organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

6′-Amino-3′-methyl-11H,2′H-spiro­[indeno­[1,2-b]quinoxaline-11,4′-pyrano[2,3-c]pyrazole]-5′-carbo­nitrile ethanol monosolvate

aDepartment of Chemistry, Jinan University, Guangzhou 510632, People's Republic of China
*Correspondence e-mail: tlyq@jnu.edu.cn

(Received 10 April 2012; accepted 14 June 2012; online 20 June 2012)

In the title spiro­indeno­quinoxaline compound, C22H14N6O·C2H6O, the five-membered ring of the indene unit and the pyran ring are perpendicular [89.11 (3)°]. In the crystal, N—H⋯N hydrogen bonds connect the spiro­indeno­quinoxaline mol­ecules, and the ethanol solvent mol­ecules complete the hydrogen-bond network via O—H⋯N and N—H⋯O inter­actions.

Related literature

For general background to spiro compounds and their biological activity, see: Pradhan et al. (2006[Pradhan, R., Patra, M., Behera, A. K. & Behera, R. K. (2006). Tetrahedron, 62, 779-828.]); Saeedi et al. (2010[Saeedi, M., Heravi, M. M., Beheshtiha, Y. S. & Oskooie, H. A. (2010). Tetrahedron, 66, 5345-5348.]); Dandia et al. (2011[Dandia, A., Singh, R., Bhaskarana, S. & Samant, S. D. (2011). Green Chem. 13, 1852-1859.]); He et al. (2003[He, W., Meyers, M. R., Hanney, B., Sapada, A., Blider, G., Galzeinski, H., Amin, D., Needle, S., Page, K., Jayyosi, Z. & Perrone, H. (2003). Bioorg. Med. Chem. Lett. 13, 3097-3100.]).

[Scheme 1]

Experimental

Crystal data
  • C22H14N6O·C2H6O

  • Mr = 424.46

  • Monoclinic, P 21 /n

  • a = 14.5060 (6) Å

  • b = 11.1732 (3) Å

  • c = 14.7365 (6) Å

  • β = 118.859 (5)°

  • V = 2091.84 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.33 × 0.30 × 0.25 mm

Data collection
  • Agilent Xcalibur Sapphire3 Gemini ultra diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011)[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yanton, England.] Tmin = 0.994, Tmax = 1.000

  • 8822 measured reflections

  • 4504 independent reflections

  • 3259 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.121

  • S = 1.02

  • 4504 reflections

  • 292 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H2B⋯N5i 0.86 2.22 3.064 (2) 165
N2—H2⋯O2ii 0.86 2.00 2.850 (2) 168
O2—H2C⋯N6 0.82 2.11 2.917 (2) 166
Symmetry codes: (i) -x+1, -y+2, -z; (ii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2011)[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yanton, England.]; cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: OLEX2.

Supporting information


Comment top

Spiro compounds have received considerable interest due to their highly pronounced biological properties (Pradhan et al., 2006); Thus more and more novel spiroheterocycle compounds have been prepared and characterized (Saeedi et al., 2010); Dandia et al., 2011). In addition, quinoxaline derivatives also showed various biological activities (He et al., 2003). Herein, we report the crystal structure of the title compound which is a novel spiroheterocycle containing quinoxaline ring.

The title compound is a formed from the reaciton of 11H-indeno [1,2-b]quinoxalin-11-one, 3-methyl-2-pyrazolin-5-one and malononitrile. The molecular structure is shown in Fig. 1.

The five member ring (C4, C7, C8, C16, C15) and pyran ring (C4, C5, C6, O1, C1, C2) are perpendicular and the dihedral angle is 89.11 (3)°. N—H···N hydrogen bonding interaction connnects molecules. In addition, solvent molecule (ethanol) is hydrogen bonded by O—H···N and N—H···O (Table 1).

Related literature top

For general background to spiro compounds and their biological activity, see: Pradhan et al. (2006); Saeedi et al. (2010); Dandia et al. (2011); He et al. (2003).

Experimental top

The title compound was prepared by the reaction of 11H- indeno[1,2-b]quinoxalin-11-one(0.232 g, 1 mmol), 3-methyl-2-pyrazolin- 5-one (0.098 g, 1 mmol) with malononitrile (0.066 g, 1 mmol) in the presence of triethylamine (2 mmol) in ethanol (10.0 ml) under reflux for 1 h. Upon completion (monitored by TLC), the mixture was put into the fridge overnight. Then the reaction mixture was filtered to collect the solid. The crude product was recrystallized from ethanol and then dried to give pure compound (I) in 97% yield (m.p. 532–534 K). Single crystals suitable for X-ray diffraction were obtained by slow evaporation of an ethanol solution of (I) at room temperature.

Refinement top

H atom bound to N was located from a difference Fourier map and refined as riding, with N—H = 0.86 Å, and Uiso(H) = 1.2 Ueq(N), and O(2)—H(2) = 0.82 Å, and Uiso(H) = 1.5 Ueq(O). The remaining H atoms were located in a difference syntheses and refined with C—H = 0.93–0.97 Å and with Uiso(H) = 1.2 Ueq(C).

Structure description top

Spiro compounds have received considerable interest due to their highly pronounced biological properties (Pradhan et al., 2006); Thus more and more novel spiroheterocycle compounds have been prepared and characterized (Saeedi et al., 2010); Dandia et al., 2011). In addition, quinoxaline derivatives also showed various biological activities (He et al., 2003). Herein, we report the crystal structure of the title compound which is a novel spiroheterocycle containing quinoxaline ring.

The title compound is a formed from the reaciton of 11H-indeno [1,2-b]quinoxalin-11-one, 3-methyl-2-pyrazolin-5-one and malononitrile. The molecular structure is shown in Fig. 1.

The five member ring (C4, C7, C8, C16, C15) and pyran ring (C4, C5, C6, O1, C1, C2) are perpendicular and the dihedral angle is 89.11 (3)°. N—H···N hydrogen bonding interaction connnects molecules. In addition, solvent molecule (ethanol) is hydrogen bonded by O—H···N and N—H···O (Table 1).

For general background to spiro compounds and their biological activity, see: Pradhan et al. (2006); Saeedi et al. (2010); Dandia et al. (2011); He et al. (2003).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound in (I) showing the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
6'-Amino-3'-methyl-11H,2'H- spiro[indeno[1,2-b]quinoxaline-11,4'-pyrano[2,3-c]pyrazole]- 5'-carbonitrile ethanol monosolvate top
Crystal data top
C22H14N6O·C2H6OF(000) = 888
Mr = 424.46Dx = 1.348 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.7107 Å
a = 14.5060 (6) ÅCell parameters from 2373 reflections
b = 11.1732 (3) Åθ = 3.2–29.2°
c = 14.7365 (6) ŵ = 0.09 mm1
β = 118.859 (5)°T = 293 K
V = 2091.84 (13) Å3Block, colorless
Z = 40.33 × 0.30 × 0.25 mm
Data collection top
Agilent Xcalibur Sapphire3 Gemini ultra
diffractometer
4504 independent reflections
Radiation source: Enhance (Mo) X-ray Source3259 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
Detector resolution: 16.0288 pixels mm-1θmax = 27.0°, θmin = 3.2°
ω scansh = 1318
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
k = 1412
Tmin = 0.994, Tmax = 1.000l = 1818
8822 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.121H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0506P)2 + 0.6387P]
where P = (Fo2 + 2Fc2)/3
4504 reflections(Δ/σ)max < 0.001
292 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C22H14N6O·C2H6OV = 2091.84 (13) Å3
Mr = 424.46Z = 4
Monoclinic, P21/nMo Kα radiation
a = 14.5060 (6) ŵ = 0.09 mm1
b = 11.1732 (3) ÅT = 293 K
c = 14.7365 (6) Å0.33 × 0.30 × 0.25 mm
β = 118.859 (5)°
Data collection top
Agilent Xcalibur Sapphire3 Gemini ultra
diffractometer
4504 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
3259 reflections with I > 2σ(I)
Tmin = 0.994, Tmax = 1.000Rint = 0.021
8822 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.121H-atom parameters constrained
S = 1.02Δρmax = 0.23 e Å3
4504 reflectionsΔρmin = 0.22 e Å3
292 parameters
Special details top

Experimental. Absorption correction: CrysAlisPro, Agilent Technologies, Version 1.171.35.15 (release 03-08-2011 CrysAlis171 .NET) (compiled Aug 3 2011,13:03:54) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.49786 (13)1.04411 (15)0.17993 (14)0.0288 (4)
C20.46067 (12)0.94042 (15)0.20303 (13)0.0267 (4)
C30.51266 (13)0.93684 (15)0.30993 (13)0.0308 (4)
C40.38386 (12)0.85793 (14)0.12114 (12)0.0258 (4)
C50.34580 (13)0.92258 (15)0.01750 (13)0.0283 (4)
C60.38757 (13)1.02560 (15)0.00320 (13)0.0292 (4)
C70.43275 (12)0.73529 (14)0.12372 (12)0.0252 (4)
C80.37430 (13)0.64242 (15)0.13949 (13)0.0284 (4)
C90.49107 (13)0.50506 (15)0.14294 (13)0.0306 (4)
C100.54857 (13)0.59738 (15)0.12637 (13)0.0284 (4)
C110.64192 (15)0.56720 (17)0.12427 (15)0.0381 (4)
H110.68020.62640.11280.046*
C120.67633 (15)0.45132 (17)0.13902 (16)0.0419 (5)
H120.73800.43240.13750.050*
C130.61982 (16)0.36059 (17)0.15637 (16)0.0426 (5)
H130.64460.28230.16700.051*
C140.52858 (15)0.38691 (16)0.15764 (16)0.0407 (5)
H140.49100.32620.16830.049*
C150.29206 (12)0.82089 (15)0.13901 (12)0.0279 (4)
C160.28671 (13)0.69658 (15)0.14753 (13)0.0294 (4)
C170.20911 (14)0.64534 (17)0.16477 (14)0.0369 (4)
H170.20510.56280.16990.044*
C180.13808 (14)0.71996 (19)0.17413 (15)0.0420 (5)
H180.08590.68720.18600.050*
C190.14381 (15)0.84317 (19)0.16597 (15)0.0417 (5)
H190.09560.89200.17280.050*
C200.22051 (14)0.89454 (17)0.14780 (14)0.0353 (4)
H200.22360.97710.14170.042*
C210.50729 (17)0.85130 (19)0.38457 (15)0.0466 (5)
H21A0.55490.87640.45410.070*
H21B0.52660.77280.37310.070*
H21C0.43690.84950.37470.070*
C220.26033 (15)0.87000 (17)0.07019 (15)0.0373 (4)
C230.23737 (17)0.25182 (19)0.04394 (19)0.0577 (6)
H23A0.26040.22130.11320.069*
H23B0.29440.24050.02810.069*
C240.14610 (19)0.1839 (2)0.0296 (2)0.0707 (8)
H24A0.08980.19370.01350.106*
H24B0.16430.10070.02520.106*
H24C0.12400.21250.09850.106*
N40.19017 (16)0.82567 (19)0.13887 (14)0.0647 (6)
N30.35675 (12)1.08220 (14)0.08708 (12)0.0400 (4)
H2A0.30601.05370.14320.048*
H2B0.38771.14710.08890.048*
N50.51689 (10)0.71530 (12)0.11524 (11)0.0282 (3)
N60.39997 (11)0.52895 (12)0.14725 (12)0.0329 (3)
N10.56749 (11)1.10402 (13)0.26111 (12)0.0364 (4)
N20.57499 (11)1.03496 (13)0.34080 (12)0.0366 (4)
H20.61571.05230.40490.044*
O10.46733 (9)1.08757 (10)0.08218 (10)0.0345 (3)
O20.21583 (11)0.37477 (12)0.04178 (12)0.0505 (4)
H2C0.27020.41070.08010.076*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0296 (8)0.0220 (8)0.0361 (9)0.0013 (7)0.0169 (7)0.0006 (8)
C20.0269 (8)0.0229 (8)0.0309 (9)0.0005 (7)0.0144 (7)0.0010 (7)
C30.0301 (8)0.0280 (9)0.0328 (9)0.0008 (7)0.0140 (7)0.0021 (8)
C40.0288 (8)0.0219 (8)0.0276 (8)0.0022 (7)0.0144 (7)0.0013 (7)
C50.0310 (8)0.0247 (9)0.0289 (9)0.0000 (7)0.0142 (7)0.0022 (7)
C60.0317 (8)0.0251 (9)0.0342 (9)0.0040 (7)0.0186 (8)0.0034 (8)
C70.0284 (8)0.0227 (8)0.0217 (8)0.0037 (7)0.0099 (6)0.0002 (7)
C80.0319 (8)0.0241 (9)0.0281 (9)0.0039 (7)0.0137 (7)0.0020 (7)
C90.0345 (9)0.0253 (9)0.0304 (9)0.0017 (7)0.0144 (7)0.0010 (8)
C100.0329 (9)0.0252 (9)0.0257 (8)0.0002 (7)0.0130 (7)0.0014 (7)
C110.0407 (10)0.0347 (10)0.0444 (11)0.0007 (8)0.0250 (9)0.0022 (9)
C120.0408 (10)0.0381 (11)0.0506 (12)0.0051 (9)0.0251 (9)0.0002 (10)
C130.0496 (11)0.0282 (10)0.0486 (12)0.0086 (9)0.0226 (10)0.0032 (9)
C140.0453 (11)0.0258 (9)0.0511 (12)0.0014 (8)0.0233 (10)0.0036 (9)
C150.0288 (8)0.0291 (9)0.0238 (8)0.0044 (7)0.0111 (7)0.0004 (7)
C160.0314 (8)0.0282 (9)0.0279 (9)0.0047 (7)0.0136 (7)0.0017 (8)
C170.0372 (10)0.0372 (10)0.0380 (10)0.0079 (8)0.0194 (8)0.0023 (9)
C180.0360 (10)0.0516 (12)0.0444 (11)0.0086 (9)0.0241 (9)0.0007 (10)
C190.0363 (10)0.0488 (12)0.0458 (11)0.0013 (9)0.0244 (9)0.0040 (10)
C200.0373 (10)0.0315 (10)0.0381 (10)0.0010 (8)0.0189 (8)0.0017 (8)
C210.0502 (12)0.0511 (13)0.0346 (10)0.0036 (10)0.0173 (9)0.0055 (10)
C220.0422 (10)0.0358 (10)0.0322 (10)0.0041 (9)0.0165 (8)0.0074 (9)
C230.0507 (13)0.0424 (13)0.0596 (14)0.0070 (10)0.0105 (11)0.0025 (11)
C240.0598 (14)0.0394 (13)0.0858 (19)0.0004 (11)0.0136 (13)0.0012 (13)
N40.0644 (12)0.0708 (14)0.0390 (10)0.0235 (11)0.0091 (9)0.0001 (10)
N30.0466 (9)0.0348 (9)0.0392 (9)0.0034 (7)0.0211 (8)0.0106 (8)
N50.0321 (7)0.0245 (7)0.0282 (7)0.0022 (6)0.0147 (6)0.0014 (6)
N60.0364 (8)0.0239 (8)0.0394 (9)0.0036 (6)0.0190 (7)0.0028 (7)
N10.0347 (8)0.0282 (8)0.0432 (9)0.0042 (7)0.0163 (7)0.0042 (7)
N20.0335 (8)0.0345 (9)0.0347 (8)0.0033 (7)0.0108 (7)0.0064 (7)
O10.0386 (7)0.0250 (6)0.0405 (7)0.0053 (5)0.0196 (6)0.0037 (6)
O20.0425 (8)0.0366 (8)0.0520 (9)0.0002 (6)0.0065 (7)0.0011 (7)
Geometric parameters (Å, º) top
C1—C21.388 (2)C13—C141.365 (3)
C1—N11.316 (2)C14—H140.9300
C1—O11.375 (2)C15—C161.400 (2)
C2—C31.380 (2)C15—C201.379 (2)
C2—C41.500 (2)C16—C171.391 (2)
C3—C211.487 (3)C17—H170.9300
C3—N21.352 (2)C17—C181.383 (3)
C4—C51.531 (2)C18—H180.9300
C4—C71.535 (2)C18—C191.388 (3)
C4—C151.534 (2)C19—H190.9300
C5—C61.364 (2)C19—C201.388 (3)
C5—C221.416 (2)C20—H200.9300
C6—N31.340 (2)C21—H21A0.9600
C6—O11.368 (2)C21—H21B0.9600
C7—C81.428 (2)C21—H21C0.9600
C7—N51.305 (2)C22—N41.145 (2)
C8—C161.463 (2)C23—H23A0.9700
C8—N61.311 (2)C23—H23B0.9700
C9—C101.420 (2)C23—C241.455 (3)
C9—C141.404 (2)C23—O21.406 (2)
C9—N61.379 (2)C24—H24A0.9600
C10—C111.410 (2)C24—H24B0.9600
C10—N51.379 (2)C24—H24C0.9600
C11—H110.9300N3—H2A0.8600
C11—C121.367 (3)N3—H2B0.8600
C12—H120.9300N1—N21.365 (2)
C12—C131.403 (3)N2—H20.8600
C13—H130.9300O2—H2C0.8200
N1—C1—C2114.84 (16)C20—C15—C16120.46 (16)
N1—C1—O1119.36 (15)C15—C16—C8108.37 (14)
O1—C1—C2125.79 (15)C17—C16—C8130.96 (16)
C1—C2—C4122.78 (15)C17—C16—C15120.62 (16)
C3—C2—C1103.96 (15)C16—C17—H17120.7
C3—C2—C4133.23 (15)C18—C17—C16118.53 (18)
C2—C3—C21131.90 (17)C18—C17—H17120.7
N2—C3—C2105.59 (15)C17—C18—H18119.7
N2—C3—C21122.50 (16)C17—C18—C19120.70 (17)
C2—C4—C5106.43 (13)C19—C18—H18119.7
C2—C4—C7111.95 (13)C18—C19—H19119.5
C2—C4—C15113.39 (13)C18—C19—C20120.93 (18)
C5—C4—C7112.69 (13)C20—C19—H19119.5
C5—C4—C15111.93 (13)C15—C20—C19118.76 (17)
C15—C4—C7100.60 (12)C15—C20—H20120.6
C6—C5—C4125.38 (15)C19—C20—H20120.6
C6—C5—C22117.88 (15)C3—C21—H21A109.5
C22—C5—C4116.73 (14)C3—C21—H21B109.5
C5—C6—O1123.50 (15)C3—C21—H21C109.5
N3—C6—C5126.27 (16)H21A—C21—H21B109.5
N3—C6—O1110.22 (14)H21A—C21—H21C109.5
C8—C7—C4110.44 (14)H21B—C21—H21C109.5
N5—C7—C4126.36 (14)N4—C22—C5177.6 (2)
N5—C7—C8123.18 (15)H23A—C23—H23B107.9
C7—C8—C16108.64 (14)C24—C23—H23A109.1
N6—C8—C7123.45 (15)C24—C23—H23B109.1
N6—C8—C16127.90 (15)O2—C23—H23A109.1
C14—C9—C10119.56 (16)O2—C23—H23B109.1
N6—C9—C10121.52 (15)O2—C23—C24112.35 (18)
N6—C9—C14118.91 (15)C23—C24—H24A109.5
C11—C10—C9118.69 (16)C23—C24—H24B109.5
N5—C10—C9121.65 (15)C23—C24—H24C109.5
N5—C10—C11119.63 (15)H24A—C24—H24B109.5
C10—C11—H11119.9H24A—C24—H24C109.5
C12—C11—C10120.26 (17)H24B—C24—H24C109.5
C12—C11—H11119.9C6—N3—H2A120.0
C11—C12—H12119.6C6—N3—H2B120.0
C11—C12—C13120.85 (18)H2A—N3—H2B120.0
C13—C12—H12119.6C7—N5—C10115.20 (14)
C12—C13—H13119.9C8—N6—C9114.91 (14)
C14—C13—C12120.18 (17)C1—N1—N2101.65 (14)
C14—C13—H13119.9C3—N2—N1113.96 (14)
C9—C14—H14119.8C3—N2—H2123.0
C13—C14—C9120.44 (17)N1—N2—H2123.0
C13—C14—H14119.8C6—O1—C1115.14 (13)
C16—C15—C4111.92 (14)C23—O2—H2C109.5
C20—C15—C4127.62 (15)
C1—C2—C3—C21178.33 (19)C8—C16—C17—C18176.67 (17)
C1—C2—C3—N20.36 (18)C9—C10—C11—C120.6 (3)
C1—C2—C4—C59.4 (2)C9—C10—N5—C71.7 (2)
C1—C2—C4—C7114.17 (17)C10—C9—C14—C130.2 (3)
C1—C2—C4—C15132.85 (16)C10—C9—N6—C82.8 (2)
C1—N1—N2—C30.01 (19)C10—C11—C12—C130.0 (3)
C2—C1—N1—N20.26 (19)C11—C10—N5—C7176.50 (16)
C2—C1—O1—C65.1 (2)C11—C12—C13—C140.7 (3)
C2—C3—N2—N10.24 (19)C12—C13—C14—C90.8 (3)
C2—C4—C5—C69.6 (2)C14—C9—C10—C110.5 (3)
C2—C4—C5—C22170.60 (15)C14—C9—C10—N5177.66 (16)
C2—C4—C7—C8121.49 (15)C14—C9—N6—C8175.74 (17)
C2—C4—C7—N557.1 (2)C15—C4—C5—C6134.00 (17)
C2—C4—C15—C16121.20 (16)C15—C4—C5—C2246.2 (2)
C2—C4—C15—C2058.1 (2)C15—C4—C7—C80.76 (16)
C3—C2—C4—C5172.97 (17)C15—C4—C7—N5177.86 (15)
C3—C2—C4—C763.5 (2)C15—C16—C17—C180.5 (3)
C3—C2—C4—C1549.5 (2)C16—C8—N6—C9175.98 (16)
C4—C2—C3—C213.7 (3)C16—C15—C20—C190.5 (3)
C4—C2—C3—N2177.61 (17)C16—C17—C18—C190.3 (3)
C4—C5—C6—N3178.60 (16)C17—C18—C19—C200.3 (3)
C4—C5—C6—O12.9 (3)C18—C19—C20—C150.7 (3)
C4—C5—C22—N425 (6)C20—C15—C16—C8177.64 (15)
C4—C7—C8—C160.18 (18)C20—C15—C16—C170.1 (3)
C4—C7—C8—N6178.41 (16)C21—C3—N2—N1178.61 (16)
C4—C7—N5—C10176.18 (15)C22—C5—C6—N31.2 (3)
C4—C15—C16—C81.7 (2)C22—C5—C6—O1177.29 (16)
C4—C15—C16—C17179.49 (15)N3—C6—O1—C1173.63 (14)
C4—C15—C20—C19178.78 (16)N5—C7—C8—C16178.85 (15)
C5—C4—C7—C8118.58 (15)N5—C7—C8—N60.3 (3)
C5—C4—C7—N562.8 (2)N5—C10—C11—C12177.58 (17)
C5—C4—C15—C16118.38 (16)N6—C8—C16—C15177.34 (17)
C5—C4—C15—C2062.3 (2)N6—C8—C16—C170.1 (3)
C5—C6—O1—C15.1 (2)N6—C9—C10—C11179.10 (16)
C6—C5—C22—N4155 (6)N6—C9—C10—N50.9 (3)
C7—C4—C5—C6113.47 (18)N6—C9—C14—C13178.41 (18)
C7—C4—C5—C2266.33 (19)N1—C1—C2—C30.4 (2)
C7—C4—C15—C161.51 (18)N1—C1—C2—C4177.84 (15)
C7—C4—C15—C20177.78 (16)N1—C1—O1—C6174.05 (15)
C7—C8—C16—C151.16 (19)O1—C1—C2—C3178.79 (15)
C7—C8—C16—C17178.62 (17)O1—C1—C2—C43.0 (3)
C7—C8—N6—C92.3 (2)O1—C1—N1—N2179.00 (14)
C8—C7—N5—C102.3 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H2B···N5i0.862.223.064 (2)165
N2—H2···O2ii0.862.002.850 (2)168
O2—H2C···N60.822.112.917 (2)166
Symmetry codes: (i) x+1, y+2, z; (ii) x+1/2, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC22H14N6O·C2H6O
Mr424.46
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)14.5060 (6), 11.1732 (3), 14.7365 (6)
β (°) 118.859 (5)
V3)2091.84 (13)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.33 × 0.30 × 0.25
Data collection
DiffractometerAgilent Xcalibur Sapphire3 Gemini ultra
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2011)
Tmin, Tmax0.994, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
8822, 4504, 3259
Rint0.021
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.121, 1.02
No. of reflections4504
No. of parameters292
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.22

Computer programs: CrysAlis PRO (Agilent, 2011), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H2B···N5i0.862.223.064 (2)165.1
N2—H2···O2ii0.862.002.850 (2)167.7
O2—H2C···N60.822.112.917 (2)166.3
Symmetry codes: (i) x+1, y+2, z; (ii) x+1/2, y+3/2, z+1/2.
 

Acknowledgements

We are grateful to the National Natural Science Foundation of China (Nos. 21072077 and 20672046) and the Guangdong Natural Science Foundation (Nos. 10151063201000051 and 8151063201000016) for financial support.

References

First citationAgilent (2011). CrysAlis PRO. Agilent Technologies, Yanton, England.  Google Scholar
First citationDandia, A., Singh, R., Bhaskarana, S. & Samant, S. D. (2011). Green Chem. 13, 1852–1859.  Web of Science CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHe, W., Meyers, M. R., Hanney, B., Sapada, A., Blider, G., Galzeinski, H., Amin, D., Needle, S., Page, K., Jayyosi, Z. & Perrone, H. (2003). Bioorg. Med. Chem. Lett. 13, 3097–3100.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPradhan, R., Patra, M., Behera, A. K. & Behera, R. K. (2006). Tetrahedron, 62, 779–828.  Web of Science CrossRef CAS Google Scholar
First citationSaeedi, M., Heravi, M. M., Beheshtiha, Y. S. & Oskooie, H. A. (2010). Tetrahedron, 66, 5345–5348.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds