organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

rac-Methyl 3-(2-meth­­oxy­phen­yl)-1-phenyl-3,3a,4,9b-tetra­hydro-1H-chromeno[4,3-c]isoxazole-3a-carboxyl­ate

aPost Graduate and Research Department of Physics, Agurchand Manmull Jain College, Chennai 600 114, India, and bDepartment of Organic Chemistry, University of, Madras, Guindy Campus, Chennai 600 025, India.
*Correspondence e-mail: seshadri_pr@yahoo.com

(Received 27 April 2012; accepted 10 May 2012; online 2 June 2012)

The title compound, C25H23NO5, comprising two stereogenic carbon atoms of the same configuration, crystallizes in a centrosymmetric space group as a racemate. The six-membered pyran ring and the five-membered isoxazole ring adopt sofa and twisted conformations, respectively. The dihedral angle between the benzene ring and the mean plane through the near coplanar atoms of the pyran ring is 10.73 (7)°. The crystal structure features C—H⋯O hydrogen bonds.

Related literature

For the biological activity of the title compound, see: Eddington et al. (2002[Eddington, N. D., Cox, D. S., Roberts, R. R., Butcher, R. J., Edafiogho, I. O., Stables, J. P., Cooke, N., Goodwin, A. M., Smith, C. A. & Scott, K. R. (2002). Eur. J. Med. Chem. 37, 635-648.]); Mullen et al. (1988[Mullen, G. B., DeCory, T. R., Mitchell, J. T., Allen, S. D., Kinsolving, C. R. & Georgiev, V. S. (1988). J. Med. Chem. 31, 2008-2014.]); Kashiwada et al. (2001[Kashiwada, Y., Yamazaki, K., Ikeshiro, Y., Yamagishi, T., Fujioka, T., Mihashi, K., Mizuki, K., Cosentino, L. M., Fowke, K., Natschke, S. L. M. & Lee, K. H. (2001). Tetrahedron, 57, 1559-1563.]); Caine (1993[Caine, B. (1993). Science, 260, 1814-1816.]). For N-atom hybridization, see: Beddoes et al. (1986[Beddoes, R. L., Dalton, L., Joule, T. A., Mills, O. S., Street, J. D. & Watt, C. I. F. (1986). J. Chem. Soc. Perkin Trans. 2, pp. 787-797.]). For related structures, see: Kanchanadevi et al. (2011[Kanchanadevi, J., Anbalagan, G., Srinivasan, J., Bakthadoss, M. & Manivannan, V. (2011). Acta Cryst. E67, o1989.]); Swaminathan et al. (2012[Swaminathan, K., Sethusankar, K., Srinivasan, J. & Bakthadoss, M. (2012). Acta Cryst. E68, o283-o284.]). For conformational analysis and puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C25H23NO5

  • Mr = 417.44

  • Monoclinic, P 21 /c

  • a = 18.3791 (7) Å

  • b = 15.2466 (6) Å

  • c = 7.7235 (3) Å

  • β = 90.514 (2)°

  • V = 2164.18 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 298 K

  • 0.20 × 0.15 × 0.10 mm

Data collection
  • Bruker SMART APEXII area-detector diffractometer

  • 20989 measured reflections

  • 5478 independent reflections

  • 3614 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.159

  • S = 0.96

  • 5478 reflections

  • 280 parameters

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7⋯O4 0.98 2.33 2.803 (2) 109
C15—H15⋯O3i 0.93 2.42 3.285 (3) 155
Symmetry code: (i) -x+2, -y, -z+1.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Ins., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Ins., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), PLATON and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Isoxazole derivative exhibit anti-consulvant (Eddington et al., 2002) and anti-fungal (Mullen et al., 1988) activities, whereas benzopyran and chromenopyrrole derivatives are used in the treatment of impulsive-disorder disease (Caine, 1993) and exhibit anti-HIV activities (Kashiwada et al., 2001). On this grounds, the title compound was chosen for X-ray structure analysis (Fig.1).

The pyran ring (O1/C1/C6—C9) adopts a sofa conformation with the puckering parameters (Cremer & Pople, 1975) being q2=0.478 (2) Å, q3=0.230 (2) Å, QT=0.531 (2) Å and the five membered ring isoxazole (O2/N1/C7/C8/C12) adopts a twisted conformation with puckering parameters (Cremer & Pople, 1975) being q2=0.429 (1) Å and Φ2=165.9 (2)°. The dihedral angle between the pyran and the benzene ring (C1—C6) is 10.73 (7)°. The dihedral angle between the chromeno ring (fusion of benzene and pyran rings) and isoxazole ring is 57.52 (5)°.

In the chromenoisoxazole moiety, the dihedral angle between the benzene and isoxazole ring is 56.88 (6)°. The dihedral angle between the pyran and isoxazole ring is 56.27 (6)°. The sum of the bond angles around N1 [334.55 (39)°] indicates sp3 hybridization (Beddoes et al.,1986). The unit cell contains no residual solvent accessible voids, if the voids in the dry crystals ever contained solvent, though generally solvent loss from organic crystals is associated with either a total loss of crystallinity or at least a degradation of the crystal quality. In this case the crystals remained glass-clear.

The geometric parameters of the title compound (Fig. 1) agree well with the reported similar structures (Kanchanadevi et al., 2011; Swaminathan et al., 2012).

The molecular structure is stabilized by C— H··· O intramolecular interactions and the crystal packing is via C— H··· O hydrogen bonds(Table 1, Fig. 2).

Related literature top

For the biological activity of the title compound, see: Eddington et al. (2002); Mullen et al. (1988); Kashiwada et al. (2001); Caine (1993). For N-atom hybridization, see: Beddoes et al. (1986). For related structures, see: Kanchanadevi et al. (2011); Swaminathan et al. (2012). For conformational analysis and puckering parameters, see: Cremer & Pople (1975).

Experimental top

A mixture of (E)-methyl 2-((2-formylphenoxy)methyl)-3-(2-methoxyphenyl)acrylate (2 mmol, 0.65 g) and N-phenylhydroxylamine (3 mmol, 0.33 g) in ethanol (10 mL) was refluxed for 6 h. After the completion of the reaction as indicated by TLC, the reaction mixture was concentrated and the resulting crude mass was diluted with water (15 mL) and extracted with ethyl acetate (3 × 15 mL). The combined organic layer was washed with brine (3 × 15 mL) and dried over anhydrous Na2SO4, solvent was removed under reduced pressure. The crude mass was purified by column chromatography on silica gel (Acme 100–200 mesh), using ethyl acetate-hexane (0.5: 9.5) to afford the pure compound as a colourless solid in 91% yield.

Refinement top

Hydrogen atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.93 - 0.97 Å and Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2 Ueq(C) for other H atoms.

Structure description top

Isoxazole derivative exhibit anti-consulvant (Eddington et al., 2002) and anti-fungal (Mullen et al., 1988) activities, whereas benzopyran and chromenopyrrole derivatives are used in the treatment of impulsive-disorder disease (Caine, 1993) and exhibit anti-HIV activities (Kashiwada et al., 2001). On this grounds, the title compound was chosen for X-ray structure analysis (Fig.1).

The pyran ring (O1/C1/C6—C9) adopts a sofa conformation with the puckering parameters (Cremer & Pople, 1975) being q2=0.478 (2) Å, q3=0.230 (2) Å, QT=0.531 (2) Å and the five membered ring isoxazole (O2/N1/C7/C8/C12) adopts a twisted conformation with puckering parameters (Cremer & Pople, 1975) being q2=0.429 (1) Å and Φ2=165.9 (2)°. The dihedral angle between the pyran and the benzene ring (C1—C6) is 10.73 (7)°. The dihedral angle between the chromeno ring (fusion of benzene and pyran rings) and isoxazole ring is 57.52 (5)°.

In the chromenoisoxazole moiety, the dihedral angle between the benzene and isoxazole ring is 56.88 (6)°. The dihedral angle between the pyran and isoxazole ring is 56.27 (6)°. The sum of the bond angles around N1 [334.55 (39)°] indicates sp3 hybridization (Beddoes et al.,1986). The unit cell contains no residual solvent accessible voids, if the voids in the dry crystals ever contained solvent, though generally solvent loss from organic crystals is associated with either a total loss of crystallinity or at least a degradation of the crystal quality. In this case the crystals remained glass-clear.

The geometric parameters of the title compound (Fig. 1) agree well with the reported similar structures (Kanchanadevi et al., 2011; Swaminathan et al., 2012).

The molecular structure is stabilized by C— H··· O intramolecular interactions and the crystal packing is via C— H··· O hydrogen bonds(Table 1, Fig. 2).

For the biological activity of the title compound, see: Eddington et al. (2002); Mullen et al. (1988); Kashiwada et al. (2001); Caine (1993). For N-atom hybridization, see: Beddoes et al. (1986). For related structures, see: Kanchanadevi et al. (2011); Swaminathan et al. (2012). For conformational analysis and puckering parameters, see: Cremer & Pople (1975).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing the atom-numbering scheme and displacement ellipsoids drawn at the 20% probability level.
[Figure 2] Fig. 2. The crystal packing of the title compound. Hydrogen bonds are shown by dashed lines.
rac-Methyl 3-(2-methoxyphenyl)-1-phenyl-3,3a,4,9b-tetrahydro-1H- chromeno[4,3-c]isoxazole-3a-carboxylate top
Crystal data top
C25H23NO5F(000) = 880
Mr = 417.44Dx = 1.281 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5478 reflections
a = 18.3791 (7) Åθ = 1.7–28.6°
b = 15.2466 (6) ŵ = 0.09 mm1
c = 7.7235 (3) ÅT = 298 K
β = 90.514 (2)°Block, colourless
V = 2164.18 (15) Å30.20 × 0.15 × 0.10 mm
Z = 4
Data collection top
Bruker SMART APEXII area-detector
diffractometer
3614 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.036
Graphite monochromatorθmax = 28.6°, θmin = 1.7°
ω and φ scansh = 2324
20989 measured reflectionsk = 2017
5478 independent reflectionsl = 1010
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.159H-atom parameters constrained
S = 0.96 w = 1/[σ2(Fo2) + (0.0739P)2 + 0.7112P]
where P = (Fo2 + 2Fc2)/3
5478 reflections(Δ/σ)max = 0.031
280 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.16 e Å3
Crystal data top
C25H23NO5V = 2164.18 (15) Å3
Mr = 417.44Z = 4
Monoclinic, P21/cMo Kα radiation
a = 18.3791 (7) ŵ = 0.09 mm1
b = 15.2466 (6) ÅT = 298 K
c = 7.7235 (3) Å0.20 × 0.15 × 0.10 mm
β = 90.514 (2)°
Data collection top
Bruker SMART APEXII area-detector
diffractometer
3614 reflections with I > 2σ(I)
20989 measured reflectionsRint = 0.036
5478 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.159H-atom parameters constrained
S = 0.96Δρmax = 0.24 e Å3
5478 reflectionsΔρmin = 0.16 e Å3
280 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O20.70764 (6)0.09270 (7)0.44631 (14)0.0483 (3)
O30.86302 (8)0.14409 (10)0.4169 (2)0.0700 (4)
O10.73699 (8)0.14734 (9)0.68811 (17)0.0632 (4)
O40.79918 (8)0.10360 (10)0.18406 (17)0.0667 (4)
N10.65661 (8)0.03750 (9)0.35751 (17)0.0434 (3)
O50.91863 (8)0.05907 (11)0.3191 (2)0.0835 (5)
C80.76235 (9)0.04489 (11)0.4528 (2)0.0456 (4)
C200.64690 (9)0.06345 (11)0.1815 (2)0.0439 (4)
C70.68195 (9)0.05364 (10)0.3918 (2)0.0426 (4)
H70.68060.08660.28290.051*
C250.66789 (12)0.14637 (12)0.1260 (2)0.0574 (5)
H250.69400.18310.19980.069*
C60.63369 (10)0.09929 (10)0.5208 (2)0.0456 (4)
C120.77738 (9)0.05377 (11)0.4147 (2)0.0463 (4)
H120.78990.06100.29240.056*
C50.55870 (10)0.09931 (11)0.4991 (2)0.0512 (4)
H50.53800.06700.40920.061*
C10.66301 (11)0.14728 (11)0.6568 (2)0.0532 (4)
C130.83338 (11)0.09872 (11)0.5257 (2)0.0549 (4)
C100.81416 (10)0.10354 (11)0.3522 (2)0.0503 (4)
C90.76871 (11)0.06416 (13)0.6460 (2)0.0565 (5)
H9A0.81960.06420.68010.068*
H9B0.74440.01830.71040.068*
C140.90540 (11)0.10027 (12)0.4729 (3)0.0640 (5)
C210.60827 (10)0.00969 (12)0.0687 (2)0.0529 (4)
H210.59340.04570.10440.064*
C40.51420 (12)0.14634 (13)0.6085 (3)0.0635 (5)
H40.46400.14520.59290.076*
C240.64973 (14)0.17402 (15)0.0393 (3)0.0731 (6)
H240.66330.22990.07490.088*
C220.59180 (12)0.03867 (15)0.0977 (2)0.0650 (5)
H220.56660.00200.17350.078*
C180.81593 (14)0.13951 (14)0.6799 (3)0.0714 (6)
H180.76780.13980.71620.086*
C230.61227 (14)0.12089 (16)0.1515 (3)0.0734 (6)
H230.60080.14010.26270.088*
C20.61876 (13)0.19588 (13)0.7667 (3)0.0679 (6)
H20.63910.22850.85650.082*
C30.54475 (14)0.19499 (15)0.7408 (3)0.0732 (6)
H30.51490.22750.81330.088*
C150.95828 (13)0.14082 (15)0.5751 (4)0.0845 (8)
H151.00660.14130.54000.101*
C170.86869 (17)0.17994 (18)0.7813 (4)0.0917 (8)
H170.85620.20670.88510.110*
C110.84555 (15)0.15710 (19)0.0768 (3)0.0894 (8)
H11A0.83010.15230.04190.134*
H11B0.84230.21720.11310.134*
H11C0.89500.13740.08810.134*
C160.93901 (18)0.18001 (17)0.7273 (4)0.0971 (9)
H160.97450.20710.79510.116*
C190.98762 (16)0.0700 (2)0.2409 (5)0.1113 (11)
H19A0.98880.03790.13400.167*
H19B1.02490.04830.31750.167*
H19C0.99580.13110.21830.167*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O20.0549 (7)0.0414 (6)0.0488 (6)0.0020 (5)0.0010 (5)0.0077 (5)
O30.0567 (8)0.0680 (9)0.0852 (10)0.0145 (7)0.0006 (7)0.0109 (7)
O10.0704 (9)0.0569 (8)0.0621 (8)0.0013 (6)0.0071 (6)0.0185 (6)
O40.0702 (9)0.0720 (9)0.0579 (8)0.0221 (7)0.0024 (6)0.0124 (6)
N10.0489 (8)0.0390 (7)0.0423 (7)0.0010 (6)0.0015 (6)0.0005 (5)
O50.0618 (10)0.0805 (11)0.1085 (13)0.0042 (8)0.0218 (9)0.0086 (9)
C80.0499 (9)0.0412 (8)0.0457 (8)0.0014 (7)0.0021 (7)0.0010 (7)
C200.0470 (9)0.0433 (8)0.0416 (8)0.0052 (7)0.0068 (7)0.0026 (6)
C70.0498 (9)0.0373 (8)0.0406 (7)0.0020 (6)0.0002 (6)0.0001 (6)
C250.0795 (13)0.0439 (9)0.0490 (9)0.0004 (9)0.0094 (9)0.0005 (7)
C60.0564 (10)0.0357 (8)0.0448 (8)0.0012 (7)0.0018 (7)0.0013 (6)
C120.0505 (10)0.0412 (8)0.0472 (8)0.0001 (7)0.0017 (7)0.0032 (7)
C50.0580 (11)0.0434 (9)0.0522 (9)0.0029 (8)0.0040 (8)0.0024 (7)
C10.0644 (12)0.0420 (9)0.0532 (9)0.0008 (8)0.0001 (8)0.0041 (7)
C130.0583 (11)0.0423 (9)0.0641 (11)0.0051 (8)0.0055 (9)0.0011 (8)
C100.0480 (10)0.0397 (8)0.0634 (10)0.0003 (7)0.0004 (8)0.0033 (7)
C90.0599 (11)0.0585 (11)0.0510 (9)0.0046 (9)0.0081 (8)0.0068 (8)
C140.0602 (12)0.0460 (10)0.0859 (14)0.0023 (9)0.0037 (10)0.0049 (10)
C210.0557 (11)0.0529 (10)0.0502 (9)0.0014 (8)0.0035 (8)0.0028 (8)
C40.0636 (12)0.0572 (11)0.0698 (12)0.0112 (9)0.0121 (10)0.0003 (9)
C240.1051 (18)0.0593 (12)0.0550 (11)0.0036 (12)0.0132 (11)0.0155 (9)
C220.0696 (13)0.0760 (13)0.0493 (10)0.0074 (11)0.0063 (9)0.0037 (9)
C180.0812 (15)0.0627 (12)0.0703 (13)0.0092 (11)0.0067 (11)0.0155 (10)
C230.0920 (16)0.0829 (15)0.0454 (10)0.0132 (13)0.0023 (10)0.0154 (10)
C20.0915 (16)0.0515 (11)0.0610 (11)0.0048 (10)0.0037 (11)0.0170 (9)
C30.0824 (16)0.0615 (12)0.0761 (14)0.0158 (11)0.0176 (12)0.0134 (11)
C150.0590 (13)0.0600 (13)0.134 (2)0.0097 (10)0.0191 (14)0.0133 (14)
C170.106 (2)0.0773 (16)0.0917 (17)0.0128 (15)0.0253 (15)0.0245 (13)
C110.0917 (18)0.0971 (18)0.0797 (15)0.0306 (15)0.0149 (13)0.0223 (14)
C160.098 (2)0.0653 (15)0.127 (2)0.0177 (14)0.0437 (18)0.0097 (16)
C190.0838 (19)0.0871 (19)0.164 (3)0.0004 (15)0.0523 (19)0.0032 (19)
Geometric parameters (Å, º) top
O2—N11.4306 (17)C13—C141.389 (3)
O2—C121.436 (2)C9—H9A0.9700
O3—C101.196 (2)C9—H9B0.9700
O1—C11.379 (2)C14—C151.391 (3)
O1—C91.435 (2)C21—C221.390 (2)
O4—C101.325 (2)C21—H210.9300
O4—C111.446 (3)C4—C31.378 (3)
N1—C201.426 (2)C4—H40.9300
N1—C71.489 (2)C24—C231.368 (3)
O5—C141.368 (3)C24—H240.9300
O5—C191.419 (3)C22—C231.374 (3)
C8—C101.524 (2)C22—H220.9300
C8—C91.524 (2)C18—C171.386 (3)
C8—C71.553 (2)C18—H180.9300
C8—C121.558 (2)C23—H230.9300
C20—C211.387 (2)C2—C31.373 (3)
C20—C251.391 (2)C2—H20.9300
C7—C61.510 (2)C3—H30.9300
C7—H70.9800C15—C161.369 (4)
C25—C241.382 (3)C15—H150.9300
C25—H250.9300C17—C161.361 (4)
C6—C11.385 (2)C17—H170.9300
C6—C51.387 (3)C11—H11A0.9600
C12—C131.500 (2)C11—H11B0.9600
C12—H120.9800C11—H11C0.9600
C5—C41.382 (3)C16—H160.9300
C5—H50.9300C19—H19A0.9600
C1—C21.394 (3)C19—H19B0.9600
C13—C181.384 (3)C19—H19C0.9600
N1—O2—C12104.93 (11)C8—C9—H9B109.3
C1—O1—C9111.21 (13)H9A—C9—H9B108.0
C10—O4—C11116.32 (16)O5—C14—C15124.6 (2)
C20—N1—O2111.71 (12)O5—C14—C13115.12 (18)
C20—N1—C7117.71 (12)C15—C14—C13120.3 (2)
O2—N1—C7105.14 (11)C20—C21—C22119.92 (18)
C14—O5—C19118.8 (2)C20—C21—H21120.0
C10—C8—C9110.07 (14)C22—C21—H21120.0
C10—C8—C7113.09 (13)C3—C4—C5119.5 (2)
C9—C8—C7110.18 (14)C3—C4—H4120.2
C10—C8—C12110.94 (14)C5—C4—H4120.2
C9—C8—C12111.05 (14)C23—C24—C25121.4 (2)
C7—C8—C12101.27 (12)C23—C24—H24119.3
C21—C20—C25119.05 (15)C25—C24—H24119.3
C21—C20—N1119.60 (15)C23—C22—C21120.78 (19)
C25—C20—N1120.90 (15)C23—C22—H22119.6
N1—C7—C6111.29 (13)C21—C22—H22119.6
N1—C7—C8105.62 (12)C13—C18—C17121.3 (2)
C6—C7—C8113.73 (13)C13—C18—H18119.3
N1—C7—H7108.7C17—C18—H18119.3
C6—C7—H7108.7C24—C23—C22119.11 (18)
C8—C7—H7108.7C24—C23—H23120.4
C24—C25—C20119.77 (18)C22—C23—H23120.4
C24—C25—H25120.1C3—C2—C1119.25 (19)
C20—C25—H25120.1C3—C2—H2120.4
C1—C6—C5118.08 (16)C1—C2—H2120.4
C1—C6—C7121.14 (16)C2—C3—C4120.65 (19)
C5—C6—C7120.63 (15)C2—C3—H3119.7
O2—C12—C13108.84 (14)C4—C3—H3119.7
O2—C12—C8101.94 (13)C16—C15—C14119.8 (3)
C13—C12—C8117.07 (14)C16—C15—H15120.1
O2—C12—H12109.5C14—C15—H15120.1
C13—C12—H12109.5C16—C17—C18119.3 (3)
C8—C12—H12109.5C16—C17—H17120.4
C4—C5—C6121.29 (18)C18—C17—H17120.4
C4—C5—H5119.4O4—C11—H11A109.5
C6—C5—H5119.4O4—C11—H11B109.5
O1—C1—C6120.62 (16)H11A—C11—H11B109.5
O1—C1—C2118.22 (16)O4—C11—H11C109.5
C6—C1—C2121.16 (18)H11A—C11—H11C109.5
C18—C13—C14118.28 (19)H11B—C11—H11C109.5
C18—C13—C12122.30 (19)C17—C16—C15121.1 (2)
C14—C13—C12119.42 (18)C17—C16—H16119.5
O3—C10—O4123.87 (18)C15—C16—H16119.5
O3—C10—C8124.12 (17)O5—C19—H19A109.5
O4—C10—C8112.00 (14)O5—C19—H19B109.5
O1—C9—C8111.39 (14)H19A—C19—H19B109.5
O1—C9—H9A109.3O5—C19—H19C109.5
C8—C9—H9A109.3H19A—C19—H19C109.5
O1—C9—H9B109.3H19B—C19—H19C109.5
C12—O2—N1—C2087.53 (14)C8—C12—C13—C1888.9 (2)
C12—O2—N1—C741.24 (15)O2—C12—C13—C14153.74 (16)
O2—N1—C20—C21170.08 (14)C8—C12—C13—C1491.4 (2)
C7—N1—C20—C2148.3 (2)C11—O4—C10—O30.4 (3)
O2—N1—C20—C2517.7 (2)C11—O4—C10—C8179.75 (18)
C7—N1—C20—C25139.49 (17)C9—C8—C10—O314.9 (2)
C20—N1—C7—C6129.01 (15)C7—C8—C10—O3138.62 (17)
O2—N1—C7—C6105.90 (14)C12—C8—C10—O3108.40 (19)
C20—N1—C7—C8107.13 (15)C9—C8—C10—O4165.77 (15)
O2—N1—C7—C817.97 (15)C7—C8—C10—O442.1 (2)
C10—C8—C7—N1128.15 (14)C12—C8—C10—O470.92 (18)
C9—C8—C7—N1108.20 (15)C1—O1—C9—C864.7 (2)
C12—C8—C7—N19.40 (15)C10—C8—C9—O171.94 (19)
C10—C8—C7—C6109.53 (16)C7—C8—C9—O153.44 (19)
C9—C8—C7—C614.11 (19)C12—C8—C9—O1164.82 (15)
C12—C8—C7—C6131.72 (14)C19—O5—C14—C1511.3 (3)
C21—C20—C25—C240.3 (3)C19—O5—C14—C13169.5 (2)
N1—C20—C25—C24171.90 (18)C18—C13—C14—O5179.71 (18)
N1—C7—C6—C1134.52 (15)C12—C13—C14—O50.0 (3)
C8—C7—C6—C115.4 (2)C18—C13—C14—C151.0 (3)
N1—C7—C6—C550.02 (19)C12—C13—C14—C15179.30 (18)
C8—C7—C6—C5169.15 (14)C25—C20—C21—C220.7 (3)
N1—O2—C12—C13171.11 (12)N1—C20—C21—C22173.05 (17)
N1—O2—C12—C846.80 (14)C6—C5—C4—C30.7 (3)
C10—C8—C12—O2153.58 (13)C20—C25—C24—C231.0 (3)
C9—C8—C12—O283.68 (16)C20—C21—C22—C231.1 (3)
C7—C8—C12—O233.30 (14)C14—C13—C18—C170.9 (3)
C10—C8—C12—C1387.82 (18)C12—C13—C18—C17179.4 (2)
C9—C8—C12—C1334.9 (2)C25—C24—C23—C220.6 (4)
C7—C8—C12—C13151.90 (15)C21—C22—C23—C240.5 (3)
C1—C6—C5—C40.6 (3)O1—C1—C2—C3178.34 (19)
C7—C6—C5—C4174.99 (16)C6—C1—C2—C31.0 (3)
C9—O1—C1—C633.7 (2)C1—C2—C3—C40.4 (3)
C9—O1—C1—C2145.58 (18)C5—C4—C3—C21.2 (3)
C5—C6—C1—O1177.86 (15)O5—C14—C15—C16179.8 (2)
C7—C6—C1—O16.6 (2)C13—C14—C15—C160.6 (3)
C5—C6—C1—C21.4 (3)C13—C18—C17—C160.5 (4)
C7—C6—C1—C2174.15 (16)C18—C17—C16—C150.1 (4)
O2—C12—C13—C1826.0 (2)C14—C15—C16—C170.1 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···O40.982.332.803 (2)109
C15—H15···O3i0.932.423.285 (3)155
Symmetry code: (i) x+2, y, z+1.

Experimental details

Crystal data
Chemical formulaC25H23NO5
Mr417.44
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)18.3791 (7), 15.2466 (6), 7.7235 (3)
β (°) 90.514 (2)
V3)2164.18 (15)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.20 × 0.15 × 0.10
Data collection
DiffractometerBruker SMART APEXII area-detector
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
20989, 5478, 3614
Rint0.036
(sin θ/λ)max1)0.674
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.159, 0.96
No. of reflections5478
No. of parameters280
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.16

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···O40.982.332.803 (2)108.8
C15—H15···O3i0.932.423.285 (3)155.1
Symmetry code: (i) x+2, y, z+1.
 

Acknowledgements

The authors acknowledge the Technology Business Incubator (TBI), CAS in Crystallography, University of Madras, Chennai 600 025, India, for the data collection.

References

First citationBeddoes, R. L., Dalton, L., Joule, T. A., Mills, O. S., Street, J. D. & Watt, C. I. F. (1986). J. Chem. Soc. Perkin Trans. 2, pp. 787–797.  CSD CrossRef Web of Science Google Scholar
First citationBruker (2008). APEX2 and SAINT. Bruker AXS Ins., Madison, Wisconsin, USA.  Google Scholar
First citationCaine, B. (1993). Science, 260, 1814–1816.  CrossRef CAS PubMed Web of Science Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationEddington, N. D., Cox, D. S., Roberts, R. R., Butcher, R. J., Edafiogho, I. O., Stables, J. P., Cooke, N., Goodwin, A. M., Smith, C. A. & Scott, K. R. (2002). Eur. J. Med. Chem. 37, 635–648.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationKanchanadevi, J., Anbalagan, G., Srinivasan, J., Bakthadoss, M. & Manivannan, V. (2011). Acta Cryst. E67, o1989.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKashiwada, Y., Yamazaki, K., Ikeshiro, Y., Yamagishi, T., Fujioka, T., Mihashi, K., Mizuki, K., Cosentino, L. M., Fowke, K., Natschke, S. L. M. & Lee, K. H. (2001). Tetrahedron, 57, 1559–1563.  Web of Science CSD CrossRef CAS Google Scholar
First citationMullen, G. B., DeCory, T. R., Mitchell, J. T., Allen, S. D., Kinsolving, C. R. & Georgiev, V. S. (1988). J. Med. Chem. 31, 2008–2014.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSwaminathan, K., Sethusankar, K., Srinivasan, J. & Bakthadoss, M. (2012). Acta Cryst. E68, o283–o284.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds