organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(2E)-1-(4,4′′-Di­fluoro-5′-meth­­oxy-1,1′:3′,1′′-terphenyl-4′-yl)-3-(2-fluoro­phen­yl)prop-2-en-1-one

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri 574 199, India, and cDepartment of Chemistry, P.A. College of Engineering, Nadupadavu, Mangalore 574 153, India
*Correspondence e-mail: hkfun@usm.my

(Received 28 May 2012; accepted 1 June 2012; online 13 June 2012)

In the title compound, C28H19F3O2, the central benzene ring forms dihedral angles of 48.69 (6), 60.93 (6) and 42.06 (6)° with the fluoro­benzene rings. In the crystal, inter­molecular C—H⋯O and C—H⋯F hydrogen bonds link the mol­ecules, forming an undulating two-dimensional network parallel to the bc plane. C—H⋯π inter­actions further consolidate the crystal packing.

Related literature

For background to terphenyl chalcones, see: Fun et al. (2011[Fun, H.-K., Hemamalini, M., Samshuddin, S., Narayana, B. & Sarojini, B. K. (2011). Acta Cryst. E67, o3327-o3328.]); Fun, Hemamalini et al. (2012[Fun, H.-K., Hemamalini, M., Samshuddin, S., Narayana, B. & Sarojini, B. K. (2012). Acta Cryst. E68, o163.]). For a related structure, see: Fun, Loh et al. (2012[Fun, H.-K., Loh, W.-S., Samshuddin, S., Narayana, B. & Sarojini, B. K. (2012). Acta Cryst. E68, o1877-o1878.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C28H19F3O2

  • Mr = 444.43

  • Monoclinic, P 21 /c

  • a = 13.7592 (1) Å

  • b = 6.7898 (1) Å

  • c = 22.4361 (3) Å

  • β = 101.908 (1)°

  • V = 2050.92 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 100 K

  • 0.32 × 0.24 × 0.12 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.966, Tmax = 0.987

  • 28707 measured reflections

  • 7478 independent reflections

  • 5317 reflections with I > 2σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.058

  • wR(F2) = 0.140

  • S = 1.03

  • 7478 reflections

  • 299 parameters

  • H-atom parameters constrained

  • Δρmax = 0.53 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C7–C12 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4A⋯O2i 0.95 2.40 3.3008 (18) 158
C19—H19A⋯F2ii 0.95 2.54 3.2326 (18) 130
C24—H24ACg1iii 0.95 2.84 3.4579 (15) 124
C28—H28CCg1iv 0.98 2.86 3.5461 (16) 128
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [-x+1, y-{\script{3\over 2}}, -z+{\script{3\over 2}}]; (iii) x, y+1, z; (iv) -x+2, -y, -z+2.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

In continuation of our work on synthesis of terphenyl chalcones (Fun et al., 2011), the title compound is prepared and its crystal structure is reported. The starting material of the title compound was prepared from 4,4'-difluoro chalcone by several steps (Fun, Hemamalini et al., 2012).

In the title compound (Fig. 1), the central benzene ring (C7–C12) forms dihedral angles of 48.69 (6), 60.93 (6) and 42.06 (6)°, respectively, with the fluorobenzene rings C1–C6/F1, C16–C21/F3 and C22–C27/F2. Bond lengths and angles are within the normal ranges and are comparable with the related structure (Fun, Loh et al., 2012).

In the crystal packing (Fig. 2), intermolecular C4—H4A···O2 and C19—H19A···F2 hydrogen bonds (Table 1) link the molecules to form undulating two-dimensional network parallel to the bc plane. C—H···π interactions (Table 1), involving the central benzene ring, further consolidate the crystal packing.

Related literature top

For background to terphenyl chalcones, see: Fun et al. (2011); Fun, Hemamalini et al. (2012). For a related structure, see: Fun, Loh et al. (2012). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

To a mixture of 1-(4,4''-difluoro-5'-methoxy-1,1':3',1''-terphenyl-4'-yl) ethanone (0.338 g, 0.001 mol) and 2-fluorobenzaldehyde (0.124 g, 0.001 mol) in 30 ml ethanol, 0.5 ml of 10% sodium hydroxide solution was added and stirred at 5–10°C for 3 h. The precipitate formed was collected by filtration and purified by recrystallization from ethanol. The single-crystal was grown from methanol by slow evaporation method and yield of the compound was 74%. M.p.: 453 K.

Refinement top

All the H atoms were positioned geometrically and were refined with a riding model with Uiso(H) = 1.2 or 1.5 Ueq(C) (C—H = 0.95 or 0.98 Å). A rotating group model was applied to the methyl group. In the final refinement, one outliner (-13 1 30) was omitted.

Structure description top

In continuation of our work on synthesis of terphenyl chalcones (Fun et al., 2011), the title compound is prepared and its crystal structure is reported. The starting material of the title compound was prepared from 4,4'-difluoro chalcone by several steps (Fun, Hemamalini et al., 2012).

In the title compound (Fig. 1), the central benzene ring (C7–C12) forms dihedral angles of 48.69 (6), 60.93 (6) and 42.06 (6)°, respectively, with the fluorobenzene rings C1–C6/F1, C16–C21/F3 and C22–C27/F2. Bond lengths and angles are within the normal ranges and are comparable with the related structure (Fun, Loh et al., 2012).

In the crystal packing (Fig. 2), intermolecular C4—H4A···O2 and C19—H19A···F2 hydrogen bonds (Table 1) link the molecules to form undulating two-dimensional network parallel to the bc plane. C—H···π interactions (Table 1), involving the central benzene ring, further consolidate the crystal packing.

For background to terphenyl chalcones, see: Fun et al. (2011); Fun, Hemamalini et al. (2012). For a related structure, see: Fun, Loh et al. (2012). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed along the c axis, showing the undulating two-dimensional network parallel to the bc plane. H atoms not involved in the intermolecular interactions (dashed lines) have been omitted for clarity.
(2E)-1-(4,4''-Difluoro-5'-methoxy-1,1':3',1''-terphenyl-4'-yl)-3-(2- fluorophenyl)prop-2-en-1-one top
Crystal data top
C28H19F3O2F(000) = 920
Mr = 444.43Dx = 1.439 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6446 reflections
a = 13.7592 (1) Åθ = 3.1–32.6°
b = 6.7898 (1) ŵ = 0.11 mm1
c = 22.4361 (3) ÅT = 100 K
β = 101.908 (1)°Block, yellow
V = 2050.92 (4) Å30.32 × 0.24 × 0.12 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
7478 independent reflections
Radiation source: fine-focus sealed tube5317 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
φ and ω scansθmax = 32.7°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 2020
Tmin = 0.966, Tmax = 0.987k = 1010
28707 measured reflectionsl = 3431
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.140H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0578P)2 + 0.9821P]
where P = (Fo2 + 2Fc2)/3
7478 reflections(Δ/σ)max = 0.001
299 parametersΔρmax = 0.53 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C28H19F3O2V = 2050.92 (4) Å3
Mr = 444.43Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.7592 (1) ŵ = 0.11 mm1
b = 6.7898 (1) ÅT = 100 K
c = 22.4361 (3) Å0.32 × 0.24 × 0.12 mm
β = 101.908 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
7478 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
5317 reflections with I > 2σ(I)
Tmin = 0.966, Tmax = 0.987Rint = 0.041
28707 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0580 restraints
wR(F2) = 0.140H-atom parameters constrained
S = 1.03Δρmax = 0.53 e Å3
7478 reflectionsΔρmin = 0.26 e Å3
299 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F11.03222 (7)0.04726 (14)1.35190 (4)0.0244 (2)
F20.49534 (7)0.88570 (14)0.94449 (4)0.0250 (2)
F30.66995 (7)0.00341 (15)0.68457 (4)0.0257 (2)
O10.88761 (8)0.12968 (16)0.95428 (5)0.0185 (2)
O20.77791 (8)0.32186 (16)0.88556 (5)0.0206 (2)
C11.01130 (10)0.0527 (2)1.18851 (7)0.0159 (3)
H1A1.05290.04731.15960.019*
C21.05342 (11)0.0473 (2)1.25032 (7)0.0173 (3)
H2A1.12340.04071.26420.021*
C30.99095 (11)0.0519 (2)1.29097 (6)0.0169 (3)
C40.88906 (11)0.0613 (2)1.27336 (7)0.0183 (3)
H4A0.84810.06131.30260.022*
C50.84821 (10)0.0706 (2)1.21143 (7)0.0167 (3)
H5A0.77820.08041.19820.020*
C60.90827 (10)0.0659 (2)1.16825 (6)0.0138 (3)
C70.86489 (10)0.0826 (2)1.10200 (6)0.0134 (2)
C80.79555 (9)0.2298 (2)1.08064 (6)0.0131 (2)
H8A0.77200.31111.10910.016*
C90.76002 (9)0.2601 (2)1.01833 (6)0.0124 (2)
C100.79304 (9)0.1352 (2)0.97656 (6)0.0125 (2)
C110.85927 (9)0.0180 (2)0.99851 (6)0.0131 (2)
C120.89648 (10)0.0432 (2)1.06048 (6)0.0141 (3)
H12A0.94300.14501.07450.017*
C130.76484 (9)0.1637 (2)0.90865 (6)0.0140 (3)
C140.72077 (10)0.0086 (2)0.87229 (6)0.0167 (3)
H14A0.70230.12010.89300.020*
C150.70598 (10)0.0131 (2)0.81141 (7)0.0164 (3)
H15A0.72470.09980.79140.020*
C160.66305 (10)0.1795 (2)0.77340 (6)0.0157 (3)
C170.64452 (10)0.1661 (2)0.71015 (7)0.0174 (3)
C180.60072 (11)0.3144 (2)0.67147 (7)0.0206 (3)
H18A0.58950.29830.62850.025*
C190.57362 (11)0.4870 (2)0.69676 (7)0.0212 (3)
H19A0.54230.58990.67110.025*
C200.59242 (11)0.5092 (2)0.75979 (7)0.0211 (3)
H20A0.57480.62810.77720.025*
C210.63683 (11)0.3579 (2)0.79707 (7)0.0188 (3)
H21A0.64990.37580.84000.023*
C220.68836 (9)0.4236 (2)0.99834 (6)0.0125 (2)
C230.70360 (10)0.6066 (2)1.02758 (6)0.0147 (3)
H23A0.75920.62391.06020.018*
C240.63912 (10)0.7636 (2)1.00989 (7)0.0160 (3)
H24A0.65030.88791.02960.019*
C250.55861 (10)0.7334 (2)0.96299 (7)0.0167 (3)
C260.53926 (10)0.5546 (2)0.93351 (6)0.0163 (3)
H26A0.48270.53810.90160.020*
C270.60454 (10)0.3997 (2)0.95175 (6)0.0142 (3)
H27A0.59200.27550.93220.017*
C280.93885 (11)0.3103 (2)0.97216 (7)0.0192 (3)
H28A0.94700.38320.93580.029*
H28B0.90040.38990.99550.029*
H28C1.00430.28170.99750.029*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0348 (5)0.0252 (5)0.0101 (4)0.0019 (4)0.0027 (4)0.0002 (3)
F20.0312 (5)0.0224 (5)0.0208 (5)0.0136 (4)0.0040 (4)0.0047 (4)
F30.0358 (5)0.0264 (5)0.0141 (4)0.0069 (4)0.0035 (4)0.0046 (4)
O10.0242 (5)0.0179 (5)0.0140 (5)0.0080 (4)0.0051 (4)0.0017 (4)
O20.0292 (5)0.0179 (5)0.0163 (5)0.0003 (4)0.0084 (4)0.0024 (4)
C10.0160 (6)0.0160 (6)0.0153 (7)0.0009 (5)0.0023 (5)0.0005 (5)
C20.0176 (6)0.0156 (6)0.0163 (7)0.0012 (5)0.0018 (5)0.0002 (5)
C30.0255 (7)0.0136 (6)0.0097 (6)0.0000 (5)0.0006 (5)0.0004 (5)
C40.0237 (7)0.0185 (7)0.0139 (7)0.0007 (5)0.0066 (5)0.0000 (5)
C50.0163 (6)0.0182 (6)0.0156 (7)0.0004 (5)0.0034 (5)0.0013 (5)
C60.0162 (6)0.0127 (6)0.0116 (6)0.0003 (5)0.0009 (5)0.0009 (5)
C70.0144 (6)0.0139 (6)0.0116 (6)0.0012 (5)0.0019 (5)0.0004 (5)
C80.0140 (5)0.0147 (6)0.0104 (6)0.0008 (5)0.0022 (5)0.0009 (5)
C90.0121 (5)0.0120 (6)0.0130 (6)0.0003 (4)0.0020 (5)0.0003 (5)
C100.0142 (5)0.0135 (6)0.0097 (6)0.0012 (5)0.0022 (4)0.0003 (5)
C110.0144 (6)0.0128 (6)0.0126 (6)0.0002 (5)0.0041 (5)0.0009 (5)
C120.0142 (6)0.0134 (6)0.0146 (6)0.0010 (5)0.0023 (5)0.0007 (5)
C130.0135 (5)0.0175 (6)0.0118 (6)0.0011 (5)0.0045 (5)0.0011 (5)
C140.0180 (6)0.0188 (7)0.0137 (6)0.0013 (5)0.0045 (5)0.0007 (5)
C150.0165 (6)0.0185 (7)0.0142 (7)0.0013 (5)0.0033 (5)0.0008 (5)
C160.0150 (6)0.0197 (7)0.0121 (6)0.0020 (5)0.0022 (5)0.0001 (5)
C170.0178 (6)0.0207 (7)0.0136 (7)0.0003 (5)0.0033 (5)0.0020 (5)
C180.0202 (6)0.0276 (8)0.0136 (7)0.0005 (6)0.0023 (5)0.0027 (6)
C190.0198 (7)0.0236 (7)0.0193 (7)0.0006 (6)0.0021 (5)0.0050 (6)
C200.0229 (7)0.0204 (7)0.0210 (8)0.0019 (6)0.0067 (6)0.0000 (6)
C210.0218 (7)0.0221 (7)0.0126 (7)0.0006 (6)0.0039 (5)0.0008 (5)
C220.0134 (5)0.0141 (6)0.0110 (6)0.0004 (5)0.0048 (5)0.0010 (5)
C230.0155 (6)0.0148 (6)0.0148 (6)0.0003 (5)0.0050 (5)0.0005 (5)
C240.0205 (6)0.0134 (6)0.0160 (7)0.0013 (5)0.0080 (5)0.0003 (5)
C250.0198 (6)0.0175 (6)0.0142 (7)0.0065 (5)0.0071 (5)0.0050 (5)
C260.0163 (6)0.0203 (7)0.0122 (6)0.0026 (5)0.0030 (5)0.0025 (5)
C270.0156 (6)0.0156 (6)0.0119 (6)0.0005 (5)0.0039 (5)0.0001 (5)
C280.0215 (7)0.0156 (6)0.0213 (7)0.0049 (5)0.0061 (6)0.0020 (5)
Geometric parameters (Å, º) top
F1—C31.3680 (16)C14—C151.339 (2)
F2—C251.3604 (16)C14—H14A0.9500
F3—C171.3636 (17)C15—C161.464 (2)
O1—C111.3681 (16)C15—H15A0.9500
O1—C281.4304 (17)C16—C171.392 (2)
O2—C131.2213 (17)C16—C211.400 (2)
C1—C21.389 (2)C17—C181.384 (2)
C1—C61.3994 (18)C18—C191.386 (2)
C1—H1A0.9500C18—H18A0.9500
C2—C31.377 (2)C19—C201.392 (2)
C2—H2A0.9500C19—H19A0.9500
C3—C41.377 (2)C20—C211.384 (2)
C4—C51.389 (2)C20—H20A0.9500
C4—H4A0.9500C21—H21A0.9500
C5—C61.397 (2)C22—C271.3970 (18)
C5—H5A0.9500C22—C231.4002 (19)
C6—C71.4874 (19)C23—C241.3915 (19)
C7—C81.3965 (18)C23—H23A0.9500
C7—C121.3975 (19)C24—C251.377 (2)
C8—C91.3976 (19)C24—H24A0.9500
C8—H8A0.9500C25—C261.381 (2)
C9—C101.4069 (19)C26—C271.3888 (19)
C9—C221.4913 (18)C26—H26A0.9500
C10—C111.4033 (18)C27—H27A0.9500
C10—C131.5052 (18)C28—H28A0.9800
C11—C121.3897 (19)C28—H28B0.9800
C12—H12A0.9500C28—H28C0.9800
C13—C141.483 (2)
C11—O1—C28118.02 (11)C14—C15—H15A117.6
C2—C1—C6120.80 (13)C16—C15—H15A117.6
C2—C1—H1A119.6C17—C16—C21115.84 (13)
C6—C1—H1A119.6C17—C16—C15120.70 (13)
C3—C2—C1118.16 (13)C21—C16—C15123.46 (13)
C3—C2—H2A120.9F3—C17—C18117.82 (13)
C1—C2—H2A120.9F3—C17—C16118.36 (13)
F1—C3—C2118.31 (13)C18—C17—C16123.82 (14)
F1—C3—C4118.41 (13)C17—C18—C19118.52 (14)
C2—C3—C4123.28 (13)C17—C18—H18A120.7
C3—C4—C5117.85 (13)C19—C18—H18A120.7
C3—C4—H4A121.1C18—C19—C20119.87 (14)
C5—C4—H4A121.1C18—C19—H19A120.1
C4—C5—C6121.16 (13)C20—C19—H19A120.1
C4—C5—H5A119.4C21—C20—C19119.98 (15)
C6—C5—H5A119.4C21—C20—H20A120.0
C5—C6—C1118.73 (13)C19—C20—H20A120.0
C5—C6—C7121.22 (12)C20—C21—C16121.94 (14)
C1—C6—C7120.01 (12)C20—C21—H21A119.0
C8—C7—C12119.53 (12)C16—C21—H21A119.0
C8—C7—C6120.15 (12)C27—C22—C23118.31 (12)
C12—C7—C6120.26 (12)C27—C22—C9122.07 (12)
C7—C8—C9121.46 (12)C23—C22—C9119.60 (12)
C7—C8—H8A119.3C24—C23—C22121.41 (13)
C9—C8—H8A119.3C24—C23—H23A119.3
C8—C9—C10118.89 (12)C22—C23—H23A119.3
C8—C9—C22118.91 (12)C25—C24—C23117.96 (13)
C10—C9—C22122.19 (12)C25—C24—H24A121.0
C11—C10—C9119.23 (12)C23—C24—H24A121.0
C11—C10—C13117.63 (12)F2—C25—C24118.89 (13)
C9—C10—C13123.06 (12)F2—C25—C26118.28 (13)
O1—C11—C12123.78 (12)C24—C25—C26122.82 (13)
O1—C11—C10114.71 (12)C25—C26—C27118.37 (13)
C12—C11—C10121.40 (12)C25—C26—H26A120.8
C11—C12—C7119.38 (12)C27—C26—H26A120.8
C11—C12—H12A120.3C26—C27—C22121.09 (13)
C7—C12—H12A120.3C26—C27—H27A119.5
O2—C13—C14122.67 (13)C22—C27—H27A119.5
O2—C13—C10120.84 (13)O1—C28—H28A109.5
C14—C13—C10116.49 (12)O1—C28—H28B109.5
C15—C14—C13122.55 (14)H28A—C28—H28B109.5
C15—C14—H14A118.7O1—C28—H28C109.5
C13—C14—H14A118.7H28A—C28—H28C109.5
C14—C15—C16124.73 (14)H28B—C28—H28C109.5
C6—C1—C2—C31.1 (2)C9—C10—C13—O253.22 (19)
C1—C2—C3—F1179.81 (12)C11—C10—C13—C1456.61 (16)
C1—C2—C3—C40.1 (2)C9—C10—C13—C14126.59 (14)
F1—C3—C4—C5178.50 (12)O2—C13—C14—C1510.3 (2)
C2—C3—C4—C51.4 (2)C10—C13—C14—C15169.89 (13)
C3—C4—C5—C61.5 (2)C13—C14—C15—C16179.83 (13)
C4—C5—C6—C10.4 (2)C14—C15—C16—C17175.82 (14)
C4—C5—C6—C7177.98 (13)C14—C15—C16—C213.2 (2)
C2—C1—C6—C51.0 (2)C21—C16—C17—F3179.05 (12)
C2—C1—C6—C7176.65 (13)C15—C16—C17—F31.8 (2)
C5—C6—C7—C847.62 (19)C21—C16—C17—C181.6 (2)
C1—C6—C7—C8129.95 (14)C15—C16—C17—C18177.46 (14)
C5—C6—C7—C12135.25 (14)F3—C17—C18—C19179.43 (13)
C1—C6—C7—C1247.18 (19)C16—C17—C18—C190.1 (2)
C12—C7—C8—C92.8 (2)C17—C18—C19—C201.2 (2)
C6—C7—C8—C9174.33 (12)C18—C19—C20—C210.9 (2)
C7—C8—C9—C101.9 (2)C19—C20—C21—C160.7 (2)
C7—C8—C9—C22178.15 (12)C17—C16—C21—C201.9 (2)
C8—C9—C10—C111.05 (19)C15—C16—C21—C20177.15 (13)
C22—C9—C10—C11178.94 (12)C8—C9—C22—C27136.61 (14)
C8—C9—C10—C13175.70 (12)C10—C9—C22—C2743.38 (19)
C22—C9—C10—C134.3 (2)C8—C9—C22—C2342.13 (18)
C28—O1—C11—C1215.75 (19)C10—C9—C22—C23137.88 (14)
C28—O1—C11—C10167.98 (12)C27—C22—C23—C241.9 (2)
C9—C10—C11—O1179.40 (12)C9—C22—C23—C24179.29 (12)
C13—C10—C11—O12.47 (17)C22—C23—C24—C250.8 (2)
C9—C10—C11—C123.0 (2)C23—C24—C25—F2179.19 (12)
C13—C10—C11—C12173.89 (12)C23—C24—C25—C260.5 (2)
O1—C11—C12—C7178.11 (12)F2—C25—C26—C27179.10 (12)
C10—C11—C12—C72.1 (2)C24—C25—C26—C270.6 (2)
C8—C7—C12—C110.8 (2)C25—C26—C27—C220.6 (2)
C6—C7—C12—C11176.31 (12)C23—C22—C27—C261.8 (2)
C11—C10—C13—O2123.58 (14)C9—C22—C27—C26179.42 (13)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C7–C12 ring.
D—H···AD—HH···AD···AD—H···A
C4—H4A···O2i0.952.403.3008 (18)158
C19—H19A···F2ii0.952.543.2326 (18)130
C24—H24A···Cg1iii0.952.843.4579 (15)124
C28—H28C···Cg1iv0.982.863.5461 (16)128
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y3/2, z+3/2; (iii) x, y+1, z; (iv) x+2, y, z+2.

Experimental details

Crystal data
Chemical formulaC28H19F3O2
Mr444.43
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)13.7592 (1), 6.7898 (1), 22.4361 (3)
β (°) 101.908 (1)
V3)2050.92 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.32 × 0.24 × 0.12
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.966, 0.987
No. of measured, independent and
observed [I > 2σ(I)] reflections
28707, 7478, 5317
Rint0.041
(sin θ/λ)max1)0.759
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.140, 1.03
No. of reflections7478
No. of parameters299
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.53, 0.26

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C7–C12 ring.
D—H···AD—HH···AD···AD—H···A
C4—H4A···O2i0.952.403.3008 (18)158
C19—H19A···F2ii0.952.543.2326 (18)130
C24—H24A···Cg1iii0.952.843.4579 (15)124
C28—H28C···Cg1iv0.982.863.5461 (16)128
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y3/2, z+3/2; (iii) x, y+1, z; (iv) x+2, y, z+2.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

§Thomson Reuters ResearcherID: C-7581-2009.

Acknowledgements

HKF and WSL thank Universiti Sains Malaysia (USM) for the Research University Grant (1001/PFIZIK/811160). WSL also thanks the Malaysian Government and USM for the award of the post of Research Officer under the Research University Grant (1001/PFIZIK/811160). BN thanks the UGC for financial assistance through the SAP and BSR one-time grant for the purchase of chemicals. SS thanks Mangalore University for the research facilities.

References

First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFun, H.-K., Hemamalini, M., Samshuddin, S., Narayana, B. & Sarojini, B. K. (2011). Acta Cryst. E67, o3327–o3328.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Hemamalini, M., Samshuddin, S., Narayana, B. & Sarojini, B. K. (2012). Acta Cryst. E68, o163.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Loh, W.-S., Samshuddin, S., Narayana, B. & Sarojini, B. K. (2012). Acta Cryst. E68, o1877–o1878.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds