organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Cyano­pyridinium hydrogen sulfate

aCollege of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China
*Correspondence e-mail: wangyc33@yahoo.com.cn

(Received 19 May 2012; accepted 16 June 2012; online 23 June 2012)

All non-H atoms of the cation of the title salt, C6H5N2+·HSO4, are essentially coplanar [r.m.s. deviation = 0.005 (1) Å] . In the crystal, N—H⋯O and O—H⋯O hydrogen bonds and weak C—H⋯O and C—H⋯N inter­actions link the mol­ecules into a two-dimensional network parallel to the (001) plane. Weak ππ stacking inter­actions between the pyridine rings of neighbouring mol­ecules further stabilize the structure [centroid–centroid distance = 3.785 (1) Å].

Related literature

For materials which display ferroelectric–paraelectric phase transitions, see: Chen et al. (2001[Chen, Z.-F., Li, B.-Q., Xie, Y.-R., Xiong, R.-G., You, X.-Z. & Feng, X.-L. (2001). Inorg. Chem. Commun. 4, 346-349.]); Huang et al. (1999[Huang, S.-P.-D., Xiong, R.-G., Han, J.-D. & Weiner, B. R. (1999). Inorg. Chim. Acta, 294, 95-98.]); Zhang et al. (2001[Zhang, J., Xiong, R.-G., Chen, X.-T., Che, C.-M., Xue, Z.-L. & You, X.-Z. (2001). Organometallics 20, 4118-4121.]); For the structures and properties of related compounds, see: Wang et al. (2002[Wang, L.-Z., Wang, X.-S., Li, Y.-H., Bai, Z.-P., Xiong, R.-G., Xiong, M. & Li, G.-W. (2002). Chin. J. Inorg. Chem. 18, 1191-1194.]); Xue et al. (2002[Xue, X., Abrahams, B. F., Xiong, R.-G. & You, X.-Z. (2002). Aust. J. Chem. 55, 495-497.]); Ye et al. (2008[Ye, Q., Fu, D.-W., Hang, T., Xiong, R.-G., Chan, P. W. H. & Huang, S. P. D. (2008). Inorg. Chem. 47, 772-774.]).

[Scheme 1]

Experimental

Crystal data
  • C6H5N2+·HSO4

  • Mr = 202.19

  • Orthorhombic, P b c a

  • a = 14.2959 (12) Å

  • b = 7.8817 (8) Å

  • c = 14.4280 (13) Å

  • V = 1625.7 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.38 mm−1

  • T = 123 K

  • 0.10 × 0.05 × 0.05 mm

Data collection
  • Rigaku Mercury2 diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.910, Tmax = 1.000

  • 16314 measured reflections

  • 1854 independent reflections

  • 1795 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.092

  • S = 1.19

  • 1854 reflections

  • 118 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.40 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O4i 0.89 1.87 2.7123 (16) 157
O2—H2⋯O1ii 0.82 1.79 2.5859 (15) 165
C1—H1A⋯O1i 0.93 2.50 3.2681 (19) 139
C2—H2A⋯O2iii 0.93 2.43 3.3279 (19) 162
C4—H4A⋯O3 0.93 2.43 3.2189 (19) 143
C5—H5A⋯O3iv 0.93 2.57 3.3192 (19) 138
C5—H5A⋯N2v 0.93 2.53 3.211 (2) 130
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (iii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1]; (iv) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, z]; (v) x, y-1, z.

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Simple organic salts containing strong intrermolecular H-bonds have attracted attention as materials which display ferroelectric-paraelectric phase transitions (Chen et al., 2001; Huang, et al. 1999; Zhang, et al. 2001). In an effort to obtain phase transition crystals of organic salts, various organic molecules have been studied with a series of new crystal materials (Wang et al., 2002; Xue, et al. 2002; Ye et al., 2008). Herewith, we present the synthesis and crystal structure of the title compound, C6H5N2+.HSO4-,(I).

The asymmetric unit of (I) is comprised of one 4-cyanopyridinium cation and one HSO4- anion (Fig. 1). All non-H atoms of the cation are essentially coplanar [r.m.s. deviation = 0.005 (1)Å ]. Bond lengths and angles in each of these units are in normal ranges.

In the crystal, N—H···O hydrogen bonds and weak C—H···O and C—H···N intermolecular interactions bring the organic molecules into a 2D network (Table 1, Fig. 2). In addition, weak ππ stacking interactions between the pyridine rings of neighbouring organic molecules further stabilize the structure (Cg···Cg = 3.785 (1)Å, with Cg being the centriod of the pyridine ring).

Related literature top

For materials which display ferroelectric–paraelectric phase transitions, see: Chen et al. (2001); Huang et al. (1999); Zhang et al. (2001); For the structures and properties of related compounds, see: Wang et al. (2002); Xue et al. (2002); Ye et al. (2008).

Experimental top

Isonicotinonitrile (10 mmol) and H2SO4 (1.0 mL, 10mmol/L) and ethanol (50 mL) were added into a 100mL flask. The mixture was stirred at 60°C for 2 h. The precipitate was then filtrated. Colourless crystals suitable for X-ray diffraction were obtained by slow evaporation of the solution.

Refinement top

H1, and H2 were refined freely. In the last stages of the refinement these atoms were restrained with N1—H1 = 0.89 (2)Å and O2—H2 = 0.82 (2)Å with Uiso(H) = 1.2Ueq(N) and Uiso(H)=1.5Ueq(O). All the remaining H atoms attached to C atoms were placed in calculated positions and then refined using the riding model with C—H lengths of 0.93 Å (CH). The isotropic displcement parameers for these atoms were set to 1.2 (CH) times Ueq of the parent atom.

Structure description top

Simple organic salts containing strong intrermolecular H-bonds have attracted attention as materials which display ferroelectric-paraelectric phase transitions (Chen et al., 2001; Huang, et al. 1999; Zhang, et al. 2001). In an effort to obtain phase transition crystals of organic salts, various organic molecules have been studied with a series of new crystal materials (Wang et al., 2002; Xue, et al. 2002; Ye et al., 2008). Herewith, we present the synthesis and crystal structure of the title compound, C6H5N2+.HSO4-,(I).

The asymmetric unit of (I) is comprised of one 4-cyanopyridinium cation and one HSO4- anion (Fig. 1). All non-H atoms of the cation are essentially coplanar [r.m.s. deviation = 0.005 (1)Å ]. Bond lengths and angles in each of these units are in normal ranges.

In the crystal, N—H···O hydrogen bonds and weak C—H···O and C—H···N intermolecular interactions bring the organic molecules into a 2D network (Table 1, Fig. 2). In addition, weak ππ stacking interactions between the pyridine rings of neighbouring organic molecules further stabilize the structure (Cg···Cg = 3.785 (1)Å, with Cg being the centriod of the pyridine ring).

For materials which display ferroelectric–paraelectric phase transitions, see: Chen et al. (2001); Huang et al. (1999); Zhang et al. (2001); For the structures and properties of related compounds, see: Wang et al. (2002); Xue et al. (2002); Ye et al. (2008).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound showing the atom labeling scheme and 50% probability displacement ellipsoids for one cation-anion unit and bimolecular unit in the asymmetric unit.
[Figure 2] Fig. 2. Crystal packing of the title compound viewed along the c axis showing N—H···O and O—H···O hydrogen bonds (dotted lines), weak C—H···O, C—H···N intermolecular interactions (dotted lines) and weak ππ stacking interactions (dashed lines).
4-Cyanopyridinium hydrogen sulfate top
Crystal data top
C6H5N2+·HSO4F(000) = 832
Mr = 202.19Dx = 1.652 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 1854 reflections
a = 14.2959 (12) Åθ = 2.9–27.5°
b = 7.8817 (8) ŵ = 0.38 mm1
c = 14.4280 (13) ÅT = 123 K
V = 1625.7 (3) Å3Block, colorless
Z = 80.10 × 0.05 × 0.05 mm
Data collection top
Rigaku Mercury2
diffractometer
1854 independent reflections
Radiation source: fine-focus sealed tube1795 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 2.9°
CCD profile fitting scansh = 1818
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 1010
Tmin = 0.910, Tmax = 1.000l = 1818
16314 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.092H-atom parameters constrained
S = 1.19 w = 1/[σ2(Fo2) + (0.045P)2 + 0.7898P]
where P = (Fo2 + 2Fc2)/3
1854 reflections(Δ/σ)max < 0.001
118 parametersΔρmax = 0.33 e Å3
2 restraintsΔρmin = 0.40 e Å3
Crystal data top
C6H5N2+·HSO4V = 1625.7 (3) Å3
Mr = 202.19Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 14.2959 (12) ŵ = 0.38 mm1
b = 7.8817 (8) ÅT = 123 K
c = 14.4280 (13) Å0.10 × 0.05 × 0.05 mm
Data collection top
Rigaku Mercury2
diffractometer
1854 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
1795 reflections with I > 2σ(I)
Tmin = 0.910, Tmax = 1.000Rint = 0.032
16314 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0342 restraints
wR(F2) = 0.092H-atom parameters constrained
S = 1.19Δρmax = 0.33 e Å3
1854 reflectionsΔρmin = 0.40 e Å3
118 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.17080 (2)0.57874 (4)0.66263 (2)0.01293 (13)
O10.18628 (8)0.43049 (13)0.72165 (8)0.0186 (2)
N10.48319 (9)0.22311 (16)0.39112 (9)0.0182 (3)
H10.49950.11420.39320.022*
C10.53425 (11)0.3477 (2)0.35266 (11)0.0198 (3)
H1A0.59070.32260.32360.024*
O20.16838 (7)0.73568 (14)0.72925 (7)0.0165 (2)
H20.21400.79450.71670.025*
N20.35791 (11)0.85408 (19)0.40783 (12)0.0317 (4)
C20.50280 (11)0.5123 (2)0.35638 (11)0.0182 (3)
H2A0.53700.60000.32970.022*
O30.24390 (8)0.60728 (15)0.59562 (7)0.0200 (3)
C30.41822 (10)0.54447 (18)0.40125 (10)0.0154 (3)
O40.07646 (8)0.57536 (13)0.62351 (8)0.0190 (3)
C40.36712 (11)0.41442 (19)0.44145 (10)0.0173 (3)
H4A0.31130.43650.47240.021*
C50.40147 (11)0.2508 (2)0.43428 (10)0.0182 (3)
H5A0.36810.16050.45930.022*
C60.38364 (11)0.7175 (2)0.40508 (12)0.0204 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0118 (2)0.0120 (2)0.0150 (2)0.00042 (11)0.00102 (12)0.00076 (12)
O10.0191 (5)0.0144 (5)0.0223 (6)0.0046 (4)0.0025 (4)0.0028 (4)
N10.0220 (6)0.0129 (6)0.0196 (6)0.0040 (5)0.0051 (5)0.0009 (5)
C10.0139 (7)0.0225 (8)0.0230 (7)0.0022 (6)0.0007 (5)0.0026 (6)
O20.0151 (5)0.0146 (5)0.0198 (6)0.0026 (4)0.0034 (4)0.0042 (4)
N20.0259 (7)0.0183 (8)0.0511 (10)0.0021 (6)0.0009 (7)0.0049 (7)
C20.0149 (7)0.0166 (7)0.0231 (7)0.0024 (5)0.0004 (6)0.0013 (6)
O30.0189 (5)0.0220 (6)0.0192 (5)0.0039 (4)0.0059 (4)0.0035 (4)
C30.0164 (7)0.0134 (7)0.0164 (7)0.0019 (5)0.0045 (5)0.0025 (5)
O40.0157 (5)0.0164 (5)0.0249 (6)0.0028 (4)0.0049 (4)0.0013 (4)
C40.0164 (7)0.0189 (8)0.0166 (7)0.0007 (5)0.0005 (5)0.0028 (5)
C50.0242 (8)0.0163 (7)0.0142 (7)0.0026 (6)0.0017 (6)0.0003 (6)
C60.0168 (7)0.0163 (8)0.0281 (8)0.0005 (6)0.0022 (6)0.0034 (6)
Geometric parameters (Å, º) top
S1—O31.4414 (11)O2—H20.8198
S1—O41.4622 (11)N2—C61.138 (2)
S1—O11.4626 (11)C2—C31.395 (2)
S1—O21.5669 (11)C2—H2A0.9300
N1—C51.342 (2)C3—C41.386 (2)
N1—C11.343 (2)C3—C61.452 (2)
N1—H10.8902C4—C51.384 (2)
C1—C21.375 (2)C4—H4A0.9300
C1—H1A0.9300C5—H5A0.9300
O3—S1—O4114.37 (7)C1—C2—C3118.23 (14)
O3—S1—O1113.92 (7)C1—C2—H2A120.9
O4—S1—O1110.48 (6)C3—C2—H2A120.9
O3—S1—O2107.71 (6)C4—C3—C2121.13 (14)
O4—S1—O2103.34 (6)C4—C3—C6119.96 (14)
O1—S1—O2106.07 (6)C2—C3—C6118.91 (14)
C5—N1—C1123.08 (13)C5—C4—C3118.09 (14)
C5—N1—H1111.7C5—C4—H4A121.0
C1—N1—H1125.2C3—C4—H4A121.0
N1—C1—C2119.75 (14)N1—C5—C4119.71 (14)
N1—C1—H1A120.1N1—C5—H5A120.1
C2—C1—H1A120.1C4—C5—H5A120.1
S1—O2—H2107.1N2—C6—C3178.92 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O4i0.891.872.7123 (16)157
O2—H2···O1ii0.821.792.5859 (15)165
C1—H1A···O1i0.932.503.2681 (19)139
C2—H2A···O2iii0.932.433.3279 (19)162
C4—H4A···O30.932.433.2189 (19)143
C5—H5A···O3iv0.932.573.3192 (19)138
C5—H5A···N2v0.932.533.211 (2)130
Symmetry codes: (i) x+1/2, y+1/2, z+1; (ii) x+1/2, y+1/2, z; (iii) x+1/2, y+3/2, z+1; (iv) x+1/2, y1/2, z; (v) x, y1, z.

Experimental details

Crystal data
Chemical formulaC6H5N2+·HSO4
Mr202.19
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)123
a, b, c (Å)14.2959 (12), 7.8817 (8), 14.4280 (13)
V3)1625.7 (3)
Z8
Radiation typeMo Kα
µ (mm1)0.38
Crystal size (mm)0.10 × 0.05 × 0.05
Data collection
DiffractometerRigaku Mercury2
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.910, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
16314, 1854, 1795
Rint0.032
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.092, 1.19
No. of reflections1854
No. of parameters118
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.33, 0.40

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O4i0.891.872.7123 (16)157.0
O2—H2···O1ii0.821.792.5859 (15)164.9
C1—H1A···O1i0.932.503.2681 (19)139
C2—H2A···O2iii0.932.433.3279 (19)162
C4—H4A···O30.932.433.2189 (19)143
C5—H5A···O3iv0.932.573.3192 (19)138
C5—H5A···N2v0.932.533.211 (2)130
Symmetry codes: (i) x+1/2, y+1/2, z+1; (ii) x+1/2, y+1/2, z; (iii) x+1/2, y+3/2, z+1; (iv) x+1/2, y1/2, z; (v) x, y1, z.
 

Acknowledgements

This work was supported by a start-up grant from Southeast University, China.

References

First citationChen, Z.-F., Li, B.-Q., Xie, Y.-R., Xiong, R.-G., You, X.-Z. & Feng, X.-L. (2001). Inorg. Chem. Commun. 4, 346–349.  Web of Science CSD CrossRef CAS Google Scholar
First citationHuang, S.-P.-D., Xiong, R.-G., Han, J.-D. & Weiner, B. R. (1999). Inorg. Chim. Acta, 294, 95–98.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, L.-Z., Wang, X.-S., Li, Y.-H., Bai, Z.-P., Xiong, R.-G., Xiong, M. & Li, G.-W. (2002). Chin. J. Inorg. Chem. 18, 1191–1194.  CAS Google Scholar
First citationXue, X., Abrahams, B. F., Xiong, R.-G. & You, X.-Z. (2002). Aust. J. Chem. 55, 495–497.  CSD CrossRef CAS Google Scholar
First citationYe, Q., Fu, D.-W., Hang, T., Xiong, R.-G., Chan, P. W. H. & Huang, S. P. D. (2008). Inorg. Chem. 47, 772–774.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationZhang, J., Xiong, R.-G., Chen, X.-T., Che, C.-M., Xue, Z.-L. & You, X.-Z. (2001). Organometallics 20, 4118–4121.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds