organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N′-[1-(4-Chloro­phen­yl)ethyl­­idene]-5-methyl-1-(4-nitro­phen­yl)-1H-1,2,3-triazole-4-carbohydrazide

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri, Mangalore 574 199, India
*Correspondence e-mail: hkfun@usm.my

(Received 11 June 2012; accepted 18 June 2012; online 23 June 2012)

In the title compound, C18H15ClN6O3, the 1,2,3-triazole ring forms dihedral angles of 15.64 (5) and 57.50 (5)° with the two benzene rings. The dihedral angle between the two benzene rings is 72.26 (5)°. In the crystal, mol­ecules are linked via C—H⋯O hydrogen bonds into chains propagating along the b axis. A short O⋯C contact of 2.9972 (13) Å is observed.

Related literature

For general background to and the biological activity of triazole derivatives, see: Sherement et al. (2004[Sherement, E. A., Tomanov, R. I., Trukhin, E. V. & Berestovitskaya, V. M. (2004). Russ. J. Org. Chem. 40, 594-595.]); Danoun et al. (1998[Danoun, S., Baziard-Mouysset, G., Stigliani, J., Payard, M., Selkti, M., Viossat, B. & Tomas, A. (1998). Heterocycl. Commun. 4, 45-51.]); Manfredini et al. (2000[Manfredini, S., Vicentini, C. B., Manfrini, M., Bianchi, N., Rutigliano, C., Mischiati, C. & Gambari, R. (2000). Bioorg. Med. Chem. 8, 2343-2346.]); Biagi et al. (2004[Biagi, G., Calderone, V., Giorgi, I., Livi, O., Martinotti, E., Martelli, A. & Nardi, A. (2004). Farmaco, 59, 397-404.]); Vijayakumar et al. (2011[Vijayakumar, S., Adithya, A., Kalluraya, B., Sharafudeen, K. N. & Chandrasekharan, K. (2011). J. Appl. Polym. Sci. 119, 595-601.]). For standard bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]). For related structures, see: Fun, Quah, Chandrakantha et al. (2011[Fun, H.-K., Quah, C. K., Chandrakantha, B., Isloor, A. M. & Shetty, P. (2011). Acta Cryst. E67, o164.]); Fun et al. (2011a[Fun, H.-K., Quah, C. K., Nithinchandra & Kalluraya, B. (2011a). Acta Cryst. E67, o1005-o1006.],b[Fun, H.-K., Quah, C. K., Nitinchandra & Kalluraya, B. (2011b). Acta Cryst. E67, o2416.]).

[Scheme 1]

Experimental

Crystal data
  • C18H15ClN6O3

  • Mr = 398.81

  • Triclinic, [P \overline 1]

  • a = 8.6603 (1) Å

  • b = 10.2844 (1) Å

  • c = 10.4033 (1) Å

  • α = 83.816 (1)°

  • β = 81.402 (1)°

  • γ = 76.373 (1)°

  • V = 887.84 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 100 K

  • 0.31 × 0.19 × 0.17 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.927, Tmax = 0.958

  • 29293 measured reflections

  • 7839 independent reflections

  • 6598 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.120

  • S = 1.03

  • 7839 reflections

  • 259 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.56 e Å−3

  • Δρmin = −0.45 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13A⋯O1i 0.95 2.32 3.2226 (12) 158
Symmetry code: (i) x, y-1, z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

1,2,3-Triazole and its derivatives had attracted considerable attention for the past few decades due to their chemotherapeutic value. Many 1,2,3-triazoles are found to be potent antimicrobial (Sherement et al., 2004) and antiviral agents. Some of them have exhibited antiproliferative and anticancer activities (Danoun et al., 1998). Some 1,2,3-triazoles are used as DNA cleaving agents (Manfredini et al., 2000) and potassium channel activators (Biagi et al., 2004). Hydrazones derived from anisaldehyde and 4-nitro-5-ethoxycarbonyl phenylhydrazine showed excellent NLO property (Vijayakumar et al., 2011). Prompted by these observation, we synthesized new hydrazone carrying 1,2,3-triazoles nucleus.

In the title molecule, Fig. 1, the mean plane of 1,2,3-triazole ring (N3-N5/C9/C10, r.m.s deviation = 0.002 Å) forms dihedral angles of 15.64 (5) and 57.50 (5)° with the two benzene rings (C1–C6 and C11–C16). The dihedral angle between the two benzenel rings is 72.26 (5)°. Bond lengths (Allen et al., 1987) and angles are within normal ranges and are comparable to related structures (Fun, Quah, Chandrakantha et al., 2011; Fun et al., 2011a,b). In the crystal (Fig. 2), molecules are linked via intermolecular C13—H13A···O1 hydrogen bonds (Table 1) into chains propagating along [010]. A short O2···C7 contact of 2.9972 (13) Å also occurs.

Related literature top

For general background to and the biological activity of triazole derivatives, see: Sherement et al. (2004); Danoun et al. (1998); Manfredini et al. (2000); Biagi et al. (2004); Vijayakumar et al. (2011). For standard bond-length data, see: Allen et al. (1987). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986). For related structures, see: Fun, Quah, Chandrakantha et al. (2011); Fun et al. (2011a,b).

Experimental top

The title compound was obtained by refluxing a mixture of 5-methyl-1-(4-nitrophenyl)-1H-1,2,3-triazole-4-carbohydrazide (0.01 mol) and p-chloroacetophenone (0.01 mol) in ethanol (30 ml) and 3 drops of concentrated sulfuric acid for 1 h. Excess ethanol was removed from the reaction mixture under reduced pressure. The solid product obtained was filtered, washed with ethanol and dried. Single crystals suitable for X-ray analysis were obtained by slow evaporation of an ethanol-N,N-dimethylformamide (DMF) (3:1) solution.

Refinement top

Atom H1N2 was located in a difference Fourier map and refined freely [N—H = 0.870 (18) Å]. The rest of hydrogen atoms were positioned geometrically and refined using a riding model with C—H = 0.95 or 0.98 Å and with Uiso(H) = 1.2 or 1.5Ueq(C). A rotating-group model was applied for the methyl groups.

Structure description top

1,2,3-Triazole and its derivatives had attracted considerable attention for the past few decades due to their chemotherapeutic value. Many 1,2,3-triazoles are found to be potent antimicrobial (Sherement et al., 2004) and antiviral agents. Some of them have exhibited antiproliferative and anticancer activities (Danoun et al., 1998). Some 1,2,3-triazoles are used as DNA cleaving agents (Manfredini et al., 2000) and potassium channel activators (Biagi et al., 2004). Hydrazones derived from anisaldehyde and 4-nitro-5-ethoxycarbonyl phenylhydrazine showed excellent NLO property (Vijayakumar et al., 2011). Prompted by these observation, we synthesized new hydrazone carrying 1,2,3-triazoles nucleus.

In the title molecule, Fig. 1, the mean plane of 1,2,3-triazole ring (N3-N5/C9/C10, r.m.s deviation = 0.002 Å) forms dihedral angles of 15.64 (5) and 57.50 (5)° with the two benzene rings (C1–C6 and C11–C16). The dihedral angle between the two benzenel rings is 72.26 (5)°. Bond lengths (Allen et al., 1987) and angles are within normal ranges and are comparable to related structures (Fun, Quah, Chandrakantha et al., 2011; Fun et al., 2011a,b). In the crystal (Fig. 2), molecules are linked via intermolecular C13—H13A···O1 hydrogen bonds (Table 1) into chains propagating along [010]. A short O2···C7 contact of 2.9972 (13) Å also occurs.

For general background to and the biological activity of triazole derivatives, see: Sherement et al. (2004); Danoun et al. (1998); Manfredini et al. (2000); Biagi et al. (2004); Vijayakumar et al. (2011). For standard bond-length data, see: Allen et al. (1987). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986). For related structures, see: Fun, Quah, Chandrakantha et al. (2011); Fun et al. (2011a,b).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing 50% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. A packing diagram of the title compound, viewed along the c axis. H atoms not involved in hydrogen bonds (dashed lines) have been omitted for clarity.
N'-[1-(4-Chlorophenyl)ethylidene]-5-methyl-1-(4-nitrophenyl)-1H- 1,2,3-triazole-4-carbohydrazide top
Crystal data top
C18H15ClN6O3Z = 2
Mr = 398.81F(000) = 412
Triclinic, P1Dx = 1.492 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.6603 (1) ÅCell parameters from 9924 reflections
b = 10.2844 (1) Åθ = 2.4–35.1°
c = 10.4033 (1) ŵ = 0.25 mm1
α = 83.816 (1)°T = 100 K
β = 81.402 (1)°Block, yellow
γ = 76.373 (1)°0.31 × 0.19 × 0.17 mm
V = 887.84 (2) Å3
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
7839 independent reflections
Radiation source: fine-focus sealed tube6598 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
φ and ω scansθmax = 35.2°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1413
Tmin = 0.927, Tmax = 0.958k = 1616
29293 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.120H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0635P)2 + 0.2969P]
where P = (Fo2 + 2Fc2)/3
7839 reflections(Δ/σ)max = 0.001
259 parametersΔρmax = 0.56 e Å3
0 restraintsΔρmin = 0.45 e Å3
Crystal data top
C18H15ClN6O3γ = 76.373 (1)°
Mr = 398.81V = 887.84 (2) Å3
Triclinic, P1Z = 2
a = 8.6603 (1) ÅMo Kα radiation
b = 10.2844 (1) ŵ = 0.25 mm1
c = 10.4033 (1) ÅT = 100 K
α = 83.816 (1)°0.31 × 0.19 × 0.17 mm
β = 81.402 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
7839 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
6598 reflections with I > 2σ(I)
Tmin = 0.927, Tmax = 0.958Rint = 0.023
29293 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.120H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.56 e Å3
7839 reflectionsΔρmin = 0.45 e Å3
259 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.07731 (3)1.51350 (2)0.15822 (3)0.02455 (7)
O10.43782 (9)0.74131 (7)0.59589 (7)0.01901 (13)
O20.30629 (12)0.13446 (9)1.10163 (8)0.0326 (2)
O30.38384 (15)0.24022 (8)0.92733 (9)0.0389 (2)
N10.21957 (10)0.88716 (7)0.43384 (8)0.01537 (13)
N20.23356 (10)0.75384 (8)0.47404 (8)0.01648 (14)
N30.23287 (10)0.49322 (8)0.53284 (8)0.01770 (14)
N40.23488 (11)0.37257 (8)0.58529 (8)0.01845 (15)
N50.32874 (10)0.35228 (7)0.68349 (7)0.01458 (13)
N60.34560 (11)0.13715 (8)0.98386 (9)0.01954 (15)
C10.20505 (11)1.15159 (9)0.34403 (9)0.01614 (15)
H1A0.28401.10760.39810.019*
C20.19901 (12)1.28429 (9)0.29798 (9)0.01779 (16)
H2A0.27321.33070.31970.021*
C30.08252 (12)1.34817 (9)0.21943 (9)0.01661 (15)
C40.02861 (12)1.28298 (9)0.18865 (10)0.01829 (16)
H4A0.10871.32830.13620.022*
C50.02088 (11)1.14978 (9)0.23606 (9)0.01716 (15)
H5A0.09741.10480.21610.021*
C60.09732 (10)1.08100 (9)0.31252 (8)0.01409 (14)
C70.11168 (11)0.93734 (9)0.35781 (9)0.01475 (14)
C80.34084 (11)0.69073 (8)0.55704 (8)0.01471 (14)
C90.32483 (11)0.55123 (8)0.59531 (8)0.01430 (14)
C100.38769 (11)0.46173 (9)0.69309 (9)0.01486 (15)
C110.34388 (11)0.22838 (8)0.76168 (8)0.01399 (14)
C120.40005 (11)0.10949 (9)0.70018 (9)0.01562 (15)
H12A0.43750.11140.60950.019*
C130.40066 (11)0.01205 (9)0.77318 (9)0.01625 (15)
H13A0.43580.09470.73340.019*
C140.34846 (11)0.00917 (9)0.90596 (9)0.01519 (15)
C150.29653 (12)0.10859 (9)0.96930 (9)0.01683 (15)
H15A0.26430.10631.06070.020*
C160.29298 (11)0.22988 (9)0.89527 (9)0.01648 (15)
H16A0.25650.31250.93500.020*
C170.00858 (14)0.85722 (11)0.31287 (12)0.0258 (2)
H17A0.07630.77510.27770.039*
H17B0.05100.91060.24490.039*
H17C0.06690.83360.38670.039*
C180.49787 (15)0.46863 (11)0.78744 (11)0.0260 (2)
H18A0.57050.38070.79980.039*
H18B0.43540.49400.87110.039*
H18C0.56040.53570.75370.039*
H1N20.166 (2)0.7102 (18)0.4563 (17)0.036 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.03489 (14)0.01270 (10)0.02708 (12)0.00533 (8)0.01090 (10)0.00374 (8)
O10.0224 (3)0.0150 (3)0.0216 (3)0.0064 (2)0.0073 (3)0.0008 (2)
O20.0440 (5)0.0211 (4)0.0239 (4)0.0016 (3)0.0085 (3)0.0065 (3)
O30.0768 (8)0.0139 (3)0.0274 (4)0.0118 (4)0.0103 (4)0.0005 (3)
N10.0177 (3)0.0118 (3)0.0165 (3)0.0038 (2)0.0032 (3)0.0019 (2)
N20.0197 (3)0.0118 (3)0.0190 (3)0.0052 (3)0.0061 (3)0.0030 (2)
N30.0223 (4)0.0151 (3)0.0175 (3)0.0071 (3)0.0062 (3)0.0025 (3)
N40.0239 (4)0.0161 (3)0.0177 (3)0.0078 (3)0.0080 (3)0.0032 (3)
N50.0180 (3)0.0123 (3)0.0144 (3)0.0048 (2)0.0041 (2)0.0008 (2)
N60.0214 (4)0.0149 (3)0.0222 (4)0.0047 (3)0.0045 (3)0.0032 (3)
C10.0186 (4)0.0148 (3)0.0159 (3)0.0048 (3)0.0054 (3)0.0018 (3)
C20.0225 (4)0.0148 (3)0.0177 (4)0.0060 (3)0.0061 (3)0.0006 (3)
C30.0208 (4)0.0115 (3)0.0166 (4)0.0023 (3)0.0031 (3)0.0006 (3)
C40.0178 (4)0.0159 (4)0.0203 (4)0.0016 (3)0.0055 (3)0.0019 (3)
C50.0156 (4)0.0161 (4)0.0201 (4)0.0041 (3)0.0045 (3)0.0018 (3)
C60.0143 (3)0.0132 (3)0.0143 (3)0.0033 (3)0.0014 (3)0.0009 (3)
C70.0149 (3)0.0139 (3)0.0156 (3)0.0046 (3)0.0023 (3)0.0016 (3)
C80.0177 (4)0.0120 (3)0.0138 (3)0.0031 (3)0.0016 (3)0.0006 (3)
C90.0166 (3)0.0121 (3)0.0145 (3)0.0040 (3)0.0029 (3)0.0007 (3)
C100.0172 (4)0.0119 (3)0.0160 (3)0.0039 (3)0.0037 (3)0.0002 (3)
C110.0155 (3)0.0119 (3)0.0147 (3)0.0040 (3)0.0025 (3)0.0011 (3)
C120.0182 (4)0.0138 (3)0.0149 (3)0.0039 (3)0.0016 (3)0.0009 (3)
C130.0186 (4)0.0127 (3)0.0175 (4)0.0034 (3)0.0028 (3)0.0007 (3)
C140.0159 (3)0.0120 (3)0.0176 (4)0.0038 (3)0.0029 (3)0.0020 (3)
C150.0193 (4)0.0148 (3)0.0151 (3)0.0032 (3)0.0004 (3)0.0007 (3)
C160.0202 (4)0.0127 (3)0.0155 (4)0.0027 (3)0.0008 (3)0.0007 (3)
C170.0286 (5)0.0222 (4)0.0321 (5)0.0143 (4)0.0149 (4)0.0086 (4)
C180.0358 (6)0.0183 (4)0.0299 (5)0.0112 (4)0.0197 (4)0.0046 (4)
Geometric parameters (Å, º) top
Cl1—C31.7429 (9)C5—H5A0.9500
O1—C81.2214 (11)C6—C71.4836 (12)
O2—N61.2231 (12)C7—C171.4998 (14)
O3—N61.2205 (12)C8—C91.4799 (12)
N1—C71.2926 (12)C9—C101.3806 (12)
N1—N21.3722 (10)C10—C181.4852 (13)
N2—C81.3657 (12)C11—C121.3915 (12)
N2—H1N20.870 (18)C11—C161.3943 (12)
N3—N41.2979 (11)C12—C131.3903 (12)
N3—C91.3692 (12)C12—H12A0.9500
N4—N51.3676 (11)C13—C141.3889 (13)
N5—C101.3594 (11)C13—H13A0.9500
N5—C111.4257 (11)C14—C151.3892 (13)
N6—C141.4728 (12)C15—C161.3900 (12)
C1—C21.3884 (12)C15—H15A0.9500
C1—C61.4025 (13)C16—H16A0.9500
C1—H1A0.9500C17—H17A0.9800
C2—C31.3912 (13)C17—H17B0.9800
C2—H2A0.9500C17—H17C0.9800
C3—C41.3859 (14)C18—H18A0.9800
C4—C51.3948 (13)C18—H18B0.9800
C4—H4A0.9500C18—H18C0.9800
C5—C61.4007 (13)
C7—N1—N2115.65 (8)N3—C9—C10109.28 (8)
C8—N2—N1120.88 (8)N3—C9—C8120.79 (8)
C8—N2—H1N2117.8 (12)C10—C9—C8129.91 (8)
N1—N2—H1N2120.8 (12)N5—C10—C9103.05 (8)
N4—N3—C9109.30 (8)N5—C10—C18124.22 (8)
N3—N4—N5106.77 (7)C9—C10—C18132.69 (9)
C10—N5—N4111.60 (7)C12—C11—C16122.23 (8)
C10—N5—C11130.38 (8)C12—C11—N5118.44 (8)
N4—N5—C11117.94 (7)C16—C11—N5119.21 (8)
O3—N6—O2123.62 (9)C13—C12—C11119.11 (8)
O3—N6—C14118.11 (9)C13—C12—H12A120.4
O2—N6—C14118.27 (8)C11—C12—H12A120.4
C2—C1—C6121.50 (8)C14—C13—C12118.08 (8)
C2—C1—H1A119.3C14—C13—H13A121.0
C6—C1—H1A119.3C12—C13—H13A121.0
C1—C2—C3118.88 (9)C13—C14—C15123.40 (8)
C1—C2—H2A120.6C13—C14—N6118.58 (8)
C3—C2—H2A120.6C15—C14—N6118.02 (8)
C4—C3—C2121.41 (8)C14—C15—C16118.22 (8)
C4—C3—Cl1119.51 (7)C14—C15—H15A120.9
C2—C3—Cl1119.08 (7)C16—C15—H15A120.9
C3—C4—C5118.87 (8)C15—C16—C11118.92 (8)
C3—C4—H4A120.6C15—C16—H16A120.5
C5—C4—H4A120.6C11—C16—H16A120.5
C4—C5—C6121.37 (9)C7—C17—H17A109.5
C4—C5—H5A119.3C7—C17—H17B109.5
C6—C5—H5A119.3H17A—C17—H17B109.5
C5—C6—C1117.93 (8)C7—C17—H17C109.5
C5—C6—C7121.78 (8)H17A—C17—H17C109.5
C1—C6—C7120.28 (8)H17B—C17—H17C109.5
N1—C7—C6115.96 (8)C10—C18—H18A109.5
N1—C7—C17123.38 (8)C10—C18—H18B109.5
C6—C7—C17120.63 (8)H18A—C18—H18B109.5
O1—C8—N2125.21 (8)C10—C18—H18C109.5
O1—C8—C9123.63 (8)H18A—C18—H18C109.5
N2—C8—C9111.15 (8)H18B—C18—H18C109.5
C7—N1—N2—C8178.43 (8)N2—C8—C9—C10167.16 (9)
C9—N3—N4—N50.29 (10)N4—N5—C10—C90.09 (10)
N3—N4—N5—C100.24 (11)C11—N5—C10—C9176.51 (9)
N3—N4—N5—C11176.83 (8)N4—N5—C10—C18177.85 (10)
C6—C1—C2—C30.35 (14)C11—N5—C10—C185.55 (16)
C1—C2—C3—C41.24 (14)N3—C9—C10—N50.09 (10)
C1—C2—C3—Cl1178.52 (7)C8—C9—C10—N5178.30 (9)
C2—C3—C4—C51.10 (14)N3—C9—C10—C18177.77 (11)
Cl1—C3—C4—C5178.66 (7)C8—C9—C10—C184.03 (18)
C3—C4—C5—C60.64 (14)C10—N5—C11—C12126.78 (10)
C4—C5—C6—C12.15 (14)N4—N5—C11—C1256.80 (12)
C4—C5—C6—C7176.84 (9)C10—N5—C11—C1657.15 (13)
C2—C1—C6—C52.00 (14)N4—N5—C11—C16119.27 (10)
C2—C1—C6—C7177.00 (8)C16—C11—C12—C132.20 (14)
N2—N1—C7—C6179.22 (7)N5—C11—C12—C13173.74 (8)
N2—N1—C7—C171.02 (14)C11—C12—C13—C141.61 (13)
C5—C6—C7—N1176.20 (8)C12—C13—C14—C150.29 (14)
C1—C6—C7—N14.84 (13)C12—C13—C14—N6178.83 (8)
C5—C6—C7—C175.55 (14)O3—N6—C14—C132.62 (14)
C1—C6—C7—C17173.42 (9)O2—N6—C14—C13176.82 (10)
N1—N2—C8—O14.64 (14)O3—N6—C14—C15176.54 (10)
N1—N2—C8—C9175.17 (8)O2—N6—C14—C154.02 (14)
N4—N3—C9—C100.25 (11)C13—C14—C15—C161.63 (15)
N4—N3—C9—C8178.64 (8)N6—C14—C15—C16177.48 (8)
O1—C8—C9—N3169.32 (9)C14—C15—C16—C111.05 (14)
N2—C8—C9—N310.87 (12)C12—C11—C16—C150.83 (14)
O1—C8—C9—C1012.66 (16)N5—C11—C16—C15175.08 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13A···O1i0.952.323.2226 (12)158
Symmetry code: (i) x, y1, z.

Experimental details

Crystal data
Chemical formulaC18H15ClN6O3
Mr398.81
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)8.6603 (1), 10.2844 (1), 10.4033 (1)
α, β, γ (°)83.816 (1), 81.402 (1), 76.373 (1)
V3)887.84 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.25
Crystal size (mm)0.31 × 0.19 × 0.17
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.927, 0.958
No. of measured, independent and
observed [I > 2σ(I)] reflections
29293, 7839, 6598
Rint0.023
(sin θ/λ)max1)0.812
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.120, 1.03
No. of reflections7839
No. of parameters259
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.56, 0.45

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13A···O1i0.952.323.2226 (12)158
Symmetry code: (i) x, y1, z.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

§Thomson Reuters ResearcherID: A-5525-2009.

Acknowledgements

The authors thank Universiti Sains Malaysia (USM) for the Research University Grant (No. 1001/PFIZIK/811160). CKQ also thanks USM for an Incentive Grant. BK thanks the Department of Atomic Energy, Board for Research in Nuclear Sciences, Government of India, for financial assistance.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBiagi, G., Calderone, V., Giorgi, I., Livi, O., Martinotti, E., Martelli, A. & Nardi, A. (2004). Farmaco, 59, 397–404.  CrossRef PubMed CAS Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationDanoun, S., Baziard-Mouysset, G., Stigliani, J., Payard, M., Selkti, M., Viossat, B. & Tomas, A. (1998). Heterocycl. Commun. 4, 45–51.  CrossRef CAS Google Scholar
First citationFun, H.-K., Quah, C. K., Chandrakantha, B., Isloor, A. M. & Shetty, P. (2011). Acta Cryst. E67, o164.  Web of Science CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Quah, C. K., Nithinchandra & Kalluraya, B. (2011a). Acta Cryst. E67, o1005–o1006.  Google Scholar
First citationFun, H.-K., Quah, C. K., Nitinchandra & Kalluraya, B. (2011b). Acta Cryst. E67, o2416.  Google Scholar
First citationManfredini, S., Vicentini, C. B., Manfrini, M., Bianchi, N., Rutigliano, C., Mischiati, C. & Gambari, R. (2000). Bioorg. Med. Chem. 8, 2343–2346.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSherement, E. A., Tomanov, R. I., Trukhin, E. V. & Berestovitskaya, V. M. (2004). Russ. J. Org. Chem. 40, 594–595.  Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVijayakumar, S., Adithya, A., Kalluraya, B., Sharafudeen, K. N. & Chandrasekharan, K. (2011). J. Appl. Polym. Sci. 119, 595–601.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds