organic compounds
(E)-N′-(4-Chlorobenzylidene)-1-benzofuran-2-carbohydrazide monohydrate
aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri, Mangalore 574 199, India
*Correspondence e-mail: hkfun@usm.my
The title compound, C16H11ClN2O2·H2O, exists in an E conformation with respect to the N=C bond. The benzofuran ring system forms a dihedral angle of 1.26 (4)° with the benzene ring. In the crystal, molecules are linked via (N,C)—H⋯O bifurcated acceptor hydrogen bonds and (O,O,C)—H⋯O trifurcated acceptor hydrogen bonds, forming layers parallel to the bc plane.
Related literature
For general background to hydrazone derivatives, see: Sridhar & Perumal (2003); Vijayakumar et al. (2011). For standard bond-length data, see: Allen et al. (1987). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986). For related structures, see: Fun, Quah & Abdel-Aziz (2012); Fun, Quah, Nitinchandra et al. (2012); Fun, Quah, Shyma et al. (2012).
Experimental
Crystal data
|
Data collection: APEX2 (Bruker, 2009); cell SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).
Supporting information
https://doi.org/10.1107/S1600536812027523/is5157sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536812027523/is5157Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S1600536812027523/is5157Isup3.cml
The title compound was obtained by refluxing a mixture of 1-benzofuran-2-carbohydrazide (0.01 mol), 4-chlorobenzaldehyde (0.01 mol) in ethanol (30 ml) and 3 drops of concentrated sulfuric acid for 1 h. Excess ethanol was removed from the reaction mixture under reduced pressure. The solid product obtained was filtered, washed with ethanol and dried. Single crystals suitable for X-ray analysis were obtained by slow evaporation of an ethanol-N,N-dimethylformamide (DMF) (3:1) solution.
N-bound and O-bound H atoms were located in a difference Fourier map and refined freely [N—H = 0.909 (18) Å, and O—H = 0.75 (3) and 0.857 (19) Å]. The rest of hydrogen atoms were positioned geometrically and refined using a riding model with C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C).
Hydrazones are versatile intermediates and important building blocks. Aryl
are important building blocks for the synthesis of a variety of such as pyrazolines and pyrazoles (Sridhar & Perumal, 2003). of aliphatic and aromatic methyl yield pyrazole-4-carboxaldehyde on formylation by treatment with Vilsmeier reagent. derived from anisaldehyde and 4-nitro-5-ethoxycarbonyl phenylhydrazine showed excellent NLO property (Vijayakumar et al., 2011). Prompted by these observations, the title compound was synthesized and its is reported.The title compound (Fig. 1) consists of a N'-[4-chlorophenyl)methylidene]-1-benzofuran-2-carbohydrazide molecule and a water molecule in the ═C10 bond [1.2848 (13) Å]. The benzofuran ring system (O1/C1-C8, r.m.s deviation = 0.012 Å) forms a dihedral angle of 1.26 (4)° with the benzene ring (C11–C16). Bond lengths (Allen et al., 1987) and angles are within normal ranges and are comparable to related structures (Fun, Quah & Abdel-Aziz, 2012; Fun, Quah, Nitinchandra et al., 2012; Fun, Quah, Shyma et al., 2012).
and exists in an E configuration with respect to the N2In the crystal (Fig. 2), molecules are linked via intermolecular N1—H1N1···O1W, C10—H10A···O1W bifurcated acceptor hydrogen bonds and O1W—H2W1···O2, O1W—H2W1···O2, C2—H2A···O2 trifurcated acceptor hydrogen bonds (Table 1) to form two-dimensional layers parallel to (100).
For general background to hydrazone derivatives, see: Sridhar & Perumal (2003); Vijayakumar et al. (2011). For standard bond-length data, see: Allen et al. (1987). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986). For related structures, see: Fun, Quah & Abdel-Aziz (2012); Fun, Quah, Nitinchandra et al. (2012); Fun, Quah, Shyma et al. (2012).
Data collection: APEX2 (Bruker, 2009); cell
SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).Fig. 1. The molecular structure of the title compound showing 50% probability displacement ellipsoids for non-H atoms. | |
Fig. 2. The crystal structure of the title compound, viewed along the b axis. H atoms not involved in hydrogen bonds (dashed lines) have been omitted for clarity. |
C16H11ClN2O2·H2O | F(000) = 656 |
Mr = 316.73 | Dx = 1.468 Mg m−3 |
Monoclinic, Cc | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: C -2yc | Cell parameters from 5261 reflections |
a = 24.6121 (15) Å | θ = 3.3–32.6° |
b = 4.6625 (3) Å | µ = 0.28 mm−1 |
c = 12.6570 (8) Å | T = 100 K |
β = 99.294 (1)° | Plate, yellow |
V = 1433.37 (16) Å3 | 0.57 × 0.34 × 0.09 mm |
Z = 4 |
Bruker SMART APEXII DUO CCD area-detector diffractometer | 4620 independent reflections |
Radiation source: fine-focus sealed tube | 4511 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.019 |
φ and ω scans | θmax = 32.6°, θmin = 1.7° |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | h = −35→36 |
Tmin = 0.856, Tmax = 0.975 | k = −6→7 |
7338 measured reflections | l = −19→18 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.028 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.073 | w = 1/[σ2(Fo2) + (0.0441P)2 + 0.2352P] where P = (Fo2 + 2Fc2)/3 |
S = 1.04 | (Δ/σ)max = 0.002 |
4620 reflections | Δρmax = 0.34 e Å−3 |
211 parameters | Δρmin = −0.19 e Å−3 |
2 restraints | Absolute structure: Flack (1983), 2025 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.03 (3) |
C16H11ClN2O2·H2O | V = 1433.37 (16) Å3 |
Mr = 316.73 | Z = 4 |
Monoclinic, Cc | Mo Kα radiation |
a = 24.6121 (15) Å | µ = 0.28 mm−1 |
b = 4.6625 (3) Å | T = 100 K |
c = 12.6570 (8) Å | 0.57 × 0.34 × 0.09 mm |
β = 99.294 (1)° |
Bruker SMART APEXII DUO CCD area-detector diffractometer | 4620 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | 4511 reflections with I > 2σ(I) |
Tmin = 0.856, Tmax = 0.975 | Rint = 0.019 |
7338 measured reflections |
R[F2 > 2σ(F2)] = 0.028 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.073 | Δρmax = 0.34 e Å−3 |
S = 1.04 | Δρmin = −0.19 e Å−3 |
4620 reflections | Absolute structure: Flack (1983), 2025 Friedel pairs |
211 parameters | Absolute structure parameter: 0.03 (3) |
2 restraints |
Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K. |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 0.362378 (12) | 2.08150 (5) | 0.62418 (2) | 0.02405 (7) | |
O1 | 0.66851 (3) | 0.45040 (16) | 0.85030 (6) | 0.01364 (14) | |
O2 | 0.61809 (3) | 0.76090 (16) | 0.59506 (6) | 0.01549 (14) | |
N1 | 0.59805 (4) | 0.87204 (18) | 0.76135 (7) | 0.01207 (15) | |
N2 | 0.56127 (4) | 1.07881 (18) | 0.71696 (7) | 0.01267 (15) | |
C1 | 0.70999 (4) | 0.2512 (2) | 0.87293 (8) | 0.01263 (16) | |
C2 | 0.72801 (5) | 0.1294 (2) | 0.97208 (8) | 0.01605 (18) | |
H2A | 0.7119 | 0.1758 | 1.0332 | 0.019* | |
C3 | 0.77114 (5) | −0.0650 (2) | 0.97685 (9) | 0.0174 (2) | |
H3A | 0.7851 | −0.1537 | 1.0433 | 0.021* | |
C4 | 0.79475 (5) | −0.1341 (2) | 0.88576 (9) | 0.01846 (19) | |
H4A | 0.8245 | −0.2663 | 0.8922 | 0.022* | |
C5 | 0.77532 (5) | −0.0121 (2) | 0.78699 (9) | 0.01828 (19) | |
H5A | 0.7911 | −0.0607 | 0.7256 | 0.022* | |
C6 | 0.73181 (4) | 0.1849 (2) | 0.77992 (8) | 0.01348 (17) | |
C7 | 0.70075 (4) | 0.3521 (2) | 0.69570 (8) | 0.01474 (17) | |
H7A | 0.7049 | 0.3542 | 0.6224 | 0.018* | |
C8 | 0.66431 (4) | 0.5062 (2) | 0.74233 (8) | 0.01243 (16) | |
C9 | 0.62453 (4) | 0.7225 (2) | 0.69371 (8) | 0.01223 (17) | |
C10 | 0.53404 (4) | 1.2045 (2) | 0.78210 (8) | 0.01311 (17) | |
H10A | 0.5403 | 1.1551 | 0.8559 | 0.016* | |
C11 | 0.49318 (4) | 1.4248 (2) | 0.74216 (8) | 0.01304 (17) | |
C12 | 0.46196 (5) | 1.5490 (2) | 0.81314 (9) | 0.01721 (19) | |
H12A | 0.4686 | 1.4950 | 0.8865 | 0.021* | |
C13 | 0.42134 (5) | 1.7509 (2) | 0.77787 (10) | 0.0192 (2) | |
H13A | 0.3998 | 1.8321 | 0.8261 | 0.023* | |
C14 | 0.41298 (4) | 1.8308 (2) | 0.67104 (10) | 0.01754 (19) | |
C15 | 0.44432 (5) | 1.7160 (2) | 0.59957 (9) | 0.0181 (2) | |
H15A | 0.4386 | 1.7771 | 0.5270 | 0.022* | |
C16 | 0.48413 (4) | 1.5106 (2) | 0.63496 (8) | 0.01574 (18) | |
H16A | 0.5052 | 1.4284 | 0.5861 | 0.019* | |
O1W | 0.58492 (4) | 0.25083 (19) | 0.47297 (6) | 0.01780 (15) | |
H1W1 | 0.5989 (8) | 0.402 (4) | 0.5046 (15) | 0.026 (5)* | |
H2W1 | 0.5934 (10) | 0.127 (5) | 0.510 (2) | 0.044 (6)* | |
H1N1 | 0.6041 (8) | 0.820 (4) | 0.8315 (15) | 0.021 (4)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.01451 (11) | 0.01539 (10) | 0.03983 (16) | 0.00472 (8) | −0.00296 (10) | −0.00640 (11) |
O1 | 0.0150 (3) | 0.0136 (3) | 0.0126 (3) | 0.0039 (2) | 0.0033 (3) | 0.0011 (2) |
O2 | 0.0206 (4) | 0.0144 (3) | 0.0122 (3) | 0.0019 (3) | 0.0046 (3) | 0.0009 (3) |
N1 | 0.0125 (4) | 0.0121 (3) | 0.0117 (3) | 0.0020 (3) | 0.0019 (3) | 0.0011 (3) |
N2 | 0.0120 (4) | 0.0116 (3) | 0.0144 (4) | 0.0009 (3) | 0.0018 (3) | 0.0008 (3) |
C1 | 0.0126 (4) | 0.0109 (4) | 0.0144 (4) | 0.0010 (3) | 0.0024 (3) | −0.0005 (3) |
C2 | 0.0175 (5) | 0.0169 (4) | 0.0137 (4) | 0.0026 (4) | 0.0024 (4) | 0.0009 (3) |
C3 | 0.0179 (5) | 0.0170 (4) | 0.0164 (5) | 0.0023 (3) | 0.0004 (4) | 0.0019 (3) |
C4 | 0.0165 (5) | 0.0183 (4) | 0.0207 (5) | 0.0060 (4) | 0.0034 (4) | 0.0012 (4) |
C5 | 0.0186 (5) | 0.0187 (4) | 0.0185 (5) | 0.0062 (4) | 0.0060 (4) | −0.0003 (4) |
C6 | 0.0140 (4) | 0.0130 (4) | 0.0140 (4) | 0.0017 (3) | 0.0040 (3) | 0.0003 (3) |
C7 | 0.0165 (4) | 0.0147 (4) | 0.0135 (4) | 0.0023 (3) | 0.0038 (3) | 0.0009 (3) |
C8 | 0.0134 (4) | 0.0120 (4) | 0.0121 (4) | 0.0012 (3) | 0.0026 (3) | 0.0009 (3) |
C9 | 0.0134 (4) | 0.0106 (4) | 0.0131 (4) | −0.0003 (3) | 0.0034 (3) | 0.0003 (3) |
C10 | 0.0140 (4) | 0.0127 (4) | 0.0129 (4) | 0.0007 (3) | 0.0029 (3) | 0.0007 (3) |
C11 | 0.0124 (4) | 0.0122 (4) | 0.0150 (4) | 0.0002 (3) | 0.0039 (3) | −0.0022 (3) |
C12 | 0.0193 (5) | 0.0159 (4) | 0.0180 (4) | 0.0011 (4) | 0.0077 (4) | −0.0020 (4) |
C13 | 0.0169 (5) | 0.0166 (4) | 0.0257 (5) | 0.0017 (4) | 0.0080 (4) | −0.0050 (4) |
C14 | 0.0116 (4) | 0.0119 (4) | 0.0284 (5) | 0.0014 (3) | 0.0009 (4) | −0.0040 (4) |
C15 | 0.0175 (5) | 0.0170 (4) | 0.0187 (5) | 0.0039 (3) | 0.0000 (4) | −0.0012 (4) |
C16 | 0.0153 (4) | 0.0166 (4) | 0.0155 (4) | 0.0044 (3) | 0.0028 (3) | −0.0007 (3) |
O1W | 0.0256 (4) | 0.0159 (3) | 0.0116 (3) | −0.0015 (3) | 0.0022 (3) | 0.0006 (3) |
Cl1—C14 | 1.7407 (11) | C6—C7 | 1.4371 (14) |
O1—C1 | 1.3757 (12) | C7—C8 | 1.3566 (14) |
O1—C8 | 1.3785 (12) | C7—H7A | 0.9500 |
O2—C9 | 1.2459 (12) | C8—C9 | 1.4696 (13) |
N1—C9 | 1.3505 (12) | C10—C11 | 1.4690 (14) |
N1—N2 | 1.3785 (12) | C10—H10A | 0.9500 |
N1—H1N1 | 0.909 (18) | C11—C16 | 1.3975 (14) |
N2—C10 | 1.2848 (13) | C11—C12 | 1.3984 (14) |
C1—C2 | 1.3837 (14) | C12—C13 | 1.3931 (16) |
C1—C6 | 1.4049 (13) | C12—H12A | 0.9500 |
C2—C3 | 1.3896 (15) | C13—C14 | 1.3856 (18) |
C2—H2A | 0.9500 | C13—H13A | 0.9500 |
C3—C4 | 1.4097 (16) | C14—C15 | 1.3876 (16) |
C3—H3A | 0.9500 | C15—C16 | 1.3916 (15) |
C4—C5 | 1.3863 (16) | C15—H15A | 0.9500 |
C4—H4A | 0.9500 | C16—H16A | 0.9500 |
C5—C6 | 1.4025 (14) | O1W—H1W1 | 0.857 (19) |
C5—H5A | 0.9500 | O1W—H2W1 | 0.75 (3) |
C1—O1—C8 | 105.55 (8) | C7—C8—C9 | 128.60 (9) |
C9—N1—N2 | 117.07 (8) | O1—C8—C9 | 118.87 (8) |
C9—N1—H1N1 | 117.6 (12) | O2—C9—N1 | 124.39 (9) |
N2—N1—H1N1 | 125.2 (12) | O2—C9—C8 | 119.11 (9) |
C10—N2—N1 | 115.70 (9) | N1—C9—C8 | 116.48 (8) |
O1—C1—C2 | 125.76 (9) | N2—C10—C11 | 119.81 (9) |
O1—C1—C6 | 110.21 (8) | N2—C10—H10A | 120.1 |
C2—C1—C6 | 124.03 (9) | C11—C10—H10A | 120.1 |
C1—C2—C3 | 115.97 (10) | C16—C11—C12 | 119.16 (10) |
C1—C2—H2A | 122.0 | C16—C11—C10 | 121.81 (9) |
C3—C2—H2A | 122.0 | C12—C11—C10 | 119.02 (9) |
C2—C3—C4 | 121.76 (10) | C13—C12—C11 | 120.95 (10) |
C2—C3—H3A | 119.1 | C13—C12—H12A | 119.5 |
C4—C3—H3A | 119.1 | C11—C12—H12A | 119.5 |
C5—C4—C3 | 121.07 (10) | C14—C13—C12 | 118.71 (10) |
C5—C4—H4A | 119.5 | C14—C13—H13A | 120.6 |
C3—C4—H4A | 119.5 | C12—C13—H13A | 120.6 |
C4—C5—C6 | 118.35 (10) | C13—C14—C15 | 121.45 (10) |
C4—C5—H5A | 120.8 | C13—C14—Cl1 | 119.90 (8) |
C6—C5—H5A | 120.8 | C15—C14—Cl1 | 118.65 (9) |
C5—C6—C1 | 118.81 (9) | C14—C15—C16 | 119.50 (10) |
C5—C6—C7 | 135.37 (10) | C14—C15—H15A | 120.2 |
C1—C6—C7 | 105.81 (9) | C16—C15—H15A | 120.2 |
C8—C7—C6 | 105.94 (9) | C15—C16—C11 | 120.20 (10) |
C8—C7—H7A | 127.0 | C15—C16—H16A | 119.9 |
C6—C7—H7A | 127.0 | C11—C16—H16A | 119.9 |
C7—C8—O1 | 112.48 (9) | H1W1—O1W—H2W1 | 107 (2) |
C9—N1—N2—C10 | 175.60 (9) | N2—N1—C9—O2 | 0.48 (14) |
C8—O1—C1—C2 | −179.09 (10) | N2—N1—C9—C8 | 179.00 (8) |
C8—O1—C1—C6 | 0.46 (11) | C7—C8—C9—O2 | 7.15 (16) |
O1—C1—C2—C3 | −179.16 (10) | O1—C8—C9—O2 | −175.52 (9) |
C6—C1—C2—C3 | 1.35 (16) | C7—C8—C9—N1 | −171.45 (10) |
C1—C2—C3—C4 | −0.30 (16) | O1—C8—C9—N1 | 5.88 (13) |
C2—C3—C4—C5 | −0.69 (18) | N1—N2—C10—C11 | −179.00 (8) |
C3—C4—C5—C6 | 0.67 (17) | N2—C10—C11—C16 | −2.28 (15) |
C4—C5—C6—C1 | 0.32 (16) | N2—C10—C11—C12 | 176.82 (10) |
C4—C5—C6—C7 | −179.70 (12) | C16—C11—C12—C13 | 1.54 (16) |
O1—C1—C6—C5 | 179.05 (9) | C10—C11—C12—C13 | −177.59 (10) |
C2—C1—C6—C5 | −1.38 (16) | C11—C12—C13—C14 | −1.15 (16) |
O1—C1—C6—C7 | −0.94 (11) | C12—C13—C14—C15 | −0.46 (17) |
C2—C1—C6—C7 | 178.62 (10) | C12—C13—C14—Cl1 | 179.76 (8) |
C5—C6—C7—C8 | −178.95 (12) | C13—C14—C15—C16 | 1.64 (17) |
C1—C6—C7—C8 | 1.04 (11) | Cl1—C14—C15—C16 | −178.57 (9) |
C6—C7—C8—O1 | −0.81 (12) | C14—C15—C16—C11 | −1.23 (16) |
C6—C7—C8—C9 | 176.66 (10) | C12—C11—C16—C15 | −0.34 (16) |
C1—O1—C8—C7 | 0.24 (11) | C10—C11—C16—C15 | 178.77 (10) |
C1—O1—C8—C9 | −177.51 (9) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1W—H1W1···O2 | 0.855 (19) | 2.040 (19) | 2.8815 (11) | 168.1 (18) |
O1W—H2W1···O2i | 0.75 (2) | 2.06 (2) | 2.8045 (11) | 173 (2) |
N1—H1N1···O1Wii | 0.909 (19) | 1.952 (19) | 2.8083 (12) | 156.2 (18) |
C2—H2A···O2ii | 0.95 | 2.57 | 3.3710 (14) | 142 |
C10—H10A···O1Wii | 0.95 | 2.54 | 3.3067 (13) | 138 |
Symmetry codes: (i) x, y−1, z; (ii) x, −y+1, z+1/2. |
Experimental details
Crystal data | |
Chemical formula | C16H11ClN2O2·H2O |
Mr | 316.73 |
Crystal system, space group | Monoclinic, Cc |
Temperature (K) | 100 |
a, b, c (Å) | 24.6121 (15), 4.6625 (3), 12.6570 (8) |
β (°) | 99.294 (1) |
V (Å3) | 1433.37 (16) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.28 |
Crystal size (mm) | 0.57 × 0.34 × 0.09 |
Data collection | |
Diffractometer | Bruker SMART APEXII DUO CCD area-detector |
Absorption correction | Multi-scan (SADABS; Bruker, 2009) |
Tmin, Tmax | 0.856, 0.975 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 7338, 4620, 4511 |
Rint | 0.019 |
(sin θ/λ)max (Å−1) | 0.758 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.028, 0.073, 1.04 |
No. of reflections | 4620 |
No. of parameters | 211 |
No. of restraints | 2 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.34, −0.19 |
Absolute structure | Flack (1983), 2025 Friedel pairs |
Absolute structure parameter | 0.03 (3) |
Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
O1W—H1W1···O2 | 0.855 (19) | 2.040 (19) | 2.8815 (11) | 168.1 (18) |
O1W—H2W1···O2i | 0.75 (2) | 2.06 (2) | 2.8045 (11) | 173 (2) |
N1—H1N1···O1Wii | 0.909 (19) | 1.952 (19) | 2.8083 (12) | 156.2 (18) |
C2—H2A···O2ii | 0.95 | 2.57 | 3.3710 (14) | 142 |
C10—H10A···O1Wii | 0.95 | 2.54 | 3.3067 (13) | 138 |
Symmetry codes: (i) x, y−1, z; (ii) x, −y+1, z+1/2. |
Acknowledgements
The authors thank Universiti Sains Malaysia (USM) for the Research University Grant (No. 1001/PFIZIK/811160). CKQ also thanks USM for an Incentive Grant. BK thanks the Department of Atomic Energy, Board for Research in Nuclear Sciences, Government of India, for financial assistance.
References
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19. CSD CrossRef Web of Science Google Scholar
Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107. CrossRef CAS Web of Science IUCr Journals Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Fun, H.-K., Quah, C. K. & Abdel-Aziz, H. A. (2012). Acta Cryst. E68, o1682. CSD CrossRef IUCr Journals Google Scholar
Fun, H.-K., Quah, C. K., Nitinchandra,, Kalluraya, B. & Babu, M. (2012). Acta Cryst. E68, o2121. Google Scholar
Fun, H.-K., Quah, C. K., Shyma, P. C., Kalluraya, B. & Vidyashree, J. H. S. (2012). Acta Cryst. E68, o2122. CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sridhar, R. & Perumal, P. T. (2003). Synth. Commun. 33, 1483–1488. Web of Science CrossRef CAS Google Scholar
Vijayakumar, S., Adithya, A., Kalluraya, B., Sharafudeen, K. N. & Chandrasekharan, K. (2011). J. Appl. Polym. Sci. 119, 595–601. CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Hydrazones are versatile intermediates and important building blocks. Aryl hydrazones are important building blocks for the synthesis of a variety of heterocyclic compounds such as pyrazolines and pyrazoles (Sridhar & Perumal, 2003). Hydrazones of aliphatic and aromatic methyl ketones yield pyrazole-4-carboxaldehyde on formylation by treatment with Vilsmeier reagent. Hydrazones derived from anisaldehyde and 4-nitro-5-ethoxycarbonyl phenylhydrazine showed excellent NLO property (Vijayakumar et al., 2011). Prompted by these observations, the title compound was synthesized and its crystal structure is reported.
The title compound (Fig. 1) consists of a N'-[4-chlorophenyl)methylidene]-1-benzofuran-2-carbohydrazide molecule and a water molecule in the asymmetric unit and exists in an E configuration with respect to the N2═C10 bond [1.2848 (13) Å]. The benzofuran ring system (O1/C1-C8, r.m.s deviation = 0.012 Å) forms a dihedral angle of 1.26 (4)° with the benzene ring (C11–C16). Bond lengths (Allen et al., 1987) and angles are within normal ranges and are comparable to related structures (Fun, Quah & Abdel-Aziz, 2012; Fun, Quah, Nitinchandra et al., 2012; Fun, Quah, Shyma et al., 2012).
In the crystal (Fig. 2), molecules are linked via intermolecular N1—H1N1···O1W, C10—H10A···O1W bifurcated acceptor hydrogen bonds and O1W—H2W1···O2, O1W—H2W1···O2, C2—H2A···O2 trifurcated acceptor hydrogen bonds (Table 1) to form two-dimensional layers parallel to (100).