organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(4-Meth­­oxy-2-nitro­phen­yl)-N-(methyl­sulfon­yl)methane­sulfonamide

aH.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan, and bDepartment of Biochemistry, Faculty of Sciences, King Abdul Aziz University, Jeddah 21589, Saudi Arabia
*Correspondence e-mail: dr.sammer.yousuf@gmail.com

(Received 29 May 2012; accepted 31 May 2012; online 13 June 2012)

In the title compound, C9H12N2O7S2, the nitro substituent is slightly twisted from the benzene ring [dihedral angle = 14.69 (10)°]. The mol­ecular geometry is stabilized by intra­molecular C—H⋯O hydrogen bonds, forming S(6) ring motifs. In the crystal, molecules are linked by C—H⋯O hydrogen bonds into layers parallel to (10-2).

Related literature

For the biological activities of sulfonamides, see: Alsughayer et al. (2011[Alsughayer, A., Elassar, A. A., Mustafa, S. & Sagheer, F. (2011). J. Biomater. Nanobiotechnol. 2, 144-149.]); Joshi & Khosla (2003[Joshi, S. & Khosla, N. (2003). Bioorg. Med. Chem. Lett. 13, 3747-3751.]); Scozzafava et al. (2003[Scozzafava, A., Owa, T., Mastrolorenzo, A. & Supuran, C. (2003). Curr. Med. Chem. 10, 925-953.]); Drews (2000[Drews, J. (2000). Science, 287, 1960-1964.]); Peixoto & Beverley (1987[Peixoto, M. P. & Beverley, S. M. (1987). Antimicrob. Agents Chemother. 31, 1575-1578.]). For crystal structures of closely related compounds, see: Boechat et al. (2010[Boechat, N., Santos Lages, A. dos, Kover, W. B., Tiekink, E. R. T., Wardell, J. L. & Wardell, S. M. S. V. (2010). Acta Cryst. E66, o506-o507.]); Zia-ur-Rehman et al. (2009[Zia-ur-Rehman, M., Sepehrianazar, A., Ali, M., Siddiqui, W. A. & Çaylak, N. (2009). Acta Cryst. E65, o941.]).

[Scheme 1]

Experimental

Crystal data
  • C9H12N2O7S2

  • Mr = 324.33

  • Monoclinic, P 21 /c

  • a = 9.4976 (7) Å

  • b = 7.5987 (6) Å

  • c = 19.2434 (15) Å

  • β = 103.672 (2)°

  • V = 1349.43 (18) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.43 mm−1

  • T = 273 K

  • 0.55 × 0.47 × 0.11 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.799, Tmax = 0.955

  • 9504 measured reflections

  • 3362 independent reflections

  • 2711 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.113

  • S = 1.05

  • 3362 reflections

  • 185 parameters

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1B⋯O2i 0.93 2.46 3.368 (2) 165
C8—H8B⋯O4 0.96 2.58 3.225 (3) 125
C8—H8C⋯O5ii 0.96 2.58 3.250 (3) 127
C9—H9B⋯O1 0.96 2.59 3.226 (3) 124
C9—H9B⋯O1iii 0.96 2.47 3.173 (3) 130
Symmetry codes: (i) [-x+2, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) x, y+1, z; (iii) -x+1, -y, -z.

Data collection: SMART (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Compounds containing the sulfonamide moiety have attracted a wide interest due to their interesting chemical and biological properties, which makes them promising candidates in drug discovery. Sulfonamides posses wide variety of biological activities including anti-bacterial, anti-leishmanial, anti-inflammatory, anti-cancer, and carbonic anhydrase inhibitory activities (Alsughayer et al., 2011; Joshi & Khosla, 2003; Scozzafava et al., 2003; Drews, 2000; Peixoto & Beverley, 1987). The title compound was prepared as a part of our ongoing research to synthesize different sulfonamide derivatives to study their bioactive potential and structure activity relationship (SAR). In the title compound (Fig. 1), the nitro group was found to be slightly twisted with the dihedral angle of 14.69 (10)° between the NO2 group and the benzene ring. The S1—N2—C3—C4 and S2—N2—C3—C4 torsion angles are 82.83 (19) and -92.42 (17)°, respectively. The molecule is stabilized by two intramolecular C8—H8B···O4 and C9—H9B···O1 interactions to form two S(6) ring motifs. In the crystal structure, the molecules are linked to form a two-dimensional network through C1—H1B···O2i, C8—H8C···O5ii and C9—H9B···O1iii intermolecular hydrogen bonds (Fig. 2 and Table 1). The bond lengths and angles are within the normal range and similar to other closley related structures (Boechat et al., 2010; Zia-ur-Rehman et al., 2009).

Related literature top

For the biological activities of sulfonamides, see: Alsughayer et al. (2011); Joshi & Khosla (2003); Scozzafava et al. (2003); Drews (2000); Peixoto & Beverley (1987). For crystal structures of closely related compounds, see: Boechat et al. (2010); Zia-ur-Rehman et al. (2009).

Experimental top

To a stirring solution of methanesulfonyl chloride (1.0 g, 8.7 mmol) in CH2Cl2 (20 ml) at 0 °C, 3 ml Et3N and 4-methoxy-2-nitroaniline (1.1 eq., 1.61 g m, 9.6 mmol) were added along with catalytic amount of dimethylamino pyridine (DMAP). Progress of the reaction was monitored by thin layer chromatography in 7:3 hexanes: ethyl acetate solvent system. After complete consumption of starting material (2 hrs), workup was performed with H2O (10 ml), organic layer was separated and aqueous layer was extracted with CH2Cl2 (2 × 10 ml). Organic layers were further washed with brine (10 ml), and dried over MgSO4, filtered, and concentrated in vacuum to obtain the crude product (0.9 g, 90% yield). Flash chromatography was performed hexanes: ethyl acetate (7:3), to obtain crystalline compound I, in 55% yield. Crystals were found suitable for single-crystal X-ray diffraction studies. All the starting materials and solvents were purchased from commercial suppliers and used for reaction without purification.

Refinement top

H atoms were positioned geometrically with C—H = 0.96 or 0.93 Å, and constrained to ride on their parent atoms with Uiso(H)= 1.2Ueq(C) or 1.5Ueq(Cmethyl). A rotating group model was applied to the methyl groups.

Structure description top

Compounds containing the sulfonamide moiety have attracted a wide interest due to their interesting chemical and biological properties, which makes them promising candidates in drug discovery. Sulfonamides posses wide variety of biological activities including anti-bacterial, anti-leishmanial, anti-inflammatory, anti-cancer, and carbonic anhydrase inhibitory activities (Alsughayer et al., 2011; Joshi & Khosla, 2003; Scozzafava et al., 2003; Drews, 2000; Peixoto & Beverley, 1987). The title compound was prepared as a part of our ongoing research to synthesize different sulfonamide derivatives to study their bioactive potential and structure activity relationship (SAR). In the title compound (Fig. 1), the nitro group was found to be slightly twisted with the dihedral angle of 14.69 (10)° between the NO2 group and the benzene ring. The S1—N2—C3—C4 and S2—N2—C3—C4 torsion angles are 82.83 (19) and -92.42 (17)°, respectively. The molecule is stabilized by two intramolecular C8—H8B···O4 and C9—H9B···O1 interactions to form two S(6) ring motifs. In the crystal structure, the molecules are linked to form a two-dimensional network through C1—H1B···O2i, C8—H8C···O5ii and C9—H9B···O1iii intermolecular hydrogen bonds (Fig. 2 and Table 1). The bond lengths and angles are within the normal range and similar to other closley related structures (Boechat et al., 2010; Zia-ur-Rehman et al., 2009).

For the biological activities of sulfonamides, see: Alsughayer et al. (2011); Joshi & Khosla (2003); Scozzafava et al. (2003); Drews (2000); Peixoto & Beverley (1987). For crystal structures of closely related compounds, see: Boechat et al. (2010); Zia-ur-Rehman et al. (2009).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), PARST (Nardelli, 1995) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids drawn at 30% probability level.
[Figure 2] Fig. 2. The crystal packing of the title compound. Only hydrogen atoms involved in hydrogen bonding are shown.
N-(4-Methoxy-2-nitrophenyl)-N-(methylsulfonyl)methanesulfonamide top
Crystal data top
C9H12N2O7S2F(000) = 672
Mr = 324.33Dx = 1.596 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3096 reflections
a = 9.4976 (7) Åθ = 2.2–27.7°
b = 7.5987 (6) ŵ = 0.43 mm1
c = 19.2434 (15) ÅT = 273 K
β = 103.672 (2)°Block, yellow
V = 1349.43 (18) Å30.55 × 0.47 × 0.11 mm
Z = 4
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3362 independent reflections
Radiation source: fine-focus sealed tube2711 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
ω scanθmax = 28.3°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1212
Tmin = 0.799, Tmax = 0.955k = 109
9504 measured reflectionsl = 2523
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.113 w = 1/[σ2(Fo2) + (0.0641P)2 + 0.2074P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
3362 reflectionsΔρmax = 0.31 e Å3
185 parametersΔρmin = 0.30 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0101 (14)
Crystal data top
C9H12N2O7S2V = 1349.43 (18) Å3
Mr = 324.33Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.4976 (7) ŵ = 0.43 mm1
b = 7.5987 (6) ÅT = 273 K
c = 19.2434 (15) Å0.55 × 0.47 × 0.11 mm
β = 103.672 (2)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3362 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
2711 reflections with I > 2σ(I)
Tmin = 0.799, Tmax = 0.955Rint = 0.023
9504 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.113H-atom parameters constrained
S = 1.05Δρmax = 0.31 e Å3
3362 reflectionsΔρmin = 0.30 e Å3
185 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.80706 (5)0.21065 (6)0.02024 (2)0.03866 (15)
S20.67671 (5)0.31016 (6)0.09782 (2)0.03825 (15)
O10.55361 (15)0.22596 (19)0.05410 (8)0.0529 (4)
O20.71498 (16)0.2788 (2)0.17294 (7)0.0514 (4)
O30.95185 (15)0.2109 (2)0.02879 (7)0.0522 (4)
O40.70649 (16)0.3355 (2)0.05856 (7)0.0561 (4)
O50.80101 (17)0.07491 (19)0.12618 (9)0.0608 (4)
O60.99411 (19)0.20742 (17)0.18046 (9)0.0602 (4)
O71.36416 (14)0.2232 (2)0.25913 (8)0.0503 (4)
N10.92993 (18)0.07629 (18)0.15472 (8)0.0381 (3)
N20.82155 (15)0.24662 (18)0.06736 (7)0.0329 (3)
C11.14724 (19)0.0885 (2)0.20463 (9)0.0345 (4)
H1B1.18020.01170.23130.041*
C21.01332 (18)0.0890 (2)0.15816 (8)0.0311 (3)
C30.96028 (17)0.2371 (2)0.11724 (8)0.0315 (3)
C41.04925 (19)0.3835 (2)0.12521 (10)0.0406 (4)
H4B1.01710.48330.09820.049*
C51.1838 (2)0.3863 (2)0.17185 (10)0.0428 (4)
H5A1.24070.48720.17640.051*
C61.23354 (19)0.2382 (3)0.21179 (9)0.0366 (4)
C71.4561 (2)0.3748 (3)0.27101 (13)0.0630 (6)
H7A1.54580.34580.30400.095*
H7B1.40900.46800.29050.095*
H7C1.47520.41230.22650.095*
C80.6647 (3)0.5369 (3)0.08270 (13)0.0576 (6)
H8A0.58300.58300.09810.086*
H8B0.65280.55980.03260.086*
H8C0.75170.59270.10910.086*
C90.7335 (2)0.0003 (3)0.03754 (11)0.0507 (5)
H9A0.71960.02620.08750.076*
H9B0.64210.00540.02460.076*
H9C0.79860.08490.01000.076*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0379 (3)0.0453 (3)0.0321 (2)0.00244 (18)0.00691 (18)0.00241 (17)
S20.0339 (2)0.0363 (2)0.0449 (3)0.00356 (16)0.00994 (18)0.00732 (18)
O10.0338 (7)0.0560 (9)0.0673 (10)0.0104 (6)0.0088 (6)0.0157 (7)
O20.0573 (9)0.0568 (9)0.0437 (8)0.0021 (7)0.0191 (6)0.0065 (6)
O30.0448 (8)0.0697 (10)0.0460 (8)0.0059 (7)0.0185 (6)0.0001 (7)
O40.0582 (9)0.0632 (9)0.0421 (7)0.0097 (7)0.0020 (6)0.0133 (7)
O50.0512 (9)0.0431 (8)0.0834 (11)0.0183 (7)0.0065 (8)0.0071 (7)
O60.0801 (12)0.0310 (7)0.0648 (10)0.0038 (7)0.0078 (8)0.0130 (7)
O70.0351 (7)0.0564 (9)0.0529 (8)0.0008 (6)0.0029 (6)0.0013 (7)
N10.0530 (9)0.0287 (7)0.0343 (7)0.0084 (6)0.0137 (6)0.0001 (6)
N20.0306 (7)0.0356 (7)0.0310 (7)0.0017 (6)0.0044 (5)0.0005 (6)
C10.0407 (9)0.0316 (8)0.0311 (8)0.0033 (7)0.0082 (6)0.0031 (6)
C20.0388 (9)0.0254 (8)0.0307 (8)0.0054 (6)0.0114 (6)0.0010 (6)
C30.0323 (8)0.0300 (8)0.0317 (8)0.0036 (6)0.0062 (6)0.0016 (6)
C40.0416 (10)0.0297 (8)0.0466 (10)0.0064 (7)0.0029 (7)0.0078 (7)
C50.0403 (10)0.0347 (9)0.0508 (11)0.0112 (7)0.0054 (8)0.0039 (8)
C60.0336 (9)0.0417 (9)0.0337 (9)0.0008 (7)0.0065 (7)0.0032 (7)
C70.0358 (11)0.0725 (15)0.0743 (15)0.0108 (10)0.0002 (10)0.0152 (13)
C80.0612 (14)0.0352 (10)0.0733 (15)0.0068 (9)0.0096 (11)0.0051 (10)
C90.0521 (12)0.0529 (12)0.0456 (11)0.0100 (9)0.0089 (9)0.0160 (9)
Geometric parameters (Å, º) top
S1—O41.4223 (15)C1—H1B0.9300
S1—O31.4231 (14)C2—C31.397 (2)
S1—N21.6809 (14)C3—C41.383 (2)
S1—C91.748 (2)C4—C51.377 (2)
S2—O11.4210 (14)C4—H4B0.9300
S2—O21.4247 (14)C5—C61.382 (3)
S2—N21.6882 (15)C5—H5A0.9300
S2—C81.747 (2)C7—H7A0.9600
O5—N11.218 (2)C7—H7B0.9600
O6—N11.211 (2)C7—H7C0.9600
O7—C61.359 (2)C8—H8A0.9600
O7—C71.431 (3)C8—H8B0.9600
N1—C21.478 (2)C8—H8C0.9600
N2—C31.437 (2)C9—H9A0.9600
C1—C21.371 (2)C9—H9B0.9600
C1—C61.389 (2)C9—H9C0.9600
O4—S1—O3119.21 (9)C5—C4—C3122.23 (16)
O4—S1—N2107.30 (8)C5—C4—H4B118.9
O3—S1—N2105.27 (8)C3—C4—H4B118.9
O4—S1—C9108.87 (10)C4—C5—C6119.50 (17)
O3—S1—C9109.43 (10)C4—C5—H5A120.3
N2—S1—C9105.93 (9)C6—C5—H5A120.3
O1—S2—O2120.15 (9)O7—C6—C5125.38 (17)
O1—S2—N2106.83 (8)O7—C6—C1114.93 (17)
O2—S2—N2105.73 (8)C5—C6—C1119.70 (16)
O1—S2—C8109.48 (11)O7—C7—H7A109.5
O2—S2—C8108.96 (10)O7—C7—H7B109.5
N2—S2—C8104.52 (10)H7A—C7—H7B109.5
C6—O7—C7117.75 (16)O7—C7—H7C109.5
O6—N1—O5123.14 (15)H7A—C7—H7C109.5
O6—N1—C2117.92 (15)H7B—C7—H7C109.5
O5—N1—C2118.94 (14)S2—C8—H8A109.5
C3—N2—S1120.43 (11)S2—C8—H8B109.5
C3—N2—S2118.43 (11)H8A—C8—H8B109.5
S1—N2—S2120.96 (8)S2—C8—H8C109.5
C2—C1—C6119.80 (16)H8A—C8—H8C109.5
C2—C1—H1B120.1H8B—C8—H8C109.5
C6—C1—H1B120.1S1—C9—H9A109.5
C1—C2—C3121.66 (15)S1—C9—H9B109.5
C1—C2—N1115.57 (14)H9A—C9—H9B109.5
C3—C2—N1122.77 (15)S1—C9—H9C109.5
C4—C3—C2117.11 (15)H9A—C9—H9C109.5
C4—C3—N2118.25 (15)H9B—C9—H9C109.5
C2—C3—N2124.63 (15)
O4—S1—N2—C3139.57 (14)C1—C2—C3—C40.4 (2)
O3—S1—N2—C311.63 (15)N1—C2—C3—C4179.79 (15)
C9—S1—N2—C3104.25 (14)C1—C2—C3—N2179.70 (15)
O4—S1—N2—S235.55 (12)N1—C2—C3—N20.5 (3)
O3—S1—N2—S2163.50 (10)S1—N2—C3—C482.83 (19)
C9—S1—N2—S280.63 (12)S2—N2—C3—C492.42 (17)
O1—S2—N2—C3150.32 (13)S1—N2—C3—C296.42 (17)
O2—S2—N2—C321.24 (15)S2—N2—C3—C288.33 (19)
C8—S2—N2—C393.69 (15)C2—C3—C4—C50.8 (3)
O1—S2—N2—S134.46 (12)N2—C3—C4—C5179.87 (17)
O2—S2—N2—S1163.53 (10)C3—C4—C5—C60.7 (3)
C8—S2—N2—S181.53 (12)C7—O7—C6—C52.6 (3)
C6—C1—C2—C30.0 (3)C7—O7—C6—C1177.73 (17)
C6—C1—C2—N1179.76 (15)C4—C5—C6—O7179.46 (18)
O6—N1—C2—C114.8 (2)C4—C5—C6—C10.2 (3)
O5—N1—C2—C1165.47 (17)C2—C1—C6—O7179.86 (15)
O6—N1—C2—C3165.42 (17)C2—C1—C6—C50.2 (3)
O5—N1—C2—C314.3 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1B···O2i0.932.463.368 (2)165
C8—H8B···O40.962.583.225 (3)125
C8—H8C···O5ii0.962.583.250 (3)127
C9—H9B···O10.962.593.226 (3)124
C9—H9B···O1iii0.962.473.173 (3)130
Symmetry codes: (i) x+2, y1/2, z+1/2; (ii) x, y+1, z; (iii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC9H12N2O7S2
Mr324.33
Crystal system, space groupMonoclinic, P21/c
Temperature (K)273
a, b, c (Å)9.4976 (7), 7.5987 (6), 19.2434 (15)
β (°) 103.672 (2)
V3)1349.43 (18)
Z4
Radiation typeMo Kα
µ (mm1)0.43
Crystal size (mm)0.55 × 0.47 × 0.11
Data collection
DiffractometerBruker SMART APEX CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.799, 0.955
No. of measured, independent and
observed [I > 2σ(I)] reflections
9504, 3362, 2711
Rint0.023
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.113, 1.05
No. of reflections3362
No. of parameters185
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.31, 0.30

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), PARST (Nardelli, 1995) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1B···O2i0.932.463.368 (2)165
C8—H8B···O40.962.583.225 (3)125
C8—H8C···O5ii0.962.583.250 (3)127
C9—H9B···O10.962.593.226 (3)124
C9—H9B···O1iii0.962.473.173 (3)130
Symmetry codes: (i) x+2, y1/2, z+1/2; (ii) x, y+1, z; (iii) x+1, y, z.
 

References

First citationAlsughayer, A., Elassar, A. A., Mustafa, S. & Sagheer, F. (2011). J. Biomater. Nanobiotechnol. 2, 144–149.  CrossRef CAS Google Scholar
First citationBoechat, N., Santos Lages, A. dos, Kover, W. B., Tiekink, E. R. T., Wardell, J. L. & Wardell, S. M. S. V. (2010). Acta Cryst. E66, o506–o507.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDrews, J. (2000). Science, 287, 1960–1964.  Web of Science CrossRef PubMed CAS Google Scholar
First citationJoshi, S. & Khosla, N. (2003). Bioorg. Med. Chem. Lett. 13, 3747–3751.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationPeixoto, M. P. & Beverley, S. M. (1987). Antimicrob. Agents Chemother. 31, 1575–1578.  CrossRef CAS PubMed Web of Science Google Scholar
First citationScozzafava, A., Owa, T., Mastrolorenzo, A. & Supuran, C. (2003). Curr. Med. Chem. 10, 925–953.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZia-ur-Rehman, M., Sepehrianazar, A., Ali, M., Siddiqui, W. A. & Çaylak, N. (2009). Acta Cryst. E65, o941.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds