organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(3Z,3′E)-3,3′-[Cyclo­hexane-1,2-diylbis(aza­nylyl­­idene)]bis­­(indolin-2-one) N,N-di­methyl­formamide monosolvate dihydrate

aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: hamid.khaledi@gmail.com

(Received 8 June 2012; accepted 11 June 2012; online 16 June 2012)

In the Schiff base mol­ecule of the title compound, C22H20N4O2·C3H7NO·2H2O, the cyclo­hexane ring adopts a chair conformation with the two imine groups linked at the equatorial positions. The two indolin-2-one ring systems make a dihedral angle of 65.63 (5)°. In the crystal, the Schiff base mol­ecules are connected through bifurcated N—H⋯(O,N) hydrogen bonds, forming inversion dimers. The water molecules link the dimers and the dimethylformamide molecules via O—H⋯O, O—H⋯N and N—H⋯O hydrogen bonds. Together with C—H⋯π and ππ [centroid–centroid distance = 3.3889 (10) Å] inter­actions a three-dimensional supra­molecular structure is formed.

Related literature

For the structures of some Schiff bases derived from 1,2-diamino­cyclo­hexane, see: Fonseca et al. (2003[Fonseca, M. H., Eibler, E., Zabel, M. & Konig, B. (2003). Inorg. Chim. Acta, 352, 136-142.]); van den Ancker et al. (2006[Ancker, T. R. van den, Cave, G. W. V. & Raston, C. L. (2006). Green Chem. 8, 50-53.]); Zhang et al. (2008[Zhang, Y., Xiang, L., Wang, Q., Duan, X.-F. & Zi, G. (2008). Inorg. Chim. Acta, 361, 1246-1254.]).

[Scheme 1]

Experimental

Crystal data
  • C22H20N4O2·C3H7NO·2H2O

  • Mr = 481.55

  • Triclinic, [P \overline 1]

  • a = 9.1500 (9) Å

  • b = 11.3609 (12) Å

  • c = 13.6377 (14) Å

  • α = 109.259 (2)°

  • β = 108.431 (1)°

  • γ = 95.310 (2)°

  • V = 1238.6 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 100 K

  • 0.48 × 0.42 × 0.39 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.957, Tmax = 0.965

  • 6034 measured reflections

  • 4372 independent reflections

  • 3665 reflections with I > 2σ(I)

  • Rint = 0.013

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.095

  • S = 1.03

  • 4372 reflections

  • 336 parameters

  • 5 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C2–C7 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O4 0.876 (18) 1.929 (19) 2.8036 (18) 175.6 (16)
O4—H4A⋯O3 0.88 (2) 1.89 (2) 2.7643 (16) 171 (2)
O5—H5A⋯O4 0.82 (2) 2.00 (2) 2.7901 (18) 163 (2)
O4—H4B⋯O5i 0.84 (2) 1.95 (2) 2.7415 (18) 158 (2)
N4—H4N⋯O1ii 0.872 (19) 2.222 (19) 2.9382 (18) 139.3 (16)
N4—H4N⋯N2ii 0.872 (19) 2.498 (19) 3.2246 (18) 141.3 (16)
O5—H5B⋯N3iii 0.86 (2) 1.97 (2) 2.8241 (17) 176 (2)
C10—H10ACgiv 0.99 2.90 3.5799 (18) 126
Symmetry codes: (i) -x+1, -y+2, -z; (ii) -x+1, -y+1, -z+1; (iii) -x+1, -y+1, -z; (iv) -x, -y+1, -z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: SHELXL97 and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The title bis-Schiff base is the condensation product of the reaction of 1,2-diaminocyclohexane with 2 eq of isatin. The crystal structure consists of a bis-Schiff base molecule, one DMF and two water solvent molecules. As observed in similar structures (Fonseca et al., 2003; van den Ancker et al., 2006; Zhang et al., 2008), the cyclohexane ring adopts a chair conformation with the imine links at the equatorial positions. The two isatin systems of the molecule are twisted with respect to each other by 65.63 (5)°. In the crystal, the adjacent Schiff bases are connected into a two-dimensional-array via C—H···π (Table 1) and ππ interactions [Cg1···Cg2iii = 3.3889 (10) Å, where Cg1 is the centroid of N1/C1/C8/C7/C2 ring and Cg2iii is the centroid of C2—C7 ring of the symmetry related molecule at -x + 1, -y + 1, -z]. The resulting network is consolidated by intermolecular N4—H···O1 and N4—H···N2 hydrogen bonding (Table 1). The solvent water molecules link the layers via O—H···O, O—H···N and N—H···O hydrogen bonds into a three-dimensional polymeric structure. The DMF solvent molecules are O4—H···O3 bonded to water molecules. An intramolecular C—H···O hydrogen bonding is also observed.

Related literature top

For the structures of some Schiff bases derived from 1,2-diaminocyclohexane, see: Fonseca et al. (2003); van den Ancker et al. (2006); Zhang et al. (2008)

Experimental top

An ethanolic solution of 1,2-diaminocyclohexane (1 g, 8.76 mmol) was added slowly to a solution of isatin (3.2 g, 22 mmol) in the same solvent. The mixture was refluxed for 3 hr. The resulting yellow precipitate was filtered, washed with cold ethanol and dried over silica-gel. The title crystals were obtained from a solution of the solid in DMF.

Refinement top

The C-bound hydrogen atoms were located in the calculated positions and refined in a riding mode with C—H distances of 0.95 (phenyl), 0.99 (methylene) and 1.00 (methine) Å. The N-bound H atoms were found in a difference Fourier map and refined freely. The water hydrogen atoms were found in a difference Fourier map and refined with a distance restraint of O—H = 0.86 (2) Å. For all hydrogen atoms, Uiso were set to 1.2–1.5Ueq(carrier atom).

Structure description top

The title bis-Schiff base is the condensation product of the reaction of 1,2-diaminocyclohexane with 2 eq of isatin. The crystal structure consists of a bis-Schiff base molecule, one DMF and two water solvent molecules. As observed in similar structures (Fonseca et al., 2003; van den Ancker et al., 2006; Zhang et al., 2008), the cyclohexane ring adopts a chair conformation with the imine links at the equatorial positions. The two isatin systems of the molecule are twisted with respect to each other by 65.63 (5)°. In the crystal, the adjacent Schiff bases are connected into a two-dimensional-array via C—H···π (Table 1) and ππ interactions [Cg1···Cg2iii = 3.3889 (10) Å, where Cg1 is the centroid of N1/C1/C8/C7/C2 ring and Cg2iii is the centroid of C2—C7 ring of the symmetry related molecule at -x + 1, -y + 1, -z]. The resulting network is consolidated by intermolecular N4—H···O1 and N4—H···N2 hydrogen bonding (Table 1). The solvent water molecules link the layers via O—H···O, O—H···N and N—H···O hydrogen bonds into a three-dimensional polymeric structure. The DMF solvent molecules are O4—H···O3 bonded to water molecules. An intramolecular C—H···O hydrogen bonding is also observed.

For the structures of some Schiff bases derived from 1,2-diaminocyclohexane, see: Fonseca et al. (2003); van den Ancker et al. (2006); Zhang et al. (2008)

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Displacement ellipsoid plot of the title compound at the 50% probability level. Hydrogen atoms are drawn as spheres of arbitrary radius.
[Figure 2] Fig. 2. The two-dimensional-array of the Schiff molecules in the ac plane mediated by C—H···π and π···π interactions, shown as dashed lines. The solvent molecules are not shown.
(3Z,3'E)-3,3'-[Cyclohexane-1,2- diylbis(azanylylidene)]bis(indolin-2-one) N,N-dimethylformamide monosolvate dihydrate top
Crystal data top
C22H20N4O2·C3H7NO·2H2OZ = 2
Mr = 481.55F(000) = 512
Triclinic, P1Dx = 1.291 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.1500 (9) ÅCell parameters from 3090 reflections
b = 11.3609 (12) Åθ = 2.4–30.2°
c = 13.6377 (14) ŵ = 0.09 mm1
α = 109.259 (2)°T = 100 K
β = 108.431 (1)°Block, yellow
γ = 95.310 (2)°0.48 × 0.42 × 0.39 mm
V = 1238.6 (2) Å3
Data collection top
Bruker APEXII CCD
diffractometer
4372 independent reflections
Radiation source: fine-focus sealed tube3665 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.013
φ and ω scansθmax = 25.3°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1010
Tmin = 0.957, Tmax = 0.965k = 913
6034 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.095H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0454P)2 + 0.4549P]
where P = (Fo2 + 2Fc2)/3
4372 reflections(Δ/σ)max < 0.001
336 parametersΔρmax = 0.25 e Å3
5 restraintsΔρmin = 0.29 e Å3
Crystal data top
C22H20N4O2·C3H7NO·2H2Oγ = 95.310 (2)°
Mr = 481.55V = 1238.6 (2) Å3
Triclinic, P1Z = 2
a = 9.1500 (9) ÅMo Kα radiation
b = 11.3609 (12) ŵ = 0.09 mm1
c = 13.6377 (14) ÅT = 100 K
α = 109.259 (2)°0.48 × 0.42 × 0.39 mm
β = 108.431 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
4372 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3665 reflections with I > 2σ(I)
Tmin = 0.957, Tmax = 0.965Rint = 0.013
6034 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0375 restraints
wR(F2) = 0.095H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.25 e Å3
4372 reflectionsΔρmin = 0.29 e Å3
336 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.45306 (13)0.72380 (10)0.27506 (8)0.0247 (3)
O20.29350 (13)0.34365 (12)0.46998 (9)0.0309 (3)
N10.42824 (15)0.69114 (13)0.09386 (10)0.0195 (3)
H1N0.489 (2)0.7633 (18)0.1070 (14)0.023*
N20.26872 (14)0.47022 (11)0.18006 (10)0.0170 (3)
N30.38315 (14)0.28305 (11)0.25952 (10)0.0170 (3)
N40.56342 (16)0.37451 (14)0.55374 (11)0.0271 (3)
H4N0.570 (2)0.3877 (18)0.6219 (16)0.032*
C10.40329 (16)0.65863 (14)0.17532 (12)0.0185 (3)
C20.35989 (16)0.58948 (14)0.01001 (12)0.0174 (3)
C30.36705 (17)0.58682 (15)0.11050 (12)0.0214 (3)
H30.42190.65870.11520.026*
C40.29099 (17)0.47503 (15)0.20446 (12)0.0226 (3)
H40.29500.47030.27440.027*
C50.20937 (17)0.37032 (15)0.19802 (12)0.0220 (3)
H50.15740.29550.26360.026*
C60.20271 (17)0.37363 (14)0.09635 (12)0.0194 (3)
H60.14650.30190.09220.023*
C70.27986 (16)0.48385 (14)0.00118 (11)0.0169 (3)
C80.30406 (16)0.52230 (14)0.11835 (11)0.0168 (3)
C90.17988 (16)0.33786 (14)0.13063 (11)0.0165 (3)
H90.21610.28710.07100.020*
C100.00283 (17)0.33050 (14)0.07931 (12)0.0203 (3)
H10A0.03310.38300.13740.024*
H10B0.01770.36520.01970.024*
C110.08898 (17)0.19223 (15)0.03049 (13)0.0227 (3)
H11A0.20340.18900.00080.027*
H11B0.05810.14110.03100.027*
C120.05622 (18)0.13504 (15)0.11994 (13)0.0243 (3)
H12A0.09870.17990.17690.029*
H12B0.11120.04380.08530.029*
C130.12025 (17)0.14623 (15)0.17641 (13)0.0220 (3)
H13A0.15930.09100.12170.026*
H13B0.13760.11530.23820.026*
C140.21441 (16)0.28386 (14)0.22271 (12)0.0175 (3)
H140.18860.33850.28660.021*
C150.42484 (18)0.34589 (15)0.46601 (12)0.0228 (3)
C160.46960 (17)0.31155 (14)0.36132 (12)0.0175 (3)
C170.63972 (17)0.31781 (14)0.40292 (12)0.0185 (3)
C180.74628 (17)0.29560 (15)0.34895 (12)0.0210 (3)
H180.71160.26810.27000.025*
C190.90433 (18)0.31444 (16)0.41310 (13)0.0241 (3)
H190.97920.30020.37790.029*
C200.95382 (18)0.35400 (16)0.52836 (13)0.0264 (4)
H201.06270.36640.57070.032*
C210.84880 (19)0.37610 (16)0.58381 (12)0.0261 (4)
H210.88350.40280.66280.031*
C220.69201 (18)0.35752 (15)0.51901 (12)0.0220 (3)
O30.92760 (14)0.94186 (12)0.26440 (10)0.0357 (3)
N51.16565 (16)0.99322 (13)0.40458 (11)0.0294 (3)
C231.0188 (2)1.00428 (16)0.36070 (14)0.0294 (4)
H230.98091.06550.40750.035*
C241.2341 (2)0.9040 (2)0.33834 (18)0.0455 (5)
H24A1.15350.85370.26430.068*
H24B1.27350.84670.37580.068*
H24C1.32170.95150.33020.068*
C251.2672 (3)1.0703 (2)0.51971 (16)0.0508 (5)
H25A1.21271.13260.55370.076*
H25B1.36511.11530.52130.076*
H25C1.29221.01470.56170.076*
O40.62232 (14)0.91639 (11)0.12455 (9)0.0262 (3)
H4A0.7181 (19)0.9326 (19)0.1742 (14)0.039*
H4B0.583 (2)0.9810 (16)0.1350 (15)0.039*
O50.53513 (18)0.89604 (13)0.09679 (11)0.0431 (3)
H5A0.578 (3)0.898 (2)0.0335 (14)0.065*
H5B0.562 (3)0.840 (2)0.1437 (17)0.065*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0278 (6)0.0218 (6)0.0187 (6)0.0012 (5)0.0062 (5)0.0038 (5)
O20.0242 (6)0.0525 (8)0.0277 (6)0.0173 (6)0.0155 (5)0.0215 (6)
N10.0175 (6)0.0185 (7)0.0199 (6)0.0003 (5)0.0040 (5)0.0077 (5)
N20.0150 (6)0.0176 (6)0.0191 (6)0.0052 (5)0.0062 (5)0.0074 (5)
N30.0157 (6)0.0177 (6)0.0178 (6)0.0044 (5)0.0058 (5)0.0070 (5)
N40.0245 (7)0.0451 (9)0.0156 (6)0.0147 (6)0.0098 (6)0.0124 (6)
C10.0154 (7)0.0188 (8)0.0209 (8)0.0052 (6)0.0054 (6)0.0080 (6)
C20.0127 (7)0.0210 (8)0.0195 (7)0.0070 (6)0.0043 (6)0.0095 (6)
C30.0168 (7)0.0269 (8)0.0244 (8)0.0051 (6)0.0069 (6)0.0151 (7)
C40.0199 (8)0.0323 (9)0.0182 (7)0.0090 (7)0.0067 (6)0.0123 (7)
C50.0206 (8)0.0253 (8)0.0175 (7)0.0071 (6)0.0045 (6)0.0069 (6)
C60.0170 (7)0.0213 (8)0.0196 (7)0.0060 (6)0.0051 (6)0.0083 (6)
C70.0128 (7)0.0211 (8)0.0184 (7)0.0066 (6)0.0048 (6)0.0096 (6)
C80.0131 (7)0.0183 (8)0.0189 (7)0.0058 (6)0.0053 (6)0.0068 (6)
C90.0164 (7)0.0173 (7)0.0157 (7)0.0044 (6)0.0062 (6)0.0056 (6)
C100.0172 (7)0.0220 (8)0.0211 (7)0.0051 (6)0.0050 (6)0.0091 (6)
C110.0159 (7)0.0241 (8)0.0240 (8)0.0024 (6)0.0037 (6)0.0083 (7)
C120.0199 (8)0.0243 (8)0.0275 (8)0.0004 (6)0.0084 (6)0.0099 (7)
C130.0206 (8)0.0225 (8)0.0255 (8)0.0041 (6)0.0079 (6)0.0128 (6)
C140.0145 (7)0.0207 (8)0.0184 (7)0.0053 (6)0.0065 (6)0.0082 (6)
C150.0226 (8)0.0299 (9)0.0216 (8)0.0107 (7)0.0107 (6)0.0132 (7)
C160.0194 (7)0.0168 (7)0.0183 (7)0.0053 (6)0.0081 (6)0.0076 (6)
C170.0179 (7)0.0193 (8)0.0180 (7)0.0050 (6)0.0050 (6)0.0079 (6)
C180.0217 (8)0.0253 (8)0.0178 (7)0.0079 (6)0.0077 (6)0.0094 (6)
C190.0182 (8)0.0308 (9)0.0249 (8)0.0069 (7)0.0086 (6)0.0115 (7)
C200.0179 (8)0.0320 (9)0.0244 (8)0.0061 (7)0.0022 (6)0.0100 (7)
C210.0252 (8)0.0333 (9)0.0155 (7)0.0085 (7)0.0035 (6)0.0072 (7)
C220.0222 (8)0.0263 (8)0.0188 (7)0.0085 (7)0.0086 (6)0.0082 (6)
O30.0270 (6)0.0351 (7)0.0392 (7)0.0016 (5)0.0027 (5)0.0176 (6)
N50.0266 (8)0.0273 (8)0.0294 (7)0.0037 (6)0.0050 (6)0.0104 (6)
C230.0320 (9)0.0262 (9)0.0351 (10)0.0067 (7)0.0145 (8)0.0157 (8)
C240.0378 (11)0.0448 (12)0.0528 (12)0.0169 (9)0.0158 (9)0.0159 (10)
C250.0488 (12)0.0529 (13)0.0325 (10)0.0026 (10)0.0009 (9)0.0126 (9)
O40.0234 (6)0.0233 (6)0.0272 (6)0.0014 (5)0.0041 (5)0.0097 (5)
O50.0646 (9)0.0387 (8)0.0307 (7)0.0209 (7)0.0271 (7)0.0071 (6)
Geometric parameters (Å, º) top
O1—C11.2195 (17)C12—H12A0.9900
O2—C151.2183 (18)C12—H12B0.9900
N1—C11.3557 (19)C13—C141.530 (2)
N1—C21.3995 (19)C13—H13A0.9900
N1—H1N0.876 (18)C13—H13B0.9900
N2—C81.2759 (19)C14—H141.0000
N2—C91.4612 (18)C15—C161.5461 (19)
N3—C161.2726 (18)C16—C171.464 (2)
N3—C141.4668 (18)C17—C181.390 (2)
N4—C151.361 (2)C17—C221.396 (2)
N4—C221.4072 (19)C18—C191.386 (2)
N4—H4N0.872 (19)C18—H180.9500
C1—C81.525 (2)C19—C201.387 (2)
C2—C31.383 (2)C19—H190.9500
C2—C71.407 (2)C20—C211.392 (2)
C3—C41.392 (2)C20—H200.9500
C3—H30.9500C21—C221.379 (2)
C4—C51.388 (2)C21—H210.9500
C4—H40.9500O3—C231.228 (2)
C5—C61.395 (2)N5—C231.323 (2)
C5—H50.9500N5—C241.452 (2)
C6—C71.391 (2)N5—C251.454 (2)
C6—H60.9500C23—H230.9500
C7—C81.4769 (19)C24—H24A0.9800
C9—C101.5299 (19)C24—H24B0.9800
C9—C141.5318 (19)C24—H24C0.9800
C9—H91.0000C25—H25A0.9800
C10—C111.526 (2)C25—H25B0.9800
C10—H10A0.9900C25—H25C0.9800
C10—H10B0.9900O4—H4A0.880 (15)
C11—C121.526 (2)O4—H4B0.837 (15)
C11—H11A0.9900O5—H5A0.821 (16)
C11—H11B0.9900O5—H5B0.858 (16)
C12—C131.526 (2)
C1—N1—C2111.07 (13)C12—C13—C14112.06 (12)
C1—N1—H1N123.4 (11)C12—C13—H13A109.2
C2—N1—H1N125.1 (11)C14—C13—H13A109.2
C8—N2—C9119.89 (12)C12—C13—H13B109.2
C16—N3—C14123.01 (12)C14—C13—H13B109.2
C15—N4—C22112.12 (12)H13A—C13—H13B107.9
C15—N4—H4N124.1 (12)N3—C14—C13108.39 (11)
C22—N4—H4N122.8 (12)N3—C14—C9106.93 (11)
O1—C1—N1127.11 (14)C13—C14—C9110.37 (12)
O1—C1—C8126.35 (13)N3—C14—H14110.4
N1—C1—C8106.52 (12)C13—C14—H14110.4
C3—C2—N1126.92 (14)C9—C14—H14110.4
C3—C2—C7122.05 (14)O2—C15—N4126.70 (14)
N1—C2—C7111.03 (12)O2—C15—C16127.88 (14)
C2—C3—C4117.62 (14)N4—C15—C16105.37 (12)
C2—C3—H3121.2N3—C16—C17125.11 (13)
C4—C3—H3121.2N3—C16—C15129.81 (13)
C5—C4—C3121.32 (14)C17—C16—C15105.07 (12)
C5—C4—H4119.3C18—C17—C22120.24 (13)
C3—C4—H4119.3C18—C17—C16132.06 (13)
C4—C5—C6120.76 (14)C22—C17—C16107.67 (12)
C4—C5—H5119.6C19—C18—C17118.45 (14)
C6—C5—H5119.6C19—C18—H18120.8
C7—C6—C5118.79 (14)C17—C18—H18120.8
C7—C6—H6120.6C18—C19—C20120.38 (14)
C5—C6—H6120.6C18—C19—H19119.8
C6—C7—C2119.45 (13)C20—C19—H19119.8
C6—C7—C8134.87 (14)C19—C20—C21121.99 (14)
C2—C7—C8105.66 (12)C19—C20—H20119.0
N2—C8—C7136.71 (14)C21—C20—H20119.0
N2—C8—C1117.56 (12)C22—C21—C20117.02 (14)
C7—C8—C1105.67 (12)C22—C21—H21121.5
N2—C9—C10110.75 (11)C20—C21—H21121.5
N2—C9—C14108.05 (11)C21—C22—C17121.91 (14)
C10—C9—C14110.56 (11)C21—C22—N4128.43 (14)
N2—C9—H9109.2C17—C22—N4109.65 (13)
C10—C9—H9109.2C23—N5—C24121.01 (15)
C14—C9—H9109.2C23—N5—C25122.34 (16)
C11—C10—C9110.26 (12)C24—N5—C25116.64 (16)
C11—C10—H10A109.6O3—C23—N5125.28 (16)
C9—C10—H10A109.6O3—C23—H23117.4
C11—C10—H10B109.6N5—C23—H23117.4
C9—C10—H10B109.6N5—C24—H24A109.5
H10A—C10—H10B108.1N5—C24—H24B109.5
C12—C11—C10110.78 (12)H24A—C24—H24B109.5
C12—C11—H11A109.5N5—C24—H24C109.5
C10—C11—H11A109.5H24A—C24—H24C109.5
C12—C11—H11B109.5H24B—C24—H24C109.5
C10—C11—H11B109.5N5—C25—H25A109.5
H11A—C11—H11B108.1N5—C25—H25B109.5
C13—C12—C11111.48 (12)H25A—C25—H25B109.5
C13—C12—H12A109.3N5—C25—H25C109.5
C11—C12—H12A109.3H25A—C25—H25C109.5
C13—C12—H12B109.3H25B—C25—H25C109.5
C11—C12—H12B109.3H4A—O4—H4B111.8 (19)
H12A—C12—H12B108.0H5A—O5—H5B111 (2)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C2–C7 ring.
D—H···AD—HH···AD···AD—H···A
N1—H1N···O40.876 (18)1.929 (19)2.8036 (18)175.6 (16)
O4—H4A···O30.88 (2)1.89 (2)2.7643 (16)171 (2)
O5—H5A···O40.82 (2)2.00 (2)2.7901 (18)163 (2)
O4—H4B···O5i0.84 (2)1.95 (2)2.7415 (18)158 (2)
N4—H4N···O1ii0.872 (19)2.222 (19)2.9382 (18)139.3 (16)
N4—H4N···N2ii0.872 (19)2.498 (19)3.2246 (18)141.3 (16)
O5—H5B···N3iii0.86 (2)1.97 (2)2.8241 (17)176 (2)
C14—H14···O21.002.363.0351 (18)124
C10—H10A···Cgiv0.992.903.5799 (18)126
Symmetry codes: (i) x+1, y+2, z; (ii) x+1, y+1, z+1; (iii) x+1, y+1, z; (iv) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC22H20N4O2·C3H7NO·2H2O
Mr481.55
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)9.1500 (9), 11.3609 (12), 13.6377 (14)
α, β, γ (°)109.259 (2), 108.431 (1), 95.310 (2)
V3)1238.6 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.48 × 0.42 × 0.39
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.957, 0.965
No. of measured, independent and
observed [I > 2σ(I)] reflections
6034, 4372, 3665
Rint0.013
(sin θ/λ)max1)0.600
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.095, 1.03
No. of reflections4372
No. of parameters336
No. of restraints5
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.25, 0.29

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), X-SEED (Barbour, 2001), SHELXL97 (Sheldrick, 2008) and publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C2–C7 ring.
D—H···AD—HH···AD···AD—H···A
N1—H1N···O40.876 (18)1.929 (19)2.8036 (18)175.6 (16)
O4—H4A···O30.880 (15)1.893 (15)2.7643 (16)170.5 (19)
O5—H5A···O40.821 (16)1.996 (16)2.7901 (18)163 (2)
O4—H4B···O5i0.837 (15)1.948 (16)2.7415 (18)157.9 (18)
N4—H4N···O1ii0.872 (19)2.222 (19)2.9382 (18)139.3 (16)
N4—H4N···N2ii0.872 (19)2.498 (19)3.2246 (18)141.3 (16)
O5—H5B···N3iii0.858 (16)1.967 (17)2.8241 (17)176 (2)
C14—H14···O21.002.363.0351 (18)124
C10—H10A···Cgiv0.992.903.5799 (18)126
Symmetry codes: (i) x+1, y+2, z; (ii) x+1, y+1, z+1; (iii) x+1, y+1, z; (iv) x, y+1, z.
 

Acknowledgements

We thank the University of Malaya for funding this study (ERGS grant No. ER009–2011 A).

References

First citationAncker, T. R. van den, Cave, G. W. V. & Raston, C. L. (2006). Green Chem. 8, 50–53.  Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFonseca, M. H., Eibler, E., Zabel, M. & Konig, B. (2003). Inorg. Chim. Acta, 352, 136–142.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, Y., Xiang, L., Wang, Q., Duan, X.-F. & Zi, G. (2008). Inorg. Chim. Acta, 361, 1246–1254.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds