Experimental
Crystal data
[Li(C5H3N2O2)(H2O)] Mr = 148.05 Orthorhombic, P c a 21 a = 24.433 (5) Å b = 4.7861 (10) Å c = 5.6385 (11) Å V = 659.4 (2) Å3 Z = 4 Mo Kα radiation μ = 0.12 mm−1 T = 293 K 0.35 × 0.18 × 0.13 mm
|
Data collection
Kuma KM-4 four-cricle diffractometer Absorption correction: analytical (CrysAlis RED; Oxford Diffraction, 2008 ) Tmin = 0.972, Tmax = 0.995 1586 measured reflections 1056 independent reflections 813 reflections with I > 2σ(I) Rint = 0.078 3 standard reflections every 200 reflections intensity decay: 4.4%
|
Li1—O1 | 2.080 (6) | Li1—N1 | 2.190 (6) | Li1—O3 | 2.013 (6) | Li1—O3i | 2.032 (5) | Li1—O1i | 2.237 (6) | Symmetry code: (i) . | |
D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A | O3—H31⋯O1ii | 0.83 (5) | 1.96 (5) | 2.786 (3) | 176 (5) | O3—H32⋯O2iii | 0.94 (4) | 1.75 (4) | 2.672 (3) | 167 (4) | Symmetry codes: (ii) x, y-1, z; (iii) . | |
Data collection: KM-4 Software (Kuma, 1996
); cell refinement: KM-4 Software; data reduction: DATAPROC (Kuma, 2001
); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008
); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008
); molecular graphics: SHELXTL (Sheldrick, 2008
); software used to prepare material for publication: SHELXTL.
Supporting information
50 mL of a solution containing 1 mmol of LiNO3 and an excess of pyrazine-2-carboxylic acid dihydrate to mantain pH ca 5.1 was boiled under reflux with stirring for 10 h, then left to crystallise at room temperature. After a couple of days single-crystal blocks of the title compound were detected among polycrystalline material. They were washed with methanol and dried in the air.
Water hydrogen atoms were located in a difference map and refined isotropically while H atoms attached to pyrazine-ring C atoms were positioned at calculated positions and were treated as riding on the parent atoms, with C—H=0.93 Å and Uiso(H)=1.2Ueq(C).
Structure description
top # Used for convenience to store draft or replaced versions # of the abstract, comment etc. # Its contents will not be output
Data collection: KM-4 Software (Kuma, 1996); cell refinement: KM-4 Software (Kuma, 1996); data reduction: DATAPROC (Kuma, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).
Poly[µ
2-aqua-µ
2-(pyrazine-2-carboxylato)-lithium]
top Crystal data top [Li(C5H3N2O2)(H2O)] | F(000) = 304 |
Mr = 148.05 | Dx = 1.491 Mg m−3 |
Orthorhombic, Pca21 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2c -2ac | Cell parameters from 25 reflections |
a = 24.433 (5) Å | θ = 6–15° |
b = 4.7861 (10) Å | µ = 0.12 mm−1 |
c = 5.6385 (11) Å | T = 293 K |
V = 659.4 (2) Å3 | Blocks, colourless |
Z = 4 | 0.35 × 0.18 × 0.13 mm |
Data collection top Kuma KM-4 four-cricle diffractometer | 813 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.078 |
Graphite monochromator | θmax = 30.1°, θmin = 1.7° |
profile data from ω/2θ scans | h = −27→34 |
Absorption correction: analytical (CrysAlis RED; Oxford Diffraction, 2008) | k = 0→6 |
Tmin = 0.972, Tmax = 0.995 | l = 0→7 |
1586 measured reflections | 3 standard reflections every 200 reflections |
1056 independent reflections | intensity decay: 4.4% |
Refinement top Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.041 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.116 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.09 | w = 1/[σ2(Fo2) + (0.0244P)2 + 0.4211P] where P = (Fo2 + 2Fc2)/3 |
1056 reflections | (Δ/σ)max < 0.001 |
108 parameters | Δρmax = 0.31 e Å−3 |
1 restraint | Δρmin = −0.30 e Å−3 |
Crystal data top [Li(C5H3N2O2)(H2O)] | V = 659.4 (2) Å3 |
Mr = 148.05 | Z = 4 |
Orthorhombic, Pca21 | Mo Kα radiation |
a = 24.433 (5) Å | µ = 0.12 mm−1 |
b = 4.7861 (10) Å | T = 293 K |
c = 5.6385 (11) Å | 0.35 × 0.18 × 0.13 mm |
Data collection top Kuma KM-4 four-cricle diffractometer | 813 reflections with I > 2σ(I) |
Absorption correction: analytical (CrysAlis RED; Oxford Diffraction, 2008) | Rint = 0.078 |
Tmin = 0.972, Tmax = 0.995 | 3 standard reflections every 200 reflections |
1586 measured reflections | intensity decay: 4.4% |
1056 independent reflections | |
Refinement top R[F2 > 2σ(F2)] = 0.041 | 1 restraint |
wR(F2) = 0.116 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.09 | Δρmax = 0.31 e Å−3 |
1056 reflections | Δρmin = −0.30 e Å−3 |
108 parameters | |
Special details top Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | |
O1 | 0.28627 (9) | 1.1874 (4) | 0.7415 (4) | 0.0324 (4) | |
O2 | 0.35150 (10) | 1.3781 (5) | 0.5168 (5) | 0.0480 (7) | |
N1 | 0.36091 (10) | 0.8665 (5) | 0.9601 (5) | 0.0320 (5) | |
C2 | 0.37639 (11) | 1.0110 (5) | 0.7680 (5) | 0.0258 (5) | |
C7 | 0.33500 (11) | 1.2093 (5) | 0.6658 (5) | 0.0281 (5) | |
C5 | 0.44910 (14) | 0.6601 (7) | 0.9486 (7) | 0.0453 (8) | |
H5 | 0.4735 | 0.5346 | 1.0167 | 0.054* | |
N2 | 0.46487 (12) | 0.8025 (6) | 0.7586 (6) | 0.0462 (7) | |
C6 | 0.39802 (14) | 0.6901 (7) | 1.0492 (6) | 0.0414 (7) | |
H6 | 0.3892 | 0.5851 | 1.1825 | 0.050* | |
C3 | 0.42814 (12) | 0.9788 (7) | 0.6705 (6) | 0.0364 (6) | |
H3 | 0.4375 | 1.0848 | 0.5383 | 0.044* | |
Li1 | 0.2739 (2) | 0.9324 (11) | 1.0354 (10) | 0.0338 (10) | |
O3 | 0.22904 (9) | 0.6809 (4) | 0.8254 (4) | 0.0282 (4) | |
H31 | 0.247 (3) | 0.538 (8) | 0.796 (9) | 0.051 (11)* | |
H32 | 0.1986 (18) | 0.599 (8) | 0.901 (7) | 0.046 (11)* | |
Atomic displacement parameters (Å2) top | U11 | U22 | U33 | U12 | U13 | U23 |
O1 | 0.0283 (8) | 0.0332 (9) | 0.0358 (10) | 0.0041 (8) | 0.0052 (9) | 0.0123 (10) |
O2 | 0.0369 (11) | 0.0567 (13) | 0.0504 (15) | 0.0051 (10) | 0.0081 (11) | 0.0333 (12) |
N1 | 0.0324 (12) | 0.0371 (11) | 0.0265 (11) | 0.0009 (10) | 0.0033 (11) | 0.0109 (10) |
C2 | 0.0244 (10) | 0.0276 (10) | 0.0254 (11) | −0.0016 (10) | 0.0010 (10) | 0.0055 (10) |
C7 | 0.0288 (11) | 0.0282 (11) | 0.0274 (12) | 0.0006 (10) | 0.0000 (11) | 0.0069 (12) |
C5 | 0.0361 (16) | 0.0481 (17) | 0.0517 (19) | 0.0118 (14) | −0.0062 (17) | 0.0153 (16) |
N2 | 0.0333 (13) | 0.0540 (16) | 0.0514 (17) | 0.0105 (12) | 0.0064 (13) | 0.0105 (16) |
C6 | 0.0388 (16) | 0.0493 (17) | 0.0362 (15) | 0.0036 (13) | −0.0019 (14) | 0.0205 (15) |
C3 | 0.0311 (13) | 0.0433 (15) | 0.0347 (14) | 0.0014 (12) | 0.0098 (13) | 0.0093 (14) |
Li1 | 0.036 (3) | 0.040 (2) | 0.026 (2) | −0.002 (2) | 0.001 (2) | 0.007 (2) |
O3 | 0.0328 (9) | 0.0287 (9) | 0.0230 (8) | −0.0004 (8) | 0.0014 (8) | 0.0075 (9) |
Geometric parameters (Å, º) top O1—C7 | 1.269 (4) | N2—C3 | 1.328 (4) |
Li1—O1 | 2.080 (6) | C6—H6 | 0.9300 |
O1—Li1i | 2.237 (6) | C3—H3 | 0.9300 |
O2—C7 | 1.233 (4) | Li1—O3 | 2.013 (6) |
N1—C6 | 1.337 (4) | Li1—O3ii | 2.032 (5) |
N1—C2 | 1.340 (4) | Li1—O1ii | 2.237 (6) |
Li1—N1 | 2.190 (6) | Li1—Li1i | 3.052 (4) |
C2—C3 | 1.387 (4) | Li1—Li1ii | 3.052 (4) |
C2—C7 | 1.502 (4) | O3—Li1i | 2.032 (5) |
C5—N2 | 1.327 (5) | O3—H31 | 0.83 (5) |
C5—C6 | 1.379 (5) | O3—H32 | 0.94 (4) |
C5—H5 | 0.9300 | | |
| | | |
C7—O1—Li1 | 116.9 (2) | O3—Li1—N1 | 109.2 (3) |
C7—O1—Li1i | 119.2 (2) | O3ii—Li1—N1 | 96.0 (2) |
Li1—O1—Li1i | 89.92 (19) | O1—Li1—N1 | 77.8 (2) |
C6—N1—C2 | 116.0 (3) | O3—Li1—O1ii | 105.9 (3) |
C6—N1—Li1 | 132.6 (3) | O3ii—Li1—O1ii | 83.2 (2) |
C2—N1—Li1 | 110.9 (2) | O1—Li1—O1ii | 100.9 (2) |
N1—C2—C3 | 121.4 (3) | N1—Li1—O1ii | 144.8 (3) |
N1—C2—C7 | 116.5 (2) | O3—Li1—Li1i | 41.25 (17) |
C3—C2—C7 | 122.1 (2) | O3ii—Li1—Li1i | 136.9 (2) |
O2—C7—O1 | 126.1 (3) | O1—Li1—Li1i | 47.12 (13) |
O2—C7—C2 | 117.1 (3) | N1—Li1—Li1i | 101.1 (2) |
O1—C7—C2 | 116.8 (2) | O1ii—Li1—Li1i | 103.2 (3) |
N2—C5—C6 | 122.8 (3) | O3—Li1—Li1ii | 109.5 (3) |
N2—C5—H5 | 118.6 | O3ii—Li1—Li1ii | 40.79 (14) |
C6—C5—H5 | 118.6 | O1—Li1—Li1ii | 142.33 (19) |
C5—N2—C3 | 115.6 (3) | N1—Li1—Li1ii | 123.4 (3) |
N1—C6—C5 | 121.7 (3) | O1ii—Li1—Li1ii | 42.96 (17) |
N1—C6—H6 | 119.2 | Li1i—Li1—Li1ii | 135.0 (4) |
C5—C6—H6 | 119.2 | Li1—O3—Li1i | 98.0 (2) |
N2—C3—C2 | 122.5 (3) | Li1—O3—H31 | 109 (4) |
N2—C3—H3 | 118.7 | Li1i—O3—H31 | 110 (3) |
C2—C3—H3 | 118.7 | Li1—O3—H32 | 114 (3) |
O3—Li1—O3ii | 95.7 (2) | Li1i—O3—H32 | 126 (2) |
O3—Li1—O1 | 87.8 (2) | H31—O3—H32 | 100 (4) |
O3ii—Li1—O1 | 173.7 (3) | | |
Symmetry codes: (i) −x+1/2, y, z−1/2; (ii) −x+1/2, y, z+1/2. |
Hydrogen-bond geometry (Å, º) top D—H···A | D—H | H···A | D···A | D—H···A |
O3—H31···O1iii | 0.83 (5) | 1.96 (5) | 2.786 (3) | 176 (5) |
O3—H32···O2iv | 0.94 (4) | 1.75 (4) | 2.672 (3) | 167 (4) |
Symmetry codes: (iii) x, y−1, z; (iv) −x+1/2, y−1, z+1/2. |
Experimental details
Crystal data |
Chemical formula | [Li(C5H3N2O2)(H2O)] |
Mr | 148.05 |
Crystal system, space group | Orthorhombic, Pca21 |
Temperature (K) | 293 |
a, b, c (Å) | 24.433 (5), 4.7861 (10), 5.6385 (11) |
V (Å3) | 659.4 (2) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.12 |
Crystal size (mm) | 0.35 × 0.18 × 0.13 |
|
Data collection |
Diffractometer | Kuma KM-4 four-cricle |
Absorption correction | Analytical (CrysAlis RED; Oxford Diffraction, 2008) |
Tmin, Tmax | 0.972, 0.995 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 1586, 1056, 813 |
Rint | 0.078 |
(sin θ/λ)max (Å−1) | 0.705 |
|
Refinement |
R[F2 > 2σ(F2)], wR(F2), S | 0.041, 0.116, 1.09 |
No. of reflections | 1056 |
No. of parameters | 108 |
No. of restraints | 1 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.31, −0.30 |
Selected bond lengths (Å) topLi1—O1 | 2.080 (6) | Li1—O3i | 2.032 (5) |
Li1—N1 | 2.190 (6) | Li1—O1i | 2.237 (6) |
Li1—O3 | 2.013 (6) | | |
Symmetry code: (i) −x+1/2, y, z+1/2. |
Hydrogen-bond geometry (Å, º) top D—H···A | D—H | H···A | D···A | D—H···A |
O3—H31···O1ii | 0.83 (5) | 1.96 (5) | 2.786 (3) | 176 (5) |
O3—H32···O2iii | 0.94 (4) | 1.75 (4) | 2.672 (3) | 167 (4) |
Symmetry codes: (ii) x, y−1, z; (iii) −x+1/2, y−1, z+1/2. |
References
Kuma (1996). KM-4 Software. Kuma Diffraction Ltd, Wrocław, Poland. Google Scholar
Kuma (2001). DATAPROC. Kuma Diffraction Ltd, Wrocław, Poland. Google Scholar
Oxford Diffraction (2008). CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Starosta, W. & Leciejewicz, J. (2010). Acta Cryst. E66, m744–m745. Web of Science CSD CrossRef IUCr Journals Google Scholar
Starosta, W. & Leciejewicz, J. (2011a). Acta Cryst. E67, m1000–m1001. Web of Science CSD CrossRef IUCr Journals Google Scholar
Starosta, W. & Leciejewicz, J. (2011b). Acta Cryst. E67, m202. Web of Science CSD CrossRef IUCr Journals Google Scholar
Starosta, W. & Leciejewicz, J. (2011c). Acta Cryst. E67, m425–m426. Web of Science CSD CrossRef IUCr Journals Google Scholar
Starosta, W. & Leciejewicz, J. (2011d). Acta Cryst. E67, m818. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
 | CRYSTALLOGRAPHIC COMMUNICATIONS |
ISSN: 2056-9890
Open

access
The structure of the title complex is built of LiI ions, each coordinated by ligand with N1,O1 where O atom acts as bidentate and bridging to symmetry related Li1 and Li1i ions, whereas the O2 atom remains chelating inactive. The metal ions are also bridged by coordinated water O3 atom forming a Li1—O1—Li1i—O3—Li1 connectivity with Li1—Li1i distance of 3.052 (4) Å, (Fig.1). The observed bonding pathways –Li—Ocarb—Li- and –Li—Oaqua—Li- give rise to molecular ribbon which propagates in the unit cell c direction (Fig. 2). The Li1 coordination polyhedron is distorted trigonal bipyramid (Fig. 1, Table 1) with an equatorial plane composed of O1, N1i and O3i; the Li1 ion is 0.0405 (2) Å out of the plane, O1 and O3 atoms are at the axial positions. The pyrazine ring is planar with r.m.s. of 0.0019 (1) Å; the dihedral angle between the pyrazine and the carboxylato group (C7/O1/O2) is 12.3 (1)°. Hydrogen bonds are realised through coordinated aqua O3 and carboxylato O2 atoms (Table 2, Fig. 2). Weak C—H···N interactions of 3.518 (5) Å and 3.651 (5) Å are observed. The structures of LiI complexes with diazine monocarboxylate ligands show a variety of polymeric patterns. The structure of a complex with 3-aminopyrazine-2-carboxylato ligand shows a catenated pattern (Starosta & Leciejewicz, 2010) while the structure of a complex with 5-methylpyrazine-2-carboxylato ligand is composed of molecular columns (Starosta & Leciejewicz, 2011a). Molecular layers were reported in the structure of a complex with pyrimidine-2-carboxylato and nitrato ligands (Starosta & Leciejewicz, 2011d) and in the structure of a complex with pyridazine-4-carboxylato ligand (Starosta & Leciejewicz, 2011c). On the other hand, the structure of a complex with pyridazine-3-carboxylato ligand is built of monomeric molecules (Starosta & Leciejewicz, 2011b).