40.5 (4)C17—C16—C21—C22176.5 (3)
C2—C3—C4—C50.2 (4)N4—C16—C21—C221.5 (4)
C2—C3—C4—Br1179.5 (2)C19—C20—C21—C162.4 (4)
C3—C4—C5—C61.0 (5)C19—C20—C21—C22177.0 (2)
Br1—C4—C5—C6179.7 (2)N6—N5—C22—C21177.6 (2)
C4—C5—C6—C11.1 (4)N6—N5—C22—C232.6 (4)
C4—C5—C6—C7179.8 (3)C16—C21—C22—N5172.7 (3)
C2—C1—C6—C50.4 (4)C20—C21—C22—N56.7 (4)
N1—C1—C6—C5178.2 (3)C16—C21—C22—C237.1 (4)
C2—C1—C6—C7179.0 (3)C20—C21—C22—C23173.5 (3)
N1—C1—C6—C73.1 (4)N5—C22—C23—S2157.0 (3)
N3—N2—C7—C6175.2 (2)C21—C22—C23—S223.1 (3)
N3—N2—C7—C85.6 (4)O4—S2—C23—C22163.5 (2)
C5—C6—C7—N24.9 (4)O3—S2—C23—C2264.5 (3)
C1—C6—C7—N2173.8 (3)N4—S2—C23—C2250.9 (3)
C5—C6—C7—C8174.3 (3)N5—N6—C24—C291.8 (5)
C1—C6—C7—C87.0 (4)N5—N6—C24—C25178.8 (3)
N2—C7—C8—S1144.3 (3)N6—C24—C25—C26127.0 (4)
C6—C7—C8—S136.6 (3)C29—C24—C25—C2652.5 (5)
O2—S1—C8—C7169.1 (2)C24—C25—C26—C2752.1 (6)
O1—S1—C8—C758.4 (3)C25—C26—C27—C2855.2 (6)
N1—S1—C8—C756.5 (2)C26—C27—C28—C2957.4 (6)
N2—N3—C9—C148.1 (5)C27—C28—C29—C2456.2 (5)
N2—N3—C9—C10175.5 (3)N6—C24—C29—C28125.5 (4)
N3—C9—C10—C11126.4 (4)C25—C24—C29—C2853.9 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C25—H25A···Br2i0.972.843.752 (4)157
C8—H8A···Br1ii0.973.214.081 (3)151
C18—H18···O1iii0.932.593.332 (4)137
Symmetry codes: (i) x1, y, z; (ii) x+1, y+1, z+1; (iii) x+2, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC15H18BrN3O2S
Mr384.29
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)9.9357 (2), 11.2614 (3), 15.8263 (3)
α, β, γ (°)110.625 (1), 91.525 (3), 102.879 (4)
V3)1604.85 (7)
Z4
Radiation typeMo Kα
µ (mm1)2.70
Crystal size (mm)0.25 × 0.21 × 0.13
Data collection
DiffractometerBruker KAPPA APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.552, 0.720
No. of measured, independent and
observed [I > 2σ(I)] reflections
28996, 7939, 4380
Rint0.083
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.125, 0.90
No. of reflections7939
No. of parameters399
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.64, 0.82

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C25—H25A···Br2i0.972.843.752 (4)156.8
C8—H8A···Br1ii0.973.214.081 (3)151.0
C18—H18···O1iii0.932.593.332 (4)136.9
Symmetry codes: (i) x1, y, z; (ii) x+1, y+1, z+1; (iii) x+2, y+1, z+1.
 

Acknowledgements

MS acknowledges the Higher Education Commission of Pakistan for supporting funds, GC University Lahore, Pakistan for laboratory facilities and Dr Michael Harmata (University of Missouri, USA) for guidance during his PhD studies.

References

First citationArshad, M. N., Zia-ur-Rehman, M. & Khan, I. U. (2010). Acta Cryst. E66, o1070.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2007). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationShafiq, M., Khan, I. U., Arshad, M. N. & Siddiqui, W. A. (2011a). Asian J. Chem. 23, 2101–2105.  CAS Google Scholar
First citationShafiq, M., Khan, I. U., Zia-ur-Rehman, M., Arshad, M. N. & Asiri, A. M. (2011c). Acta Cryst. E67, o2078.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShafiq, M., Khan, I. U., Zia-ur-Rehman, M., Arshad, M. N. & Asiri, A. M. (2011d). Acta Cryst. E67, o2092.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShafiq, M., Zia-ur-Rehman, M., Khan, I. U., Arshad, M. N. & Khan, S. A. (2011b). J. Chil. Chem. Soc. 56, 527–531.  CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZia-ur-Rehman, M., Choudary, J. A., Elsegood, M. R. J., Siddiqui, H. L. & Khan, K. M. (2009). Eur. J. Med. Chem. 44, 1311–1316.  Web of Science PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds