organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-Methyl-4-[1-(1-phenyl­ethyl­­idene)-hydrazin-2-yl­­idene]-3,4-di­hydro-1H-2λ6,1-benzo­thia­zine-2,2-dione

aDepartment of Chemistry, Government College University, Faisalabad 38040, Pakistan, bMaterials Chemistry Laboratory, Department of Chemistry, GC University, Lahore 54000, Pakistan, cApplied Chemistry Research Center, PCSIR Laboratories Complex, Ferozpur Road, Lahore 54600, Pakistan, dDepartment of Chemistry, COMSATS institute of Information Technology, Abbottabad, Pakistan, eDepartment of Chemistry, University of Gujrat, Gujrat 50781, Pakistan, and fDepartment of Chemistry, Gomal University, Dera Ismail Khan, K.P.K, Pakistan
*Correspondence e-mail: hafizshafique@hotmail.com

(Received 3 June 2012; accepted 6 June 2012; online 13 June 2012)

In the title compound, C17H17N3O2S, the phenyl ring is oriented at dihedral angles of 8.5 (2) and 1.17 (14)°, respectively, to the C=N—N plane and the fused aromatic ring. The thia­zine ring adopts an envelope conformation with the S atom at the flap. In the crystal, a weak C—H⋯O inter­action connects the mol­ecules, forming a helical chain along the a axis.

Related literature

For the synthesis, see: Shafiq et al. (2011[Shafiq, M., Zia-ur-Rehman, M., Khan, I. U., Arshad, M. N. & Khan, S. A. (2011). J. Chil. Chem. Soc. 56, 527-531.]). For related structures, see: Shafiq et al. (2011a[Shafiq, M., Khan, I. U., Zia-ur-Rehman, M., Arshad, M. N. & Asiri, A. M. (2011a). Acta Cryst. E67, o2038.],b[Shafiq, M., Khan, I. U., Zia-ur-Rehman, M., Arshad, M. N. & Asiri, A. M. (2011b). Acta Cryst. E67, o2092.], 2012[Shafiq, M., Khan, I. U., Arshad, M. N., Bukhari, I. H. & Ejaz, (2012). Acta Cryst. E68, o1927.]).

[Scheme 1]

Experimental

Crystal data
  • C17H17N3O2S

  • Mr = 327.40

  • Orthorhombic, P 21 21 21

  • a = 6.6678 (2) Å

  • b = 12.0783 (6) Å

  • c = 20.0529 (8) Å

  • V = 1614.97 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 296 K

  • 0.38 × 0.11 × 0.07 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.923, Tmax = 0.985

  • 9111 measured reflections

  • 3830 independent reflections

  • 2819 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.108

  • S = 0.97

  • 3828 reflections

  • 210 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.27 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1577 Friedel pairs

  • Flack parameter: −0.06 (9)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8B⋯O1i 0.97 2.56 3.420 (3) 148
Symmetry code: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

The present structure is analogue to 1-ethyl-4-[1-(1-phenylethylidene)-hydrazin-2-ylidene]-3,4-dihydro-1H- 2λ6,1-benzothiazine-2,2-dione(II) (Shafiq et al., 2012) and related to 4-hydrazinylidene-1-methyl-3H-2λ6,1-benzothiazine-2,2-dione (III) (Shafiq, Khan et al., 2011a) and 6-bromo-1-methyl-4-[2- (4-methylbenzylidene)hydrazinylidene]-3H-2λ6, 1-benzothiazine-2,2-dione (IV) (Shafiq, Khan et al., 2011b). The structure of molecule looks planer as the plane generated from atoms (C1–C7/C9–C15/N1) showes an r.m.s. deviation of 0.0365 Å, while atoms S1 and C16 show maximum deviations of 0.702 (2) and -0.256 (4) Å, respectively. The fused aromatic ring and the mean plane of the thiazine ring are oriented at a dihedral angle of 9.34 (14)° and thiazine ring adopted sofa shape with an r.m.s. deviation of 0.233 (2)°. Comparison of dihedral angles between the phenyl and fused aromatic rings in I and II [i.e. 1.17 (14) and 79.33 (2)°, respectively] also explain the planarity of title compound. Similarly dihedral angles between the phenyl and thiazine rings in I and II are 9.34 (2) and 69.74 (6)°, respectively. An intermolecular hydrogen bonding interaction of C—H···O type connects the molecule along the a axis and generates a chain structure (Table 1 and Fig. 2). In the group R2C=N—N=C(CH3)Ar, the configurations around the two double bonds are Z and E, respectively.

Related literature top

For the synthesis, see: Shafiq et al. (2011). For related structures, see: Shafiq et al. (2011a,b, 2012).

Experimental top

In the synthesis of title compound, 4-hydrazinylidene-1- methyl-3H-2λ6,1-benzothiazine-2,2-dione (Shafiq, Khan et al., 2011a) was subjected to react with acetophenone according to literature procedure (Shafiq, Zia-ur-Rehman et al., 2011). The product obtained was then recrystallized in ethylacetate under slow evaporation to obtain single crystals suitable for X-ray diffraction.

Refinement top

All H atoms were positioned with idealized geometry with C—H = 0.93 Å for aromatic, 0.96 Å for methyl group and 0.97 Å for methylene and were refined using a riding model, with Uiso(H) = 1.2Ueq(C) for aromatic and methylene, and Uiso(H) = 1.5Ueq(C) for methyl carbon atoms. Two reflections (0 1 1) and (0 0 2) were omitted in the final refinement.

Structure description top

The present structure is analogue to 1-ethyl-4-[1-(1-phenylethylidene)-hydrazin-2-ylidene]-3,4-dihydro-1H- 2λ6,1-benzothiazine-2,2-dione(II) (Shafiq et al., 2012) and related to 4-hydrazinylidene-1-methyl-3H-2λ6,1-benzothiazine-2,2-dione (III) (Shafiq, Khan et al., 2011a) and 6-bromo-1-methyl-4-[2- (4-methylbenzylidene)hydrazinylidene]-3H-2λ6, 1-benzothiazine-2,2-dione (IV) (Shafiq, Khan et al., 2011b). The structure of molecule looks planer as the plane generated from atoms (C1–C7/C9–C15/N1) showes an r.m.s. deviation of 0.0365 Å, while atoms S1 and C16 show maximum deviations of 0.702 (2) and -0.256 (4) Å, respectively. The fused aromatic ring and the mean plane of the thiazine ring are oriented at a dihedral angle of 9.34 (14)° and thiazine ring adopted sofa shape with an r.m.s. deviation of 0.233 (2)°. Comparison of dihedral angles between the phenyl and fused aromatic rings in I and II [i.e. 1.17 (14) and 79.33 (2)°, respectively] also explain the planarity of title compound. Similarly dihedral angles between the phenyl and thiazine rings in I and II are 9.34 (2) and 69.74 (6)°, respectively. An intermolecular hydrogen bonding interaction of C—H···O type connects the molecule along the a axis and generates a chain structure (Table 1 and Fig. 2). In the group R2C=N—N=C(CH3)Ar, the configurations around the two double bonds are Z and E, respectively.

For the synthesis, see: Shafiq et al. (2011). For related structures, see: Shafiq et al. (2011a,b, 2012).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with 50% displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. A packing diagram, showing C—H···O hydrogen bonds (dashed lines).
1-Methyl-4-[1-(1-phenylethylidene)-hydrazin-2-ylidene]-3,4-dihydro-1H- 2λ6,1-benzothiazine-2,2-dione top
Crystal data top
C17H17N3O2SF(000) = 688
Mr = 327.40Dx = 1.347 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 2415 reflections
a = 6.6678 (2) Åθ = 2.6–21.1°
b = 12.0783 (6) ŵ = 0.21 mm1
c = 20.0529 (8) ÅT = 296 K
V = 1614.97 (11) Å3Needle, colorless
Z = 40.38 × 0.11 × 0.07 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3830 independent reflections
Radiation source: fine-focus sealed tube2819 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
φ and ω scansθmax = 28.3°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 86
Tmin = 0.923, Tmax = 0.985k = 1613
9111 measured reflectionsl = 2618
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045H-atom parameters constrained
wR(F2) = 0.108 w = 1/[σ2(Fo2) + (0.0554P)2 + 0.0282P]
where P = (Fo2 + 2Fc2)/3
S = 0.97(Δ/σ)max = 0.007
3828 reflectionsΔρmax = 0.21 e Å3
210 parametersΔρmin = 0.27 e Å3
0 restraintsAbsolute structure: Flack (1983), 1577 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.06 (9)
Crystal data top
C17H17N3O2SV = 1614.97 (11) Å3
Mr = 327.40Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 6.6678 (2) ŵ = 0.21 mm1
b = 12.0783 (6) ÅT = 296 K
c = 20.0529 (8) Å0.38 × 0.11 × 0.07 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3830 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
2819 reflections with I > 2σ(I)
Tmin = 0.923, Tmax = 0.985Rint = 0.030
9111 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.045H-atom parameters constrained
wR(F2) = 0.108Δρmax = 0.21 e Å3
S = 0.97Δρmin = 0.27 e Å3
3828 reflectionsAbsolute structure: Flack (1983), 1577 Friedel pairs
210 parametersAbsolute structure parameter: 0.06 (9)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.0436 (3)0.1646 (2)0.19872 (12)0.0434 (6)
C20.1882 (4)0.1755 (3)0.24813 (14)0.0607 (8)
H20.29790.22160.24120.073*
C30.1708 (5)0.1190 (3)0.30686 (14)0.0689 (9)
H30.27040.12590.33900.083*
C40.0087 (5)0.0522 (3)0.31910 (14)0.0703 (9)
H40.00360.01540.35960.084*
C50.1365 (5)0.0404 (2)0.27030 (12)0.0592 (7)
H50.24730.00440.27850.071*
C60.1196 (4)0.09462 (19)0.20875 (11)0.0425 (5)
C70.2735 (3)0.07398 (19)0.15723 (11)0.0401 (5)
C80.2426 (3)0.12341 (18)0.08901 (11)0.0394 (5)
H8A0.15590.07560.06290.047*
H8B0.37050.12910.06620.047*
C90.6894 (3)0.07684 (19)0.12801 (12)0.0448 (6)
C100.8400 (3)0.08935 (19)0.07412 (12)0.0446 (6)
C110.8205 (4)0.0311 (2)0.01409 (12)0.0485 (6)
H110.71090.01530.00780.058*
C120.9605 (4)0.0414 (2)0.03551 (13)0.0573 (7)
H120.94570.00140.07480.069*
C131.1223 (4)0.1103 (3)0.02763 (15)0.0666 (8)
H131.21580.11780.06170.080*
C141.1456 (4)0.1680 (3)0.03080 (16)0.0723 (8)
H141.25600.21410.03650.087*
C151.0061 (4)0.1578 (2)0.08111 (15)0.0571 (7)
H151.02340.19750.12040.068*
C160.6984 (5)0.1505 (3)0.18763 (15)0.0859 (11)
H16A0.61320.12140.22200.129*
H16B0.83390.15410.20370.129*
H16C0.65380.22340.17560.129*
C170.2573 (3)0.2746 (2)0.12031 (13)0.0601 (8)
H17A0.36470.22300.12750.090*
H17B0.25420.29570.07420.090*
H17C0.27820.33910.14740.090*
N10.0679 (3)0.22309 (19)0.13822 (10)0.0543 (6)
N20.4234 (3)0.01227 (18)0.17172 (10)0.0500 (5)
N30.5596 (3)0.00040 (18)0.11964 (10)0.0508 (5)
O10.0707 (2)0.29407 (17)0.03230 (9)0.0663 (6)
O20.2661 (2)0.32168 (14)0.13476 (9)0.0559 (5)
S10.13459 (7)0.25435 (5)0.09576 (3)0.04299 (16)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0355 (12)0.0530 (15)0.0417 (13)0.0110 (11)0.0034 (10)0.0029 (11)
C20.0496 (15)0.073 (2)0.0592 (17)0.0102 (14)0.0168 (12)0.0038 (15)
C30.072 (2)0.080 (2)0.0548 (18)0.0237 (17)0.0264 (15)0.0051 (16)
C40.103 (2)0.063 (2)0.0452 (16)0.0274 (18)0.0170 (17)0.0015 (14)
C50.0776 (17)0.0510 (16)0.0489 (16)0.0075 (15)0.0031 (15)0.0062 (12)
C60.0466 (13)0.0416 (13)0.0392 (12)0.0097 (11)0.0021 (11)0.0003 (10)
C70.0427 (12)0.0382 (12)0.0395 (13)0.0067 (10)0.0019 (10)0.0023 (10)
C80.0385 (12)0.0417 (12)0.0380 (12)0.0005 (9)0.0027 (10)0.0002 (11)
C90.0459 (13)0.0354 (13)0.0531 (14)0.0007 (10)0.0081 (11)0.0037 (11)
C100.0443 (13)0.0360 (12)0.0536 (14)0.0027 (10)0.0086 (11)0.0010 (10)
C110.0454 (13)0.0447 (15)0.0555 (16)0.0030 (11)0.0077 (11)0.0006 (12)
C120.0661 (17)0.0553 (17)0.0506 (16)0.0018 (14)0.0047 (14)0.0050 (13)
C130.0637 (17)0.067 (2)0.0694 (19)0.0017 (16)0.0120 (16)0.0144 (17)
C140.0625 (17)0.064 (2)0.090 (2)0.0226 (16)0.0003 (18)0.0040 (17)
C150.0568 (15)0.0448 (15)0.0695 (18)0.0119 (12)0.0036 (14)0.0044 (13)
C160.096 (2)0.080 (2)0.081 (2)0.0307 (19)0.0198 (18)0.0376 (19)
C170.0329 (12)0.075 (2)0.0724 (18)0.0058 (12)0.0040 (11)0.0046 (15)
N10.0322 (9)0.0787 (17)0.0521 (12)0.0092 (10)0.0048 (8)0.0099 (12)
N20.0512 (12)0.0504 (13)0.0486 (12)0.0059 (10)0.0022 (9)0.0078 (10)
N30.0485 (11)0.0534 (13)0.0506 (13)0.0095 (10)0.0044 (9)0.0074 (10)
O10.0577 (10)0.0845 (15)0.0567 (11)0.0191 (10)0.0038 (9)0.0243 (10)
O20.0494 (9)0.0457 (10)0.0726 (12)0.0038 (8)0.0088 (9)0.0036 (9)
S10.0344 (3)0.0471 (3)0.0475 (3)0.0042 (3)0.0046 (2)0.0087 (3)
Geometric parameters (Å, º) top
C1—C21.389 (3)C10—C111.400 (3)
C1—C61.392 (3)C11—C121.369 (3)
C1—N11.413 (3)C11—H110.9300
C2—C31.366 (4)C12—C131.371 (4)
C2—H20.9300C12—H120.9300
C3—C41.371 (4)C13—C141.372 (4)
C3—H30.9300C13—H130.9300
C4—C51.384 (4)C14—C151.378 (4)
C4—H40.9300C14—H140.9300
C5—C61.402 (3)C15—H150.9300
C5—H50.9300C16—H16A0.9600
C6—C71.477 (3)C16—H16B0.9600
C7—N21.280 (3)C16—H16C0.9600
C7—C81.507 (3)C17—N11.453 (3)
C8—S11.743 (2)C17—H17A0.9600
C8—H8A0.9700C17—H17B0.9600
C8—H8B0.9700C17—H17C0.9600
C9—N31.277 (3)N1—S11.6402 (19)
C9—C101.483 (3)N2—N31.392 (3)
C9—C161.491 (3)O1—S11.4251 (18)
C10—C151.389 (3)O2—S11.4288 (18)
C2—C1—C6119.8 (2)C11—C12—C13120.5 (3)
C2—C1—N1119.0 (2)C11—C12—H12119.8
C6—C1—N1121.14 (19)C13—C12—H12119.8
C3—C2—C1120.6 (3)C14—C13—C12119.7 (3)
C3—C2—H2119.7C14—C13—H13120.1
C1—C2—H2119.7C12—C13—H13120.1
C2—C3—C4121.0 (3)C13—C14—C15120.2 (3)
C2—C3—H3119.5C13—C14—H14119.9
C4—C3—H3119.5C15—C14—H14119.9
C3—C4—C5119.1 (3)C14—C15—C10121.1 (3)
C3—C4—H4120.5C14—C15—H15119.4
C5—C4—H4120.5C10—C15—H15119.4
C4—C5—C6121.2 (3)C9—C16—H16A109.5
C4—C5—H5119.4C9—C16—H16B109.5
C6—C5—H5119.4H16A—C16—H16B109.5
C1—C6—C5118.3 (2)C9—C16—H16C109.5
C1—C6—C7123.0 (2)H16A—C16—H16C109.5
C5—C6—C7118.8 (2)H16B—C16—H16C109.5
N2—C7—C6118.8 (2)N1—C17—H17A109.5
N2—C7—C8122.9 (2)N1—C17—H17B109.5
C6—C7—C8118.23 (19)H17A—C17—H17B109.5
C7—C8—S1110.21 (16)N1—C17—H17C109.5
C7—C8—H8A109.6H17A—C17—H17C109.5
S1—C8—H8A109.6H17B—C17—H17C109.5
C7—C8—H8B109.6C1—N1—C17121.73 (19)
S1—C8—H8B109.6C1—N1—S1117.79 (15)
H8A—C8—H8B108.1C17—N1—S1119.25 (17)
N3—C9—C10115.9 (2)C7—N2—N3113.76 (19)
N3—C9—C16124.3 (2)C9—N3—N2115.0 (2)
C10—C9—C16119.7 (2)O1—S1—O2118.72 (12)
C15—C10—C11117.4 (2)O1—S1—N1107.15 (10)
C15—C10—C9121.8 (2)O2—S1—N1110.61 (11)
C11—C10—C9120.8 (2)O1—S1—C8111.07 (12)
C12—C11—C10121.0 (2)O2—S1—C8107.78 (10)
C12—C11—H11119.5N1—S1—C899.87 (11)
C10—C11—H11119.5
C6—C1—C2—C30.7 (4)C11—C12—C13—C141.0 (4)
N1—C1—C2—C3179.1 (2)C12—C13—C14—C150.7 (5)
C1—C2—C3—C41.4 (5)C13—C14—C15—C100.2 (5)
C2—C3—C4—C51.5 (5)C11—C10—C15—C140.1 (4)
C3—C4—C5—C60.5 (4)C9—C10—C15—C14179.5 (2)
C2—C1—C6—C52.6 (3)C2—C1—N1—C1713.5 (4)
N1—C1—C6—C5179.0 (2)C6—C1—N1—C17164.9 (2)
C2—C1—C6—C7176.5 (2)C2—C1—N1—S1153.8 (2)
N1—C1—C6—C71.8 (3)C6—C1—N1—S127.8 (3)
C4—C5—C6—C12.5 (4)C6—C7—N2—N3179.38 (19)
C4—C5—C6—C7176.7 (2)C8—C7—N2—N32.9 (3)
C1—C6—C7—N2176.9 (2)C10—C9—N3—N2178.1 (2)
C5—C6—C7—N23.9 (3)C16—C9—N3—N21.0 (4)
C1—C6—C7—C85.3 (3)C7—N2—N3—C9167.5 (2)
C5—C6—C7—C8173.8 (2)C1—N1—S1—O1169.67 (19)
N2—C7—C8—S1145.02 (19)C17—N1—S1—O122.8 (2)
C6—C7—C8—S137.3 (2)C1—N1—S1—O259.5 (2)
N3—C9—C10—C15170.5 (2)C17—N1—S1—O2108.0 (2)
C16—C9—C10—C158.7 (4)C1—N1—S1—C853.8 (2)
N3—C9—C10—C118.9 (3)C17—N1—S1—C8138.6 (2)
C16—C9—C10—C11172.0 (3)C7—C8—S1—O1169.41 (15)
C15—C10—C11—C120.2 (4)C7—C8—S1—O258.95 (17)
C9—C10—C11—C12179.2 (2)C7—C8—S1—N156.59 (17)
C10—C11—C12—C130.7 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8B···O1i0.972.563.420 (3)148
Symmetry code: (i) x+1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formulaC17H17N3O2S
Mr327.40
Crystal system, space groupOrthorhombic, P212121
Temperature (K)296
a, b, c (Å)6.6678 (2), 12.0783 (6), 20.0529 (8)
V3)1614.97 (11)
Z4
Radiation typeMo Kα
µ (mm1)0.21
Crystal size (mm)0.38 × 0.11 × 0.07
Data collection
DiffractometerBruker Kappa APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.923, 0.985
No. of measured, independent and
observed [I > 2σ(I)] reflections
9111, 3830, 2819
Rint0.030
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.108, 0.97
No. of reflections3828
No. of parameters210
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.27
Absolute structureFlack (1983), 1577 Friedel pairs
Absolute structure parameter0.06 (9)

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8B···O1i0.972.563.420 (3)148
Symmetry code: (i) x+1/2, y+1/2, z.
 

Acknowledgements

MS acknowledges the Higher Education Commission of Pakistan for financial support, GC University Lahore, Pakistan for laboratory facilities during his PhD studies and Dr Michael Harmata for guidance during a visit to his laboratory at the University of Missouri, USA.

References

First citationBruker (2007). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationShafiq, M., Khan, I. U., Arshad, M. N., Bukhari, I. H. & Ejaz, (2012). Acta Cryst. E68, o1927.  Google Scholar
First citationShafiq, M., Khan, I. U., Zia-ur-Rehman, M., Arshad, M. N. & Asiri, A. M. (2011a). Acta Cryst. E67, o2038.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShafiq, M., Khan, I. U., Zia-ur-Rehman, M., Arshad, M. N. & Asiri, A. M. (2011b). Acta Cryst. E67, o2092.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShafiq, M., Zia-ur-Rehman, M., Khan, I. U., Arshad, M. N. & Khan, S. A. (2011). J. Chil. Chem. Soc. 56, 527–531.  CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds