metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­chlorido[methyl 2-(quinolin-8-yl­­oxy-κ2N,O)acetate-κO]mercury(II)

aSchool of Chemistry and Bioengineering, Suzhou University of Science and Technology, Suzhou 215009, People's Republic of China
*Correspondence e-mail: wangyuhong@mail.usts.edu.cn

(Received 29 May 2012; accepted 12 June 2012; online 20 June 2012)

In the neutral title complex, [HgCl2(C12H11NO3)], the HgII ion is penta­coordinated by two Cl atoms, one N atom and two weakly coordinating O atoms from the methyl 2-(quinolin-8-yl­oxy)acetate ligand. The coordination around the HgII ion may be described as highly distorted trigonal–bipyramidal. Centrosymmetric dimers are formed by an additional weak Hg⋯Cl inter­action, leading to a distorted octa­hedral coordination geometry around the HgII ion.

Related literature

For the use of quinolin-8-yl­oxy acetic acid and its derivatives as ligands in transition metal complexes, see: Cheng et al. (2007[Cheng, X. N., Zhang, W. X. & Chen, X. M. (2007). J. Am. Chem. Soc. 129, 15738-15739.]); Song et al. (2004[Song, R.-F., Wang, Y.-H. & Jiang, F. (2004). Acta Cryst. E60, m1695-m1696.]); Wang et al. (2005[Wang, Y. H., Song, R. F. & Zhang, F. Y. (2005). J. Mol. Struct. 752, 104-109.], 2008[Wang, Z., Fan, J., Zhang, W. & Wang, J. (2008). Acta Cryst. E64, m1446.]).

[Scheme 1]

Experimental

Crystal data
  • [HgCl2(C12H11NO3)]

  • Mr = 488.71

  • Triclinic, [P \overline 1]

  • a = 7.2644 (4) Å

  • b = 9.7607 (2) Å

  • c = 10.8411 (6) Å

  • α = 71.317 (7)°

  • β = 75.453 (7)°

  • γ = 69.816 (8)°

  • V = 674.87 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 11.80 mm−1

  • T = 223 K

  • 0.50 × 0.25 × 0.10 mm

Data collection
  • Rigaku Saturn diffractometer

  • Absorption correction: multi-scan (REQAB; Jacobson, 1998[Jacobson, R. (1998). Private communication to the Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.067, Tmax = 0.385

  • 5090 measured reflections

  • 2432 independent reflections

  • 2330 reflections with I > 2σ(I)

  • Rint = 0.050

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.142

  • S = 1.07

  • 2432 reflections

  • 174 parameters

  • H-atom parameters constrained

  • Δρmax = 3.58 e Å−3

  • Δρmin = −2.39 e Å−3

Table 1
Selected bond lengths (Å)

Hg1—Cl1 2.340 (2)
Hg1—Cl2 2.350 (2)
Hg1—N1 2.463 (6)
Hg1—O1 2.746 (6)
Hg1—O3 2.876 (6)
Hg1—Cl1i 3.204 (2)
Symmetry code: (i) -x+1, -y, -z+2.

Data collection: CrystalClear (Rigaku/MSC, 2001[Rigaku/MSC (2001). CrystalClear. Rigaku/MSC, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalStructure (Rigaku/MSC, 2004[Rigaku/MSC (2004). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Quinolin-8-yloxy acetic acid and it's derivatives are well known ligands in transition metal coordination compounds (Cheng et al., 2007; Song et al., 2004; Wang et al., 2005; Wang et al., 2008). Some metal complexes with such ligands are being prepared because of their intriguing structural diversity and potential uses as functional materials (Cheng et al., 2007; Song et al., 2004; Wang et al., 2005; Wang et al., 2008). So, we prepared the title HgII complex with methyl-2-(quinoline-8-yloxy)-acetate ligand, (I).

In the title compound, the HgII atom is five-coordinated by two Cl atoms, one N atom and two O atoms from methyl-2-(quinoline-8-yloxy)-acetate ligand, forming a highly distorted trigonal bipyramidal geometry (Fig. 1). Hg—Cl bond lengths are 2.340 (2) and 2.350 (2) Å, and Hg—N bond lengths are 2.463 (6) Å. The weak coordinative Hg—O bond lengths are 2.746 (6) Å and 2.876 (6) Å. Angles around Hg are in a range of 56.55 (16)–153.41 (8)° (Table 1). If these are considered to be chemically signifcant interactions, two monoclear Hg complexes are formed into the centrosymmetric dimers by weak Hg—Cl interactions (Fig. 1). So, the coordination around Hg atom can act as a distrorted octahedral geometry.

The molecular packing is controlled by these dimers and intermolecular π-π interactions; the quinoline rings are separated by 3.527 (1) and 3.813 (1) Å (Fig. 2).

Related literature top

For the use of quinolin-8-yloxy acetic acid and its derivatives as ligands in transition metal complexes, see: Cheng et al. (2007); Song et al. (2004); Wang et al. (2005, 2008).

Experimental top

Quinolin-8-yloxy acetic acid (0.0203 g, 0.1 mmol), HgCl2 (0.0272 g, 0.1 mmol), methanol (3 ml) and triethylamine (0.0101 g, 0.1 mmol) were placed in a thick Pyrex tube and heated to 130 C° for 5 days. After cooling at a rate of 5 C°/h to ambient temperature, yellow prismatic crystals were collected, washed with anhydrous ethanol, and dried at room temperature. The yield is 51% based on quinolin-8-yloxy acetic acid. Analysis found: C, 29.91; H, 2.30; N, 2.87%; calculated for C12H11Cl2HgNO3: C, 29.49; H, 2.27; N, 2.87%.

Refinement top

H atoms were included in calculated positions and refined as riding, with C—H distances of 0.94 (aromatic), 0.98 (methylene) and 0.97 Å (methyl), and with Uiso(aromatic and ethyl) = 1.2Ueq(C) and Uiso(methylene) = 1.5Ueq(C).

Structure description top

Quinolin-8-yloxy acetic acid and it's derivatives are well known ligands in transition metal coordination compounds (Cheng et al., 2007; Song et al., 2004; Wang et al., 2005; Wang et al., 2008). Some metal complexes with such ligands are being prepared because of their intriguing structural diversity and potential uses as functional materials (Cheng et al., 2007; Song et al., 2004; Wang et al., 2005; Wang et al., 2008). So, we prepared the title HgII complex with methyl-2-(quinoline-8-yloxy)-acetate ligand, (I).

In the title compound, the HgII atom is five-coordinated by two Cl atoms, one N atom and two O atoms from methyl-2-(quinoline-8-yloxy)-acetate ligand, forming a highly distorted trigonal bipyramidal geometry (Fig. 1). Hg—Cl bond lengths are 2.340 (2) and 2.350 (2) Å, and Hg—N bond lengths are 2.463 (6) Å. The weak coordinative Hg—O bond lengths are 2.746 (6) Å and 2.876 (6) Å. Angles around Hg are in a range of 56.55 (16)–153.41 (8)° (Table 1). If these are considered to be chemically signifcant interactions, two monoclear Hg complexes are formed into the centrosymmetric dimers by weak Hg—Cl interactions (Fig. 1). So, the coordination around Hg atom can act as a distrorted octahedral geometry.

The molecular packing is controlled by these dimers and intermolecular π-π interactions; the quinoline rings are separated by 3.527 (1) and 3.813 (1) Å (Fig. 2).

For the use of quinolin-8-yloxy acetic acid and its derivatives as ligands in transition metal complexes, see: Cheng et al. (2007); Song et al. (2004); Wang et al. (2005, 2008).

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2001); cell refinement: CrystalClear (Rigaku/MSC, 2001); data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with 30% probability displacement ellipsoids [symmetry codes: (i) 1 - x, -y, 2 - z]. The dashed line indicates the weak Hg···Cl interaction.
[Figure 2] Fig. 2. A view of intermolecular π-π interactions, interactions between the parallel quinoline rings of neighbouring complexes [symmetry codes: (i) 1 - x, 1 - y, 2 - z; (ii) -x, 1 - y, 2 - z].
Dichlorido[methyl 2-(quinolin-8-yloxy-κ2N,O)acetate-κO]mercury(II) top
Crystal data top
[HgCl2(C12H11NO3)]Z = 2
Mr = 488.71F(000) = 456
Triclinic, P1Dx = 2.405 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71075 Å
a = 7.2644 (4) ÅCell parameters from 3438 reflections
b = 9.7607 (2) Åθ = 3.0–27.5°
c = 10.8411 (6) ŵ = 11.80 mm1
α = 71.317 (7)°T = 223 K
β = 75.453 (7)°Prism, yellow
γ = 69.816 (8)°0.50 × 0.25 × 0.10 mm
V = 674.87 (5) Å3
Data collection top
Rigaku Saturn
diffractometer
2432 independent reflections
Radiation source: fine-focus sealed tube2330 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.050
Detector resolution: 14.63 pixels mm-1θmax = 25.5°, θmin = 3.0°
ω scansh = 88
Absorption correction: multi-scan
(REQAB; Jacobson, 1998)
k = 119
Tmin = 0.067, Tmax = 0.385l = 1310
5090 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.142H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.114P)2]
where P = (Fo2 + 2Fc2)/3
2432 reflections(Δ/σ)max = 0.001
174 parametersΔρmax = 3.58 e Å3
0 restraintsΔρmin = 2.39 e Å3
Crystal data top
[HgCl2(C12H11NO3)]γ = 69.816 (8)°
Mr = 488.71V = 674.87 (5) Å3
Triclinic, P1Z = 2
a = 7.2644 (4) ÅMo Kα radiation
b = 9.7607 (2) ŵ = 11.80 mm1
c = 10.8411 (6) ÅT = 223 K
α = 71.317 (7)°0.50 × 0.25 × 0.10 mm
β = 75.453 (7)°
Data collection top
Rigaku Saturn
diffractometer
2432 independent reflections
Absorption correction: multi-scan
(REQAB; Jacobson, 1998)
2330 reflections with I > 2σ(I)
Tmin = 0.067, Tmax = 0.385Rint = 0.050
5090 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.142H-atom parameters constrained
S = 1.07Δρmax = 3.58 e Å3
2432 reflectionsΔρmin = 2.39 e Å3
174 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Hg10.48080 (4)0.17195 (3)0.82524 (2)0.0283 (2)
Cl10.7584 (4)0.0079 (3)0.9214 (2)0.0343 (5)
Cl20.2251 (4)0.2330 (3)0.7032 (2)0.0328 (5)
O10.5887 (9)0.4276 (6)0.6794 (5)0.0267 (12)
O20.9795 (10)0.3004 (7)0.4386 (6)0.0293 (13)
O30.7782 (11)0.1803 (7)0.5930 (6)0.0350 (15)
N10.3624 (11)0.3914 (8)0.9197 (6)0.0229 (14)
C10.2572 (13)0.3719 (9)1.0411 (8)0.0250 (17)
H10.24850.27441.08830.030*
C20.1591 (14)0.4918 (11)1.1008 (8)0.0291 (19)
H20.09290.47271.18820.035*
C30.1596 (13)0.6348 (10)1.0327 (8)0.0280 (18)
H30.08920.71601.07070.034*
C40.2680 (12)0.6597 (9)0.9034 (7)0.0229 (16)
C50.2793 (15)0.8066 (10)0.8262 (9)0.032 (2)
H50.21020.89150.85950.038*
C60.3906 (15)0.8224 (9)0.7043 (9)0.0306 (19)
H60.39950.91890.65410.037*
C70.4920 (14)0.6985 (10)0.6522 (8)0.0288 (19)
H70.56490.71330.56650.035*
C80.4873 (13)0.5564 (9)0.7230 (8)0.0232 (16)
C90.3727 (12)0.5317 (9)0.8506 (7)0.0226 (16)
C100.7341 (16)0.4428 (10)0.5679 (8)0.030 (2)
H10A0.83390.47870.58420.037*
H10B0.67370.51640.49270.037*
C110.8301 (13)0.2914 (9)0.5380 (7)0.0221 (16)
C121.0873 (14)0.1595 (10)0.3990 (9)0.0313 (19)
H12A1.14890.08410.47170.047*
H12B1.18900.17800.32360.047*
H12C0.99530.12340.37560.047*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Hg10.0304 (3)0.0247 (3)0.0247 (3)0.00519 (19)0.00101 (17)0.00514 (17)
Cl10.0304 (12)0.0320 (12)0.0350 (11)0.0028 (10)0.0050 (9)0.0083 (9)
Cl20.0360 (13)0.0344 (11)0.0255 (10)0.0096 (10)0.0038 (9)0.0057 (8)
O10.027 (3)0.025 (3)0.022 (3)0.011 (3)0.017 (2)0.009 (2)
O20.030 (3)0.025 (3)0.028 (3)0.006 (3)0.010 (3)0.012 (2)
O30.041 (4)0.025 (3)0.034 (3)0.013 (3)0.014 (3)0.012 (2)
N10.027 (4)0.023 (3)0.019 (3)0.008 (3)0.002 (3)0.009 (3)
C10.024 (4)0.030 (4)0.021 (4)0.007 (4)0.000 (3)0.009 (3)
C20.029 (5)0.039 (5)0.019 (4)0.012 (4)0.005 (4)0.012 (3)
C30.018 (4)0.038 (5)0.030 (4)0.005 (4)0.003 (3)0.019 (4)
C40.020 (4)0.024 (4)0.022 (4)0.001 (3)0.002 (3)0.011 (3)
C50.041 (6)0.025 (4)0.034 (4)0.012 (4)0.000 (4)0.014 (4)
C60.034 (5)0.017 (4)0.034 (5)0.004 (4)0.003 (4)0.003 (3)
C70.035 (5)0.028 (4)0.022 (4)0.009 (4)0.002 (4)0.005 (3)
C80.021 (4)0.020 (4)0.024 (4)0.003 (3)0.003 (3)0.009 (3)
C90.018 (4)0.030 (4)0.020 (3)0.006 (3)0.001 (3)0.009 (3)
C100.041 (6)0.032 (5)0.018 (4)0.015 (4)0.010 (4)0.012 (3)
C110.023 (4)0.024 (4)0.019 (4)0.009 (3)0.005 (3)0.008 (3)
C120.023 (5)0.029 (5)0.035 (5)0.002 (4)0.011 (4)0.018 (4)
Geometric parameters (Å, º) top
Hg1—Cl12.340 (2)C3—C41.416 (12)
Hg1—Cl22.350 (2)C3—H30.9400
Hg1—N12.463 (6)C4—C91.432 (11)
Hg1—O12.746 (6)C4—C51.428 (12)
Hg1—O32.876 (6)C5—C61.357 (13)
Hg1—Cl1i3.204 (2)C5—H50.9400
O1—C81.383 (10)C6—C71.392 (13)
O1—C101.396 (10)C6—H60.9400
O2—C111.329 (10)C7—C81.361 (12)
O2—C121.468 (10)C7—H70.9400
O3—C111.195 (10)C8—C91.418 (11)
N1—C11.337 (11)C10—C111.502 (12)
N1—C91.352 (11)C10—H10A0.9800
C1—C21.405 (12)C10—H10B0.9800
C1—H10.9400C12—H12A0.9700
C2—C31.355 (14)C12—H12B0.9700
C2—H20.9400C12—H12C0.9700
Cl1—Hg1—Cl2153.41 (8)C3—C4—C5122.3 (7)
Cl1—Hg1—N1106.61 (17)C9—C4—C5119.5 (7)
Cl2—Hg1—N199.30 (17)C6—C5—C4119.5 (8)
Cl1—Hg1—O1105.43 (15)C6—C5—H5120.3
Cl2—Hg1—O191.75 (15)C4—C5—H5120.3
N1—Hg1—O162.08 (19)C5—C6—C7121.3 (8)
Cl1—Hg1—O380.81 (15)C5—C6—H6119.4
Cl2—Hg1—O392.53 (16)C7—C6—H6119.4
N1—Hg1—O3117.7 (2)C8—C7—C6121.2 (8)
O1—Hg1—O356.55 (16)C8—C7—H7119.4
Cl1—Hg1—Cl1i83.50 (8)C6—C7—H7119.4
Cl2—Hg1—Cl1i90.92 (7)C7—C8—O1124.5 (7)
N1—Hg1—Cl1i89.63 (16)C7—C8—C9120.5 (7)
O1—Hg1—Cl1i151.64 (12)O1—C8—C9115.1 (7)
O3—Hg1—Cl1i151.45 (13)N1—C9—C8120.7 (7)
C8—O1—C10116.4 (6)N1—C9—C4121.2 (7)
C8—O1—Hg1115.6 (4)C8—C9—C4118.0 (7)
C10—O1—Hg1128.0 (5)O1—C10—C11108.5 (7)
C11—O2—C12115.3 (7)O1—C10—H10A110.0
C11—O3—Hg1121.0 (5)C11—C10—H10A110.0
C1—N1—C9119.1 (7)O1—C10—H10B110.0
C1—N1—Hg1116.1 (5)C11—C10—H10B110.0
C9—N1—Hg1124.1 (5)H10A—C10—H10B108.4
N1—C1—C2122.4 (8)O3—C11—O2124.9 (8)
N1—C1—H1118.8O3—C11—C10125.5 (8)
C2—C1—H1118.8O2—C11—C10109.6 (7)
C3—C2—C1120.2 (8)O2—C12—H12A109.5
C3—C2—H2119.9O2—C12—H12B109.5
C1—C2—H2119.9H12A—C12—H12B109.5
C2—C3—C4118.8 (8)O2—C12—H12C109.5
C2—C3—H3120.6H12A—C12—H12C109.5
C4—C3—H3120.6H12B—C12—H12C109.5
C3—C4—C9118.2 (7)
Cl1—Hg1—O1—C8113.6 (5)C3—C4—C5—C6178.0 (9)
Cl2—Hg1—O1—C886.9 (5)C9—C4—C5—C60.6 (13)
N1—Hg1—O1—C812.7 (5)C4—C5—C6—C70.9 (15)
O3—Hg1—O1—C8178.8 (6)C5—C6—C7—C81.8 (15)
Cl1i—Hg1—O1—C88.3 (7)C6—C7—C8—O1178.0 (8)
Cl1—Hg1—O1—C1065.7 (7)C6—C7—C8—C92.2 (14)
Cl2—Hg1—O1—C1093.8 (7)C10—O1—C8—C713.2 (13)
N1—Hg1—O1—C10166.6 (8)Hg1—O1—C8—C7167.4 (7)
O3—Hg1—O1—C101.9 (7)C10—O1—C8—C9167.0 (8)
Cl1i—Hg1—O1—C10171.0 (6)Hg1—O1—C8—C912.4 (9)
Cl1—Hg1—O3—C11110.2 (7)C1—N1—C9—C8178.2 (8)
Cl2—Hg1—O3—C1195.7 (7)Hg1—N1—C9—C811.9 (11)
N1—Hg1—O3—C116.1 (8)C1—N1—C9—C42.1 (11)
O1—Hg1—O3—C115.3 (6)Hg1—N1—C9—C4167.8 (6)
Cl1i—Hg1—O3—C11167.7 (5)C7—C8—C9—N1177.9 (8)
Cl1—Hg1—N1—C178.3 (6)O1—C8—C9—N11.9 (11)
Cl2—Hg1—N1—C195.7 (6)C7—C8—C9—C41.8 (12)
O1—Hg1—N1—C1177.3 (7)O1—C8—C9—C4178.4 (7)
O3—Hg1—N1—C1166.5 (5)C3—C4—C9—N12.7 (12)
Cl1i—Hg1—N1—C14.8 (6)C5—C4—C9—N1178.7 (8)
Cl1—Hg1—N1—C9111.5 (6)C3—C4—C9—C8177.6 (8)
Cl2—Hg1—N1—C974.5 (6)C5—C4—C9—C81.0 (11)
O1—Hg1—N1—C912.5 (6)C8—O1—C10—C11178.6 (7)
O3—Hg1—N1—C923.4 (7)Hg1—O1—C10—C110.7 (11)
Cl1i—Hg1—N1—C9165.4 (6)Hg1—O3—C11—O2173.0 (6)
C9—N1—C1—C21.0 (12)Hg1—O3—C11—C108.8 (12)
Hg1—N1—C1—C2171.7 (7)C12—O2—C11—O31.6 (12)
N1—C1—C2—C33.6 (14)C12—O2—C11—C10179.9 (7)
C1—C2—C3—C42.9 (13)O1—C10—C11—O36.4 (13)
C2—C3—C4—C90.1 (12)O1—C10—C11—O2175.1 (7)
C2—C3—C4—C5178.7 (9)
Symmetry code: (i) x+1, y, z+2.

Experimental details

Crystal data
Chemical formula[HgCl2(C12H11NO3)]
Mr488.71
Crystal system, space groupTriclinic, P1
Temperature (K)223
a, b, c (Å)7.2644 (4), 9.7607 (2), 10.8411 (6)
α, β, γ (°)71.317 (7), 75.453 (7), 69.816 (8)
V3)674.87 (5)
Z2
Radiation typeMo Kα
µ (mm1)11.80
Crystal size (mm)0.50 × 0.25 × 0.10
Data collection
DiffractometerRigaku Saturn
Absorption correctionMulti-scan
(REQAB; Jacobson, 1998)
Tmin, Tmax0.067, 0.385
No. of measured, independent and
observed [I > 2σ(I)] reflections
5090, 2432, 2330
Rint0.050
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.142, 1.07
No. of reflections2432
No. of parameters174
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)3.58, 2.39

Computer programs: CrystalClear (Rigaku/MSC, 2001), CrystalStructure (Rigaku/MSC, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Hg1—Cl12.340 (2)Hg1—O12.746 (6)
Hg1—Cl22.350 (2)Hg1—O32.876 (6)
Hg1—N12.463 (6)Hg1—Cl1i3.204 (2)
Symmetry code: (i) x+1, y, z+2.
 

Acknowledgements

The work was supported by the Science and Technology Foundation of the Ministry of Development of China (2010-K6–8).

References

First citationCheng, X. N., Zhang, W. X. & Chen, X. M. (2007). J. Am. Chem. Soc. 129, 15738–15739.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationJacobson, R. (1998). Private communication to the Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2001). CrystalClear. Rigaku/MSC, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2004). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSong, R.-F., Wang, Y.-H. & Jiang, F. (2004). Acta Cryst. E60, m1695–m1696.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWang, Z., Fan, J., Zhang, W. & Wang, J. (2008). Acta Cryst. E64, m1446.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWang, Y. H., Song, R. F. & Zhang, F. Y. (2005). J. Mol. Struct. 752, 104–109.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds