organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-4-[4-(Di­ethyl­amino)­benzyl­­idene­ammonio]­benzene­sulfonate

aDepartment of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand, bCrystal Materials Research Unit, Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand, and cX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: suchada.c@psu.ac.th

(Received 3 June 2012; accepted 11 June 2012; online 20 June 2012)

The title compound, C17H20N2O3S, synthesised from sulfanilic acid and 4-diethyl­amino­benzaldehyde, crystallized out as a zwitterion with the central N atom protonated. The zwitterion exists in an E conformation with respect to the C=N double bond. The dihedral angle between the benzene rings is 37.57 (5)°. In the crystal, the zwitterions are linked into a tape along the a axis by N—H⋯O hydrogen bonds. The crystal structure is further stabilized by weak C—H⋯O inter­actions and ππ inter­actions with a centroid–centroid distance of 3.8541 (6) Å. An O⋯O [2.8498 (11) Å] short contact is present.

Related literature

For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For related structures, see: Banu & Golzar Hossain (2006[Banu, A. & Golzar Hossain, G. M. (2006). Acta Cryst. E62, o2252-o2253.]); Yeap et al. (2010[Yeap, C. S., Hemamalini, M. & Fun, H.-K. (2010). Acta Cryst. E66, o580-o581.]). For background and applications to sulfanilic acids, see: Chanawanno et al. (2010[Chanawanno, K., Chantrapromma, S., Anantapong, T. & Kanjana-Opas, A. (2010). Lat. Am. J. Pharm. 29, 1166-1170.]); Hussain et al. (2009[Hussain, M., Khan, K. M., Ali, S. I., Parveen, R. & Shim, W. S. (2009). Fibers Polym. 10, 407-412.]); Kim et al. (2011[Kim, J., Lim, S.-H., Yoon, Y., Thangadurai, T. D. & Yoon, S. (2011). Tetrahedron Lett. 52, 2645-2648.]); King (1991[King, J. F. (1991). The Chemistry of Sulphonic Acids, Esters and their Derivatives, edited by S. Patai & Z. Rappoport, pp. 249-258. Chichester: Wiley.]); Taylor et al. (2006[Taylor, G. E., Gosling, M. & Pearce, A. (2006). J. Chromatogr. A, 1119, 231-237.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C17H20N2O3S

  • Mr = 332.42

  • Triclinic, [P \overline 1]

  • a = 8.1227 (1) Å

  • b = 8.8745 (1) Å

  • c = 12.4070 (2) Å

  • α = 69.386 (1)°

  • β = 72.442 (1)°

  • γ = 75.509 (1)°

  • V = 787.63 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.22 mm−1

  • T = 100 K

  • 0.45 × 0.22 × 0.14 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.906, Tmax = 0.969

  • 24759 measured reflections

  • 5685 independent reflections

  • 5040 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.097

  • S = 1.04

  • 5685 reflections

  • 214 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.77 e Å−3

  • Δρmin = −0.40 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N1⋯O3i 0.865 (18) 2.466 (17) 3.0309 (12) 123.6 (13)
N1—H1N1⋯O3ii 0.865 (18) 2.076 (18) 2.8989 (12) 158.7 (16)
C7—H7A⋯O2iii 0.93 2.39 3.2719 (13) 157
C13—H13A⋯O3ii 0.93 2.40 3.3002 (13) 164
C14—H14A⋯O1iv 0.97 2.58 3.4805 (14) 155
Symmetry codes: (i) x+1, y, z; (ii) -x, -y+1, -z+1; (iii) -x, -y, -z+1; (iv) -x+1, -y, -z+1.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Benzenesulfonic acid is a very strong acid and coupled with aromatic components are interesting chemical reagents (King, 1991). Many of these combinations exhibit pharmaceutical and biological activities (Chanawanno et al., 2010; Taylor et al., 2006) and were also used as whitening reagents (Hussain et al., 2009) and fluorescence sensors (Kim et al., 2011). The title compound (I) was synthesized on account of its fluorescence property. It was found that (I) shows solid state fluorescence with the maximum emission at 625 nm when was excited at 400 nm. Herein the synthesis and crystal structure of (I) are reported.

In Fig. 1, the molecule of (I), C17H20N2O3S, crystallized out as a zwitterion with the N1 atom protonated. The hydrogen is more preferably attached to the nitrogen atom due to the stronger basicity of NH2 group compared to the SO3- substituent (Banu & Golzar Hossain, 2006; Yeap et al., 2010). The zwitterion exists in an E configuration with respect to the central CN double bond [1.3146 (12)°] with the torsion angle C6–N1–C7–C8 being 172.99 (9)°. The molecule is twisted with the dihedral angle between the two benzene rings being 37.57 (5) °. The two ethyl groups of diethylamino are out of its bound benzene ring plane with the torsion angles of C11–N2–C14–C15 = 84.88 (12)° and C11–N2–C16–C17 = 86.61 (12)° and they are oriented in oppositional directions to each other (Fig. 1). The bond distances agree with the literature values (Allen et al., 1987) and are comparable with the related structure (Yeap et al., 2010).

In the crystal packing (Fig. 2), the zwitterions are linked by intermolecular N—H···O hydrogen bonds (Table 1) into tapes along the a axis. The crystal is stabilized by intermolecular N—H···O hydrogen bonds and weak C—H···O interactions (Table 1). A ππ interaction with the distance of Cg1···Cg1ii = 3.8541 (6) Å was observed; Cg1 is the centroid of C1–C6 benzene ring. An O···Ov short contact [2.8498 (11) Å; symmetry code (v) = -1 - x, 1 - y, 1 - z] was presented.

Related literature top

For bond-length data, see: Allen et al. (1987). For related structures, see: Banu & Golzar Hossain (2006); Yeap et al. (2010). For background and applications to sulfanilic acids, see: Chanawanno et al. (2010); Hussain et al. (2009); Kim et al. (2011); King (1991); Taylor et al. (2006). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

Sulfanilic acid (0.5 g, 2.8 mmol) was dissolved in water (10 ml) and then 4-diethylaminobenzaldehyde (0.5 g, 2.8 mmol) was added. The mixture was refluxed at 120 °C for 2 h. The precipitate was filtered, washed with water and purified by recrystallization from ethanol to afford the compound I (yield 79%). Yellow block-shaped single crystals of the title compound suitable for X-ray structure determination were formed from recrystallization from ethanol by the slow evaporation of the solvent at room temperature after a week (m.p. 540–541 K).

Refinement top

Amide H atom was located from a difference map and isotropically refined. The remaining H atoms were positioned geometrically and allowed to ride on their parent atoms, with d(C—H) = 0.93 Å for aromatic and CH, 0.97 Å for CH2 and 0.96 Å for CH3 atoms. The Uiso values were constrained to be 1.5Ueq of the carrier atom for methyl H atoms and 1.2Ueq for the remaining H atoms. A rotating group model was used for the methyl groups.

Structure description top

Benzenesulfonic acid is a very strong acid and coupled with aromatic components are interesting chemical reagents (King, 1991). Many of these combinations exhibit pharmaceutical and biological activities (Chanawanno et al., 2010; Taylor et al., 2006) and were also used as whitening reagents (Hussain et al., 2009) and fluorescence sensors (Kim et al., 2011). The title compound (I) was synthesized on account of its fluorescence property. It was found that (I) shows solid state fluorescence with the maximum emission at 625 nm when was excited at 400 nm. Herein the synthesis and crystal structure of (I) are reported.

In Fig. 1, the molecule of (I), C17H20N2O3S, crystallized out as a zwitterion with the N1 atom protonated. The hydrogen is more preferably attached to the nitrogen atom due to the stronger basicity of NH2 group compared to the SO3- substituent (Banu & Golzar Hossain, 2006; Yeap et al., 2010). The zwitterion exists in an E configuration with respect to the central CN double bond [1.3146 (12)°] with the torsion angle C6–N1–C7–C8 being 172.99 (9)°. The molecule is twisted with the dihedral angle between the two benzene rings being 37.57 (5) °. The two ethyl groups of diethylamino are out of its bound benzene ring plane with the torsion angles of C11–N2–C14–C15 = 84.88 (12)° and C11–N2–C16–C17 = 86.61 (12)° and they are oriented in oppositional directions to each other (Fig. 1). The bond distances agree with the literature values (Allen et al., 1987) and are comparable with the related structure (Yeap et al., 2010).

In the crystal packing (Fig. 2), the zwitterions are linked by intermolecular N—H···O hydrogen bonds (Table 1) into tapes along the a axis. The crystal is stabilized by intermolecular N—H···O hydrogen bonds and weak C—H···O interactions (Table 1). A ππ interaction with the distance of Cg1···Cg1ii = 3.8541 (6) Å was observed; Cg1 is the centroid of C1–C6 benzene ring. An O···Ov short contact [2.8498 (11) Å; symmetry code (v) = -1 - x, 1 - y, 1 - z] was presented.

For bond-length data, see: Allen et al. (1987). For related structures, see: Banu & Golzar Hossain (2006); Yeap et al. (2010). For background and applications to sulfanilic acids, see: Chanawanno et al. (2010); Hussain et al. (2009); Kim et al. (2011); King (1991); Taylor et al. (2006). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 60% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. The crystal packing of the title compound viewed approximately along the b axis, showing the tape structures running along the a axis. Hydrogen bonds are shown as dashed lines.
(E)-4-[4-(Diethylamino)benzylideneammonio]benzenesulfonate top
Crystal data top
C17H20N2O3SZ = 2
Mr = 332.42F(000) = 352
Triclinic, P1Dx = 1.402 Mg m3
Hall symbol: -P 1Melting point = 540–541 K
a = 8.1227 (1) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.8745 (1) ÅCell parameters from 5685 reflections
c = 12.4070 (2) Åθ = 1.8–32.5°
α = 69.386 (1)°µ = 0.22 mm1
β = 72.442 (1)°T = 100 K
γ = 75.509 (1)°Block, yellow
V = 787.63 (2) Å30.45 × 0.22 × 0.14 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
5685 independent reflections
Radiation source: sealed tube5040 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
φ and ω scansθmax = 32.5°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1212
Tmin = 0.906, Tmax = 0.969k = 1313
24759 measured reflectionsl = 1817
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.097H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0477P)2 + 0.3239P]
where P = (Fo2 + 2Fc2)/3
5685 reflections(Δ/σ)max = 0.001
214 parametersΔρmax = 0.77 e Å3
0 restraintsΔρmin = 0.40 e Å3
Crystal data top
C17H20N2O3Sγ = 75.509 (1)°
Mr = 332.42V = 787.63 (2) Å3
Triclinic, P1Z = 2
a = 8.1227 (1) ÅMo Kα radiation
b = 8.8745 (1) ŵ = 0.22 mm1
c = 12.4070 (2) ÅT = 100 K
α = 69.386 (1)°0.45 × 0.22 × 0.14 mm
β = 72.442 (1)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
5685 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
5040 reflections with I > 2σ(I)
Tmin = 0.906, Tmax = 0.969Rint = 0.024
24759 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.097H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.77 e Å3
5685 reflectionsΔρmin = 0.40 e Å3
214 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 120.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.35313 (3)0.23999 (3)0.67776 (2)0.01330 (6)
O10.38256 (10)0.25888 (10)0.79395 (7)0.02127 (16)
O20.37965 (10)0.08274 (9)0.67967 (7)0.01962 (15)
O30.44670 (9)0.37665 (9)0.59896 (7)0.01834 (14)
N10.39588 (10)0.29545 (10)0.43756 (8)0.01497 (15)
N21.16999 (11)0.27158 (11)0.08368 (8)0.01660 (16)
C10.12637 (12)0.20179 (11)0.45697 (8)0.01394 (16)
H1A0.18030.16000.39350.017*
C20.04759 (12)0.18925 (11)0.51483 (8)0.01344 (16)
H2A0.11060.13910.48980.016*
C30.12775 (11)0.25131 (11)0.60985 (8)0.01259 (15)
C40.03462 (12)0.32751 (12)0.64768 (9)0.01528 (17)
H4A0.08850.36850.71150.018*
C50.13909 (12)0.34216 (12)0.58977 (9)0.01560 (17)
H5A0.20130.39440.61380.019*
C60.21886 (11)0.27794 (11)0.49552 (8)0.01322 (16)
C70.50414 (12)0.19565 (11)0.38086 (8)0.01395 (16)
H7A0.46500.10250.38670.017*
C80.67488 (12)0.21763 (11)0.31182 (8)0.01355 (16)
C90.77809 (12)0.09167 (12)0.26404 (9)0.01590 (17)
H9A0.73320.00320.28170.019*
C100.94259 (13)0.10588 (12)0.19236 (9)0.01669 (17)
H10A1.00860.01980.16400.020*
C111.01332 (12)0.25146 (12)0.16084 (8)0.01427 (16)
C120.91019 (12)0.37647 (12)0.21180 (9)0.01533 (17)
H12A0.95510.47080.19560.018*
C130.74652 (12)0.36035 (12)0.28410 (9)0.01506 (17)
H13A0.68170.44420.31530.018*
C141.28157 (13)0.14184 (13)0.03449 (10)0.02023 (19)
H14A1.27150.03720.09480.024*
H14B1.40260.15750.01280.024*
C151.23208 (15)0.13989 (16)0.07380 (11)0.0264 (2)
H15A1.30780.05360.10300.040*
H15B1.24420.24250.13430.040*
H15C1.11300.12230.05240.040*
C161.24190 (13)0.42267 (13)0.04692 (9)0.01837 (18)
H16A1.14700.51450.04290.022*
H16B1.31850.43710.03170.022*
C171.34381 (15)0.42088 (16)0.13212 (10)0.0247 (2)
H17A1.38250.52410.10800.037*
H17B1.44340.33560.13140.037*
H17C1.26980.40190.21070.037*
H1N10.427 (2)0.380 (2)0.4405 (14)0.030 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.01089 (10)0.01367 (10)0.01646 (11)0.00400 (7)0.00018 (7)0.00702 (8)
O10.0193 (3)0.0295 (4)0.0174 (4)0.0095 (3)0.0027 (3)0.0119 (3)
O20.0170 (3)0.0154 (3)0.0277 (4)0.0073 (2)0.0013 (3)0.0102 (3)
O30.0130 (3)0.0177 (3)0.0254 (4)0.0014 (2)0.0054 (3)0.0078 (3)
N10.0111 (3)0.0178 (4)0.0183 (4)0.0050 (3)0.0009 (3)0.0085 (3)
N20.0127 (3)0.0200 (4)0.0166 (4)0.0038 (3)0.0001 (3)0.0071 (3)
C10.0130 (4)0.0163 (4)0.0146 (4)0.0044 (3)0.0017 (3)0.0070 (3)
C20.0124 (3)0.0145 (4)0.0149 (4)0.0042 (3)0.0026 (3)0.0053 (3)
C30.0112 (3)0.0126 (4)0.0146 (4)0.0031 (3)0.0022 (3)0.0046 (3)
C40.0135 (4)0.0174 (4)0.0174 (4)0.0038 (3)0.0012 (3)0.0092 (3)
C50.0132 (4)0.0181 (4)0.0192 (4)0.0045 (3)0.0026 (3)0.0097 (3)
C60.0105 (3)0.0143 (4)0.0157 (4)0.0038 (3)0.0017 (3)0.0054 (3)
C70.0131 (4)0.0155 (4)0.0141 (4)0.0039 (3)0.0026 (3)0.0048 (3)
C80.0118 (3)0.0156 (4)0.0140 (4)0.0032 (3)0.0020 (3)0.0054 (3)
C90.0163 (4)0.0147 (4)0.0161 (4)0.0038 (3)0.0010 (3)0.0054 (3)
C100.0158 (4)0.0155 (4)0.0175 (4)0.0019 (3)0.0002 (3)0.0070 (3)
C110.0121 (4)0.0169 (4)0.0138 (4)0.0022 (3)0.0026 (3)0.0051 (3)
C120.0128 (4)0.0160 (4)0.0186 (4)0.0039 (3)0.0024 (3)0.0069 (3)
C130.0122 (4)0.0162 (4)0.0187 (4)0.0025 (3)0.0026 (3)0.0082 (3)
C140.0142 (4)0.0241 (5)0.0203 (5)0.0009 (3)0.0008 (3)0.0098 (4)
C150.0235 (5)0.0353 (6)0.0236 (5)0.0071 (4)0.0004 (4)0.0163 (5)
C160.0157 (4)0.0231 (5)0.0162 (4)0.0071 (3)0.0014 (3)0.0050 (4)
C170.0195 (4)0.0374 (6)0.0221 (5)0.0103 (4)0.0023 (4)0.0130 (4)
Geometric parameters (Å, º) top
S1—O11.4511 (8)C8—C91.4148 (13)
S1—O21.4555 (7)C8—C131.4152 (13)
S1—O31.4685 (8)C9—C101.3714 (13)
S1—C31.7814 (9)C9—H9A0.9300
N1—C71.3146 (12)C10—C111.4256 (13)
N1—C61.4206 (11)C10—H10A0.9300
N1—H1N10.867 (17)C11—C121.4288 (13)
N2—C111.3514 (12)C12—C131.3704 (13)
N2—C161.4654 (13)C12—H12A0.9300
N2—C141.4692 (13)C13—H13A0.9300
C1—C21.3910 (12)C14—C151.5207 (16)
C1—C61.3958 (13)C14—H14A0.9700
C1—H1A0.9300C14—H14B0.9700
C2—C31.3897 (13)C15—H15A0.9600
C2—H2A0.9300C15—H15B0.9600
C3—C41.3942 (12)C15—H15C0.9600
C4—C51.3923 (13)C16—C171.5207 (15)
C4—H4A0.9300C16—H16A0.9700
C5—C61.3926 (13)C16—H16B0.9700
C5—H5A0.9300C17—H17A0.9600
C7—C81.4128 (12)C17—H17B0.9600
C7—H7A0.9300C17—H17C0.9600
O1—S1—O2114.51 (5)C8—C9—H9A119.2
O1—S1—O3112.95 (5)C9—C10—C11120.59 (9)
O2—S1—O3112.08 (5)C9—C10—H10A119.7
O1—S1—C3105.86 (4)C11—C10—H10A119.7
O2—S1—C3106.04 (4)N2—C11—C10121.17 (9)
O3—S1—C3104.40 (4)N2—C11—C12121.43 (9)
C7—N1—C6123.77 (8)C10—C11—C12117.38 (8)
C7—N1—H1N1121.8 (11)C13—C12—C11121.44 (8)
C6—N1—H1N1114.4 (11)C13—C12—H12A119.3
C11—N2—C16121.95 (8)C11—C12—H12A119.3
C11—N2—C14122.25 (8)C12—C13—C8120.79 (9)
C16—N2—C14115.76 (8)C12—C13—H13A119.6
C2—C1—C6119.04 (9)C8—C13—H13A119.6
C2—C1—H1A120.5N2—C14—C15112.15 (9)
C6—C1—H1A120.5N2—C14—H14A109.2
C3—C2—C1120.39 (8)C15—C14—H14A109.2
C3—C2—H2A119.8N2—C14—H14B109.2
C1—C2—H2A119.8C15—C14—H14B109.2
C2—C3—C4120.24 (8)H14A—C14—H14B107.9
C2—C3—S1118.97 (7)C14—C15—H15A109.5
C4—C3—S1120.73 (7)C14—C15—H15B109.5
C5—C4—C3119.90 (9)H15A—C15—H15B109.5
C5—C4—H4A120.0C14—C15—H15C109.5
C3—C4—H4A120.0H15A—C15—H15C109.5
C4—C5—C6119.43 (8)H15B—C15—H15C109.5
C4—C5—H5A120.3N2—C16—C17111.85 (9)
C6—C5—H5A120.3N2—C16—H16A109.2
C5—C6—C1121.00 (8)C17—C16—H16A109.2
C5—C6—N1118.26 (8)N2—C16—H16B109.2
C1—C6—N1120.73 (8)C17—C16—H16B109.2
N1—C7—C8125.64 (8)H16A—C16—H16B107.9
N1—C7—H7A117.2C16—C17—H17A109.5
C8—C7—H7A117.2C16—C17—H17B109.5
C7—C8—C9117.96 (8)H17A—C17—H17B109.5
C7—C8—C13123.96 (8)C16—C17—H17C109.5
C9—C8—C13118.04 (8)H17A—C17—H17C109.5
C10—C9—C8121.68 (9)H17B—C17—H17C109.5
C10—C9—H9A119.2
C6—C1—C2—C30.18 (14)N1—C7—C8—C136.89 (16)
C1—C2—C3—C40.32 (14)C7—C8—C9—C10177.47 (9)
C1—C2—C3—S1177.54 (7)C13—C8—C9—C100.33 (15)
O1—S1—C3—C2160.63 (8)C8—C9—C10—C111.77 (15)
O2—S1—C3—C238.60 (9)C16—N2—C11—C10177.74 (9)
O3—S1—C3—C279.93 (8)C14—N2—C11—C104.37 (15)
O1—S1—C3—C422.17 (9)C16—N2—C11—C120.73 (15)
O2—S1—C3—C4144.20 (8)C14—N2—C11—C12177.16 (9)
O3—S1—C3—C497.27 (8)C9—C10—C11—N2175.28 (10)
C2—C3—C4—C50.28 (14)C9—C10—C11—C123.24 (14)
S1—C3—C4—C5176.89 (7)N2—C11—C12—C13175.78 (9)
C3—C4—C5—C61.00 (15)C10—C11—C12—C132.75 (14)
C4—C5—C6—C11.15 (15)C11—C12—C13—C80.74 (15)
C4—C5—C6—N1179.62 (9)C7—C8—C13—C12176.80 (9)
C2—C1—C6—C50.56 (14)C9—C8—C13—C120.85 (14)
C2—C1—C6—N1178.99 (8)C11—N2—C14—C1584.88 (12)
C7—N1—C6—C5153.95 (10)C16—N2—C14—C1597.11 (11)
C7—N1—C6—C127.57 (14)C11—N2—C16—C1786.61 (12)
C6—N1—C7—C8172.99 (9)C14—N2—C16—C1791.41 (11)
N1—C7—C8—C9175.46 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···O3i0.865 (18)2.466 (17)3.0309 (12)123.6 (13)
N1—H1N1···O3ii0.865 (18)2.076 (18)2.8989 (12)158.7 (16)
C7—H7A···O2iii0.932.393.2719 (13)157
C13—H13A···O3ii0.932.403.3002 (13)164
C14—H14A···O1iv0.972.583.4805 (14)155
Symmetry codes: (i) x+1, y, z; (ii) x, y+1, z+1; (iii) x, y, z+1; (iv) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC17H20N2O3S
Mr332.42
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)8.1227 (1), 8.8745 (1), 12.4070 (2)
α, β, γ (°)69.386 (1), 72.442 (1), 75.509 (1)
V3)787.63 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.22
Crystal size (mm)0.45 × 0.22 × 0.14
Data collection
DiffractometerBruker APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.906, 0.969
No. of measured, independent and
observed [I > 2σ(I)] reflections
24759, 5685, 5040
Rint0.024
(sin θ/λ)max1)0.756
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.097, 1.04
No. of reflections5685
No. of parameters214
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.77, 0.40

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···O3i0.865 (18)2.466 (17)3.0309 (12)123.6 (13)
N1—H1N1···O3ii0.865 (18)2.076 (18)2.8989 (12)158.7 (16)
C7—H7A···O2iii0.932.393.2719 (13)157
C13—H13A···O3ii0.932.403.3002 (13)164
C14—H14A···O1iv0.972.583.4805 (14)155
Symmetry codes: (i) x+1, y, z; (ii) x, y+1, z+1; (iii) x, y, z+1; (iv) x+1, y, z+1.
 

Footnotes

Thomson Reuters ResearcherID: A-5085-2009.

§Additional correspondence author, e-mail: hkfun@usm.my. Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

PR thanks the Thailand Research Fund through the Royal Golden Jubilee PhD Program (grant No. PHD/0314/2552) and the Center of Excellence for Innovation in Chemistry (PERCH-CIC), Office of the Higher Education, Ministry of Education, Thailand, for financial support. The authors also thank Prince of Songkla University and Universiti Sains Malaysia for the Research University Grant No. 1001/PFIZIK/811160.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBanu, A. & Golzar Hossain, G. M. (2006). Acta Cryst. E62, o2252–o2253.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChanawanno, K., Chantrapromma, S., Anantapong, T. & Kanjana-Opas, A. (2010). Lat. Am. J. Pharm. 29, 1166–1170.  CAS Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHussain, M., Khan, K. M., Ali, S. I., Parveen, R. & Shim, W. S. (2009). Fibers Polym. 10, 407–412.  Web of Science CrossRef CAS Google Scholar
First citationKim, J., Lim, S.-H., Yoon, Y., Thangadurai, T. D. & Yoon, S. (2011). Tetrahedron Lett. 52, 2645–2648.  Web of Science CSD CrossRef CAS Google Scholar
First citationKing, J. F. (1991). The Chemistry of Sulphonic Acids, Esters and their Derivatives, edited by S. Patai & Z. Rappoport, pp. 249–258. Chichester: Wiley.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTaylor, G. E., Gosling, M. & Pearce, A. (2006). J. Chromatogr. A, 1119, 231–237.  Web of Science CrossRef PubMed CAS Google Scholar
First citationYeap, C. S., Hemamalini, M. & Fun, H.-K. (2010). Acta Cryst. E66, o580–o581.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds