organic compounds
N′-[(E)-3-Chloro-2-fluorobenzylidene]-6-methylnicotinohydrazide monohydrate
aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri, Mangalore 574 199, India
*Correspondence e-mail: hkfun@usm.my
The title compound, C14H11ClFN3O·H2O, exists in an E conformation with respect to the N=C bond. The pyridine ring forms a dihedral angle of 5.00 (9)° with the benzene ring. In the crystal, the ketone O atom accepts one O—H⋯O and one C—H⋯O hydrogen bond, the water O atom accepts one N—H⋯O and two C—H⋯O hydrogen bonds and the pyridine N atom accepts one O—H⋯N hydrogen bond, forming layers parallel to the ab plane.
Related literature
For general background to and the biological properties of hydrazone derivatives, see: Rollas & Kucukguzel (2007); Sondhi et al. (2009); Belskaya et al. (2010); Vijesh et al. (2011); Galil & Amr (2000). For standard bond-length data, see: Allen et al. (1987). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986). For related structures, see: Fun, Quah & Abdel-Aziz (2012); Fun, Quah, Shetty et al. (2012); Fun, Quah, Nitinchandra et al. (2012).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2009); cell SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).
Supporting information
https://doi.org/10.1107/S1600536812026736/is5156sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536812026736/is5156Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S1600536812026736/is5156Isup3.cml
6-Methylnicotinohydrazide (1 g, 0.006 mol) and 3-chloro-2-flourobenzaldehyde (1.05 g, 0.006 mol) are refluxed for 1hr in ethanol(10 ml) by adding few drops of acetic acid. The solid separated on cooling was filtered, washed with chilled ethanol and dried. The crude material is recrystallized from hot ethanol(1.5 g, 78% ). M.p. : 457-458 °C. The crystals of appropriate size were obtained by the slow evaporation of the ethanolic solution of the compound.
N-bound and O-bound H atoms were located in a difference Fourier map and refined using a riding model with N—H = 0.8295 Å and O—H = 0.7778 or 0.7815 Å. The rest of hydrogen atoms were positioned geometrically and refined using a riding model with C—H = 0.95 or 0.98 Å and Uiso(H) = 1.2 or 1.5 Ueq(C). A rotating-group model was applied for the methyl group.
Hydrazones and their derivatives constitute a versatile class of compounds in organic chemistry. These compounds have showed varied biological properties, such as anti-inflammatory, analgesic, anticonvulsant, antituberculur, antitumor, anti-HIV and antimicrobial activity (Rollas & Kucukguzel, 2007; Sondhi et al., 2009; Belskaya et al.., 2010).
are important compounds for drug design, as possible ligands for metal complexes, and also for the syntheses of large number of Further, substituted pyridines have showed significant biological activities (Vijesh et al., 2011; Galil & Amr, 2000). These reports prompted us to synthesize the novel derivative of 6-mthyl nicotinic acid hydrazide hydrazone to study its crystal structure.The title compound (Fig. 1) consists of a N'-[(1E)-(3-chloro-2- fluorophenyl)methylidene]-6-methylnicotinohydrazide molecule and a water molecule in the ═C7 bond [1.279 (2) Å]. The pyridine ring (N3/C1–C5, r.m.s deviation = 0.008 Å) forms a dihedral angle of 5.00 (9)° with the benzene ring (C8–C13). Bond lengths (Allen et al., 1987) and angles are within normal ranges and are comparable to related structures (Fun, Quah & Abdel-Aziz, 2012; Fun, Quah, Shetty et al., 2012; Fun, Quah, Nitinchandra et al., 2012).
and exists in an E configuration with respect to the N1In the crystal (Fig.2), molecules are linked via intermolecular O1W—H2W1···O1, C12—H12A···O1 bifurcated acceptor bonds (Table 1) and N2—H3···O1W, C4—H4A···O1W, C7—H7A···O1W trifurcated acceptor bonds and together with O1W—H1W1···N3 hydrogen bonds to form two-dimensional layers parallel to (001).
For general background to and the biological properties of hydrazone derivatives, see: Rollas & Kucukguzel (2007); Sondhi et al. (2009); Belskaya et al. (2010); Vijesh et al. (2011); Galil & Amr (2000). For standard bond-length data, see: Allen et al. (1987). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986). For related structures, see: Fun, Quah & Abdel-Aziz (2012); Fun, Quah, Shetty et al. (2012); Fun, Quah, Nitinchandra et al. (2012).
Data collection: APEX2 (Bruker, 2009); cell
SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).Fig. 1. The molecular structure of the title compound showing 50% probability displacement ellipsoids for non-H atoms. | |
Fig. 2. The crystal structure of the title compound, viewed along the b axis. H atoms not involved in hydrogen bonds (dashed lines) have been omitted for clarity. |
C14H11ClFN3O·H2O | F(000) = 640 |
Mr = 309.72 | Dx = 1.472 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 5275 reflections |
a = 9.7898 (12) Å | θ = 3.2–30.0° |
b = 6.4440 (8) Å | µ = 0.29 mm−1 |
c = 23.121 (3) Å | T = 100 K |
β = 106.614 (5)° | Block, colourless |
V = 1397.7 (3) Å3 | 0.47 × 0.24 × 0.13 mm |
Z = 4 |
Bruker SMART APEXII DUO CCD area-detector diffractometer | 3154 independent reflections |
Radiation source: fine-focus sealed tube | 2625 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.031 |
φ and ω scans | θmax = 27.5°, θmin = 2.2° |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | h = −12→12 |
Tmin = 0.874, Tmax = 0.962 | k = −8→8 |
12000 measured reflections | l = −30→30 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.046 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.137 | H-atom parameters constrained |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0777P)2 + 0.8539P] where P = (Fo2 + 2Fc2)/3 |
3154 reflections | (Δ/σ)max = 0.001 |
191 parameters | Δρmax = 0.43 e Å−3 |
0 restraints | Δρmin = −0.63 e Å−3 |
C14H11ClFN3O·H2O | V = 1397.7 (3) Å3 |
Mr = 309.72 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 9.7898 (12) Å | µ = 0.29 mm−1 |
b = 6.4440 (8) Å | T = 100 K |
c = 23.121 (3) Å | 0.47 × 0.24 × 0.13 mm |
β = 106.614 (5)° |
Bruker SMART APEXII DUO CCD area-detector diffractometer | 3154 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | 2625 reflections with I > 2σ(I) |
Tmin = 0.874, Tmax = 0.962 | Rint = 0.031 |
12000 measured reflections |
R[F2 > 2σ(F2)] = 0.046 | 0 restraints |
wR(F2) = 0.137 | H-atom parameters constrained |
S = 1.05 | Δρmax = 0.43 e Å−3 |
3154 reflections | Δρmin = −0.63 e Å−3 |
191 parameters |
Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K. |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 0.13433 (5) | 0.04401 (12) | −0.22498 (2) | 0.0433 (2) | |
F1 | 0.41013 (12) | 0.18849 (16) | −0.14979 (5) | 0.0253 (3) | |
O1 | 0.90720 (13) | −0.28353 (18) | 0.07189 (6) | 0.0216 (3) | |
N1 | 0.69521 (15) | −0.1028 (2) | −0.01138 (6) | 0.0147 (3) | |
N2 | 0.81273 (15) | 0.0080 (2) | 0.02094 (6) | 0.0140 (3) | |
H3 | 0.8209 | 0.1329 | 0.0139 | 0.017* | |
N3 | 1.18040 (16) | 0.3394 (2) | 0.11873 (7) | 0.0175 (3) | |
C1 | 1.1389 (2) | −0.0710 (3) | 0.14649 (8) | 0.0213 (4) | |
H1A | 1.1260 | −0.2118 | 0.1559 | 0.026* | |
C2 | 1.2558 (2) | 0.0394 (3) | 0.17998 (8) | 0.0224 (4) | |
H2A | 1.3235 | −0.0246 | 0.2130 | 0.027* | |
C3 | 1.27378 (18) | 0.2453 (3) | 0.16504 (8) | 0.0158 (3) | |
C4 | 1.06603 (18) | 0.2327 (3) | 0.08720 (8) | 0.0164 (3) | |
H4A | 0.9987 | 0.3015 | 0.0551 | 0.020* | |
C5 | 1.04020 (18) | 0.0268 (2) | 0.09874 (7) | 0.0134 (3) | |
C6 | 0.91479 (18) | −0.0965 (2) | 0.06299 (7) | 0.0144 (3) | |
C7 | 0.60432 (18) | −0.0013 (2) | −0.05240 (7) | 0.0145 (3) | |
H7A | 0.6211 | 0.1397 | −0.0602 | 0.017* | |
C8 | 0.47374 (17) | −0.1065 (3) | −0.08721 (7) | 0.0146 (3) | |
C9 | 0.37845 (19) | −0.0051 (3) | −0.13481 (8) | 0.0182 (4) | |
C10 | 0.25093 (19) | −0.0955 (3) | −0.16783 (8) | 0.0243 (4) | |
C11 | 0.2185 (2) | −0.2941 (3) | −0.15368 (9) | 0.0276 (4) | |
H11A | 0.1321 | −0.3580 | −0.1760 | 0.033* | |
C12 | 0.3126 (2) | −0.3998 (3) | −0.10675 (9) | 0.0254 (4) | |
H12A | 0.2903 | −0.5365 | −0.0970 | 0.030* | |
C13 | 0.43891 (19) | −0.3077 (3) | −0.07395 (8) | 0.0191 (4) | |
H13A | 0.5027 | −0.3824 | −0.0420 | 0.023* | |
C14 | 1.4001 (2) | 0.3715 (3) | 0.19936 (8) | 0.0216 (4) | |
H14A | 1.3685 | 0.5111 | 0.2064 | 0.032* | |
H14B | 1.4689 | 0.3811 | 0.1759 | 0.032* | |
H14C | 1.4453 | 0.3046 | 0.2382 | 0.032* | |
O1W | 0.78116 (14) | 0.41994 (18) | −0.02068 (6) | 0.0207 (3) | |
H2W1 | 0.8016 | 0.5100 | 0.0026 | 0.031* | |
H1W1 | 0.7882 | 0.4580 | −0.0518 | 0.031* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0185 (3) | 0.0809 (5) | 0.0264 (3) | 0.0020 (3) | −0.00018 (19) | 0.0134 (3) |
F1 | 0.0256 (6) | 0.0188 (5) | 0.0300 (6) | 0.0021 (4) | 0.0052 (4) | 0.0078 (4) |
O1 | 0.0211 (7) | 0.0072 (6) | 0.0320 (7) | −0.0027 (5) | 0.0004 (5) | 0.0036 (5) |
N1 | 0.0146 (7) | 0.0096 (6) | 0.0195 (7) | −0.0031 (5) | 0.0040 (5) | −0.0031 (5) |
N2 | 0.0149 (7) | 0.0062 (6) | 0.0194 (7) | −0.0033 (5) | 0.0025 (5) | −0.0010 (5) |
N3 | 0.0166 (7) | 0.0121 (7) | 0.0221 (7) | −0.0031 (5) | 0.0027 (6) | −0.0012 (5) |
C1 | 0.0214 (9) | 0.0125 (8) | 0.0270 (9) | −0.0021 (7) | 0.0024 (7) | 0.0045 (7) |
C2 | 0.0175 (9) | 0.0190 (9) | 0.0257 (9) | −0.0014 (7) | −0.0018 (7) | 0.0053 (7) |
C3 | 0.0149 (8) | 0.0142 (8) | 0.0186 (8) | −0.0015 (6) | 0.0053 (6) | −0.0020 (6) |
C4 | 0.0162 (8) | 0.0109 (7) | 0.0198 (8) | −0.0018 (6) | 0.0018 (6) | 0.0015 (6) |
C5 | 0.0135 (8) | 0.0094 (7) | 0.0181 (8) | −0.0016 (6) | 0.0057 (6) | −0.0014 (6) |
C6 | 0.0149 (8) | 0.0091 (7) | 0.0197 (8) | −0.0022 (6) | 0.0058 (6) | −0.0006 (6) |
C7 | 0.0164 (8) | 0.0088 (7) | 0.0182 (8) | −0.0014 (6) | 0.0050 (6) | −0.0011 (6) |
C8 | 0.0142 (8) | 0.0122 (7) | 0.0185 (7) | −0.0025 (6) | 0.0065 (6) | −0.0040 (6) |
C9 | 0.0177 (8) | 0.0181 (8) | 0.0199 (8) | −0.0011 (7) | 0.0070 (6) | −0.0010 (6) |
C10 | 0.0139 (8) | 0.0409 (11) | 0.0181 (8) | −0.0028 (8) | 0.0045 (6) | −0.0038 (8) |
C11 | 0.0173 (9) | 0.0395 (12) | 0.0276 (10) | −0.0127 (8) | 0.0090 (7) | −0.0136 (8) |
C12 | 0.0251 (10) | 0.0204 (9) | 0.0348 (10) | −0.0109 (8) | 0.0153 (8) | −0.0099 (8) |
C13 | 0.0204 (9) | 0.0130 (8) | 0.0251 (9) | −0.0035 (7) | 0.0088 (7) | −0.0024 (6) |
C14 | 0.0182 (9) | 0.0209 (9) | 0.0235 (8) | −0.0044 (7) | 0.0023 (7) | −0.0033 (7) |
O1W | 0.0282 (7) | 0.0081 (5) | 0.0244 (6) | −0.0042 (5) | 0.0052 (5) | 0.0019 (5) |
Cl1—C10 | 1.731 (2) | C5—C6 | 1.497 (2) |
F1—C9 | 1.354 (2) | C7—C8 | 1.467 (2) |
O1—C6 | 1.228 (2) | C7—H7A | 0.9500 |
N1—C7 | 1.279 (2) | C8—C9 | 1.386 (2) |
N1—N2 | 1.3786 (18) | C8—C13 | 1.397 (2) |
N2—C6 | 1.357 (2) | C9—C10 | 1.391 (2) |
N2—H3 | 0.8295 | C10—C11 | 1.380 (3) |
N3—C3 | 1.338 (2) | C11—C12 | 1.385 (3) |
N3—C4 | 1.338 (2) | C11—H11A | 0.9500 |
C1—C2 | 1.381 (2) | C12—C13 | 1.386 (2) |
C1—C5 | 1.393 (2) | C12—H12A | 0.9500 |
C1—H1A | 0.9500 | C13—H13A | 0.9500 |
C2—C3 | 1.395 (2) | C14—H14A | 0.9800 |
C2—H2A | 0.9500 | C14—H14B | 0.9800 |
C3—C14 | 1.503 (2) | C14—H14C | 0.9800 |
C4—C5 | 1.391 (2) | O1W—H2W1 | 0.7778 |
C4—H4A | 0.9500 | O1W—H1W1 | 0.7815 |
C7—N1—N2 | 115.64 (14) | C9—C8—C13 | 117.44 (15) |
C6—N2—N1 | 117.43 (13) | C9—C8—C7 | 120.04 (15) |
C6—N2—H3 | 122.0 | C13—C8—C7 | 122.51 (15) |
N1—N2—H3 | 120.6 | F1—C9—C8 | 119.08 (15) |
C3—N3—C4 | 118.47 (15) | F1—C9—C10 | 118.73 (16) |
C2—C1—C5 | 119.13 (16) | C8—C9—C10 | 122.19 (17) |
C2—C1—H1A | 120.4 | C11—C10—C9 | 119.29 (18) |
C5—C1—H1A | 120.4 | C11—C10—Cl1 | 121.11 (15) |
C1—C2—C3 | 119.62 (16) | C9—C10—Cl1 | 119.59 (16) |
C1—C2—H2A | 120.2 | C10—C11—C12 | 119.69 (17) |
C3—C2—H2A | 120.2 | C10—C11—H11A | 120.2 |
N3—C3—C2 | 121.56 (15) | C12—C11—H11A | 120.2 |
N3—C3—C14 | 116.62 (15) | C11—C12—C13 | 120.50 (18) |
C2—C3—C14 | 121.81 (16) | C11—C12—H12A | 119.8 |
N3—C4—C5 | 123.74 (15) | C13—C12—H12A | 119.8 |
N3—C4—H4A | 118.1 | C12—C13—C8 | 120.87 (17) |
C5—C4—H4A | 118.1 | C12—C13—H13A | 119.6 |
C4—C5—C1 | 117.45 (15) | C8—C13—H13A | 119.6 |
C4—C5—C6 | 124.46 (15) | C3—C14—H14A | 109.5 |
C1—C5—C6 | 118.08 (15) | C3—C14—H14B | 109.5 |
O1—C6—N2 | 122.65 (15) | H14A—C14—H14B | 109.5 |
O1—C6—C5 | 120.50 (15) | C3—C14—H14C | 109.5 |
N2—C6—C5 | 116.85 (14) | H14A—C14—H14C | 109.5 |
N1—C7—C8 | 118.86 (15) | H14B—C14—H14C | 109.5 |
N1—C7—H7A | 120.6 | H2W1—O1W—H1W1 | 109.3 |
C8—C7—H7A | 120.6 | ||
C7—N1—N2—C6 | −177.06 (15) | N2—N1—C7—C8 | −177.73 (13) |
C5—C1—C2—C3 | −0.7 (3) | N1—C7—C8—C9 | −175.30 (16) |
C4—N3—C3—C2 | 1.4 (3) | N1—C7—C8—C13 | 5.6 (3) |
C4—N3—C3—C14 | −179.66 (15) | C13—C8—C9—F1 | −178.62 (15) |
C1—C2—C3—N3 | −0.1 (3) | C7—C8—C9—F1 | 2.2 (2) |
C1—C2—C3—C14 | −179.06 (18) | C13—C8—C9—C10 | 1.4 (3) |
C3—N3—C4—C5 | −1.8 (3) | C7—C8—C9—C10 | −177.74 (16) |
N3—C4—C5—C1 | 0.9 (3) | F1—C9—C10—C11 | 178.90 (16) |
N3—C4—C5—C6 | −178.41 (16) | C8—C9—C10—C11 | −1.1 (3) |
C2—C1—C5—C4 | 0.4 (3) | F1—C9—C10—Cl1 | −2.2 (2) |
C2—C1—C5—C6 | 179.74 (16) | C8—C9—C10—Cl1 | 177.77 (14) |
N1—N2—C6—O1 | 1.7 (3) | C9—C10—C11—C12 | 0.4 (3) |
N1—N2—C6—C5 | −178.62 (13) | Cl1—C10—C11—C12 | −178.47 (15) |
C4—C5—C6—O1 | 172.25 (17) | C10—C11—C12—C13 | 0.0 (3) |
C1—C5—C6—O1 | −7.1 (3) | C11—C12—C13—C8 | 0.4 (3) |
C4—C5—C6—N2 | −7.4 (2) | C9—C8—C13—C12 | −1.0 (3) |
C1—C5—C6—N2 | 173.25 (15) | C7—C8—C13—C12 | 178.11 (16) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1W—H2W1···O1i | 0.78 | 2.11 | 2.8713 (18) | 166 |
O1W—H1W1···N3ii | 0.78 | 2.11 | 2.859 (2) | 160 |
N2—H3···O1W | 0.83 | 2.01 | 2.8104 (18) | 162 |
C4—H4A···O1W | 0.95 | 2.46 | 3.388 (2) | 165 |
C7—H7A···O1W | 0.95 | 2.39 | 3.1902 (19) | 141 |
C12—H12A···O1iii | 0.95 | 2.46 | 3.230 (2) | 138 |
Symmetry codes: (i) x, y+1, z; (ii) −x+2, −y+1, −z; (iii) −x+1, −y−1, −z. |
Experimental details
Crystal data | |
Chemical formula | C14H11ClFN3O·H2O |
Mr | 309.72 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 100 |
a, b, c (Å) | 9.7898 (12), 6.4440 (8), 23.121 (3) |
β (°) | 106.614 (5) |
V (Å3) | 1397.7 (3) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.29 |
Crystal size (mm) | 0.47 × 0.24 × 0.13 |
Data collection | |
Diffractometer | Bruker SMART APEXII DUO CCD area-detector |
Absorption correction | Multi-scan (SADABS; Bruker, 2009) |
Tmin, Tmax | 0.874, 0.962 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 12000, 3154, 2625 |
Rint | 0.031 |
(sin θ/λ)max (Å−1) | 0.650 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.046, 0.137, 1.05 |
No. of reflections | 3154 |
No. of parameters | 191 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.43, −0.63 |
Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
O1W—H2W1···O1i | 0.78 | 2.11 | 2.8713 (18) | 166 |
O1W—H1W1···N3ii | 0.78 | 2.11 | 2.859 (2) | 160 |
N2—H3···O1W | 0.83 | 2.01 | 2.8104 (18) | 162 |
C4—H4A···O1W | 0.95 | 2.46 | 3.388 (2) | 165 |
C7—H7A···O1W | 0.95 | 2.39 | 3.1902 (19) | 141 |
C12—H12A···O1iii | 0.95 | 2.46 | 3.230 (2) | 138 |
Symmetry codes: (i) x, y+1, z; (ii) −x+2, −y+1, −z; (iii) −x+1, −y−1, −z. |
Acknowledgements
The authors thank Universiti Sains Malaysia (USM) for the Research University Grant (No. 1001/PFIZIK/811160). CKQ also thanks USM for an Incentive Grant. BK also thanks the Department of Atomic Energy, Board for Research in Nuclear Sciences, Government of India, for financial assistance.
References
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19. CSD CrossRef Web of Science Google Scholar
Belskaya, N. P., Dehaen, W. & Bakulev, V. A. (2010). Arkivoc, i, 275–332. CrossRef Google Scholar
Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107. CrossRef CAS Web of Science IUCr Journals Google Scholar
Fun, H.-K., Quah, C. K. & Abdel-Aziz, H. A. (2012). Acta Cryst. E68, o1682. CSD CrossRef IUCr Journals Google Scholar
Fun, H.-K., Quah, C. K., Nitinchandra, Kalluraya, B. & Babu, M. (2012). Acta Cryst. E68, o2121. CSD CrossRef IUCr Journals Google Scholar
Fun, H.-K., Quah, C. K., Shetty, D. N., Narayana, B. & Sarojini, B. K. (2012). Acta Cryst. E68, o1484. CSD CrossRef IUCr Journals Google Scholar
Galil, A. E. & Amr, A. E. (2000). Indian J. Heterocycl. Chem. 10, 49–58. Google Scholar
Rollas, S. & Kucukguzel, S. G. (2007). Molecules, 12, 1910–1939. Web of Science CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sondhi, S. M., Dinodia, M., Jain, S. & Kumar, M. (2009). Indian J. Chem. Sect. B, 48, 1128–1136. Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Vijesh, A. M., Isloor, A. M., Peethambar, S. K., Shivananda, K. N., Arulmoli, T. & Isloor, N. A. (2011). Eur. J. Med. Chem. 46, 5591–5597. Web of Science CrossRef CAS PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Hydrazones and their derivatives constitute a versatile class of compounds in organic chemistry. These compounds have showed varied biological properties, such as anti-inflammatory, analgesic, anticonvulsant, antituberculur, antitumor, anti-HIV and antimicrobial activity (Rollas & Kucukguzel, 2007; Sondhi et al., 2009; Belskaya et al.., 2010). Hydrazones are important compounds for drug design, as possible ligands for metal complexes, and also for the syntheses of large number of heterocyclic compounds. Further, substituted pyridines have showed significant biological activities (Vijesh et al., 2011; Galil & Amr, 2000). These reports prompted us to synthesize the novel derivative of 6-mthyl nicotinic acid hydrazide hydrazone to study its crystal structure.
The title compound (Fig. 1) consists of a N'-[(1E)-(3-chloro-2- fluorophenyl)methylidene]-6-methylnicotinohydrazide molecule and a water molecule in the asymmetric unit and exists in an E configuration with respect to the N1═C7 bond [1.279 (2) Å]. The pyridine ring (N3/C1–C5, r.m.s deviation = 0.008 Å) forms a dihedral angle of 5.00 (9)° with the benzene ring (C8–C13). Bond lengths (Allen et al., 1987) and angles are within normal ranges and are comparable to related structures (Fun, Quah & Abdel-Aziz, 2012; Fun, Quah, Shetty et al., 2012; Fun, Quah, Nitinchandra et al., 2012).
In the crystal (Fig.2), molecules are linked via intermolecular O1W—H2W1···O1, C12—H12A···O1 bifurcated acceptor bonds (Table 1) and N2—H3···O1W, C4—H4A···O1W, C7—H7A···O1W trifurcated acceptor bonds and together with O1W—H1W1···N3 hydrogen bonds to form two-dimensional layers parallel to (001).