metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di-μ-bromido-bis­­[benz­yl(di­ethyl ether)magnesium]

aUniversity of Illinois at Urbana-Champaign, School of Chemical Sciences, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
*Correspondence e-mail: girolami@scs.illinois.edu

(Received 1 June 2012; accepted 5 June 2012; online 20 June 2012)

The title benzyl Grignard reagent, [Mg2Br2(C7H7)2(C4H10O)2], was obtained by reaction of benzyl bromide with magnesium in diethyl ether, followed by crystallization from toluene. The asymmetric unit comprises one half-mol­ecule, the structural dimeric unit being generated by inversion symmetry with an Mg⋯Mg distance of 3.469 (2) Å. The Mg(II) atom exhibits a distorted tetrahedral coordination geometry. The crystal packing is defined by van der Waals inter­actions only.

Related literature

For the structures of some other diethyl ether adducts of Grignard reagents, see: Stucky & Rundle (1964[Stucky, G. & Rundle, R. E. (1964). J. Am. Chem. Soc. 86, 4825-4830.]); Guggenberger & Rundle (1968[Guggenberger, L. J. & Rundle, R. E. (1968). J. Am. Chem. Soc. 90, 5375—5378.]); Engelhardt et al. (1988[Engelhardt, L. M., Harvey, S., Raston, C. L. & White, A. H. (1988). J. Organomet. Chem. 341, 39—51.]); Antolini et al. (2003[Antolini, F., Hitchcock, P. B., Lappert, M. F. & Wei, X.-H. (2003). Organometallics, 22, 2505—2516.]); Avent et al. (2004[Avent, A. G., Caro, C. F., Hitchcock, P. B., Lappert, M. F., Li, Z. & Wei, X.-H. (2004). Dalton Trans. pp. 1567-1577.]). For the structures of some tetra­hydro­furan and diisopropyl ether adducts of Grignard reagents, see: Maurice (1969[Maurice, V. J. (1969). J. Organomet. Chem. 20, 1-10.]); Spek et al. (1974[Spek, A. L., Voorbergen, P., Schat, G., Blomberg, C. & Bickelhaupt, F. J. (1974). J. Organomet. Chem. 77, 147-151.]); Krieck et al. (2009[Krieck, S., Görls, H., Yu, L., Reiher, M. & Westerhausen, M. (2009). J. Am. Chem. Soc. 131, 2977—2985.]).

[Scheme 1]

Experimental

Crystal data
  • [Mg2Br2(C7H7)2(C4H10O)2]

  • Mr = 538.93

  • Monoclinic, P 21 /c

  • a = 8.0657 (4) Å

  • b = 12.4288 (6) Å

  • c = 13.1840 (6) Å

  • β = 96.370 (3)°

  • V = 1313.50 (11) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 3.15 mm−1

  • T = 193 K

  • 0.38 × 0.27 × 0.23 mm

Data collection
  • Bruker Platform APEXII CCD diffractometer

  • Absorption correction: integration (SADABS; Bruker, 2007[Bruker (2007). SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.]) Tmin = 0.440, Tmax = 0.635

  • 22801 measured reflections

  • 2396 independent reflections

  • 1808 reflections with I > 2σ(I)

  • Rint = 0.078

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.073

  • S = 1.04

  • 2396 reflections

  • 129 parameters

  • H-atom parameters not refined

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.36 e Å−3

Table 1
Selected bond lengths (Å)

Mg1—O1 2.0006 (18)
Mg1—C7 2.115 (3)
Mg1—Br1i 2.5448 (9)
Mg1—Br1 2.5659 (9)
Symmetry code: (i) -x+2, -y+1, -z.

Data collection: APEX2 (Bruker, 2010[Bruker (2010). APEX2. Bruker AXS, Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). SAINT, XCIF and XPREP. Bruker AXS, Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and XPREP (Bruker, 2005[Bruker (2005). SAINT, XCIF and XPREP. Bruker AXS, Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]; software used to prepare material for publication: XCIF (Bruker, 2005[Bruker (2005). SAINT, XCIF and XPREP. Bruker AXS, Inc., Madison, Wisconsin, USA.]).

Supporting information


Comment top

Similar dimeric structures have been reported for the bromo Grignard reagents [Mg(µ-Br){CH(SiMe2Ph)(SiMe3)}(OEt2)]2 (Antolini, et al., 2003), [Mg(µ-Br){CH(SiMe3)2}(OEt2)]2 (Avent, et al., 2004), and [Mg(µ-Br)Et(O-i-Pr2)]2 (Spek, et al., 1974). In all three of these molecules, the magnesium centres each bear one ether ligand, and two Mg–Br–Mg bridges join the metal centres. Most bromo Grignard reagents with two ether molecule per Mg centre are monomeric; examples include MgBrPh(OEt2)2 (Stucky & Rundle, 1964), MgBrEt(OEt2)2 (Guggenberger & Rundle, 1968), MgBr(CPh3)(OEt2)2 (Engelhardt et al., 1988) and MgBr(2,4,6-C6H2Ph3)(thf)2 (Krieck et al., 2009). Finally, there are some monomeric bromo Grignard reagents in which the magnesium centre bears three ether ligands and very small organic groups, such as in MgBrMe(thf)3 (Maurice, 1969).

Related literature top

For the structures of some other diethyl ether adducts of Grignard reagents, see: Stucky & Rundle (1964); Guggenberger & Rundle (1968); Engelhardt et al. (1988); Antolini et al. (2003); Avent et al. (2004). For the structures of some tetrahydrofuran and diisopropyl ether adducts of Grignard Reagents, see: Maurice (1969); Spek et al. (1974); Krieck et al. (2009).

Experimental top

A 250 mL round bottom flask was charged with Mg turnings (2.6 g, 107 mmol) and diethyl ether (90 mL). To the stirred suspension was added benzyl bromide (10 mL, 84 mmol) dropwise by means of an addition funnel over 30 min. After the slight exotherm had subsided, the solution was brought to reflux for two h. The solution was filtered and the filtrate was stored at 253 K. Titration with 0.13 M HCl showed the solution to have a concentration of 0.93 M.

An aliquot of the benzyl magnesium bromide solution (11.5 mL, 10.7 mmol) was taken to dryness under reduced pressure at 263 K and the residue was extracted with 1:1 benzene/toluene (50 mL). The clear yellow extract was concentrated to ca 20 mL and stored at 253 K overnight affording large colourless crystals.

Refinement top

A structural dimeric model of (I) is [Mg(µ-Br)(CH2Ph)(OEt2)]2 whereas an asymmetric unit comprises a half of the molecule. All non-H atoms were located from the difference map and refined anisotropically. H atom treatment: methyl H atom positions, R–CH3, were optimised by rotation about R–C bonds with idealised C–H, R–H and H–H distances; the remaining H atoms were included as riding idealised contributors. Methyl H atom U's were assigned as 1.5 times Ueq of the carrier atom; remaining H atom U's were assigned as 1.2 times carrier Ueq.

Structure description top

Similar dimeric structures have been reported for the bromo Grignard reagents [Mg(µ-Br){CH(SiMe2Ph)(SiMe3)}(OEt2)]2 (Antolini, et al., 2003), [Mg(µ-Br){CH(SiMe3)2}(OEt2)]2 (Avent, et al., 2004), and [Mg(µ-Br)Et(O-i-Pr2)]2 (Spek, et al., 1974). In all three of these molecules, the magnesium centres each bear one ether ligand, and two Mg–Br–Mg bridges join the metal centres. Most bromo Grignard reagents with two ether molecule per Mg centre are monomeric; examples include MgBrPh(OEt2)2 (Stucky & Rundle, 1964), MgBrEt(OEt2)2 (Guggenberger & Rundle, 1968), MgBr(CPh3)(OEt2)2 (Engelhardt et al., 1988) and MgBr(2,4,6-C6H2Ph3)(thf)2 (Krieck et al., 2009). Finally, there are some monomeric bromo Grignard reagents in which the magnesium centre bears three ether ligands and very small organic groups, such as in MgBrMe(thf)3 (Maurice, 1969).

For the structures of some other diethyl ether adducts of Grignard reagents, see: Stucky & Rundle (1964); Guggenberger & Rundle (1968); Engelhardt et al. (1988); Antolini et al. (2003); Avent et al. (2004). For the structures of some tetrahydrofuran and diisopropyl ether adducts of Grignard Reagents, see: Maurice (1969); Spek et al. (1974); Krieck et al. (2009).

Computing details top

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT and XPREP (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: XCIF (Bruker, 2005).

Figures top
[Figure 1] Fig. 1. Structural unit of (I) with 50% probability displacement ellipsoids for non-H atoms. Arbitrary radii for H atoms are used. The unlabeled atoms are related by the symmetry operator (-x + 2, -y + 1, -z).
Di-µ-bromido-bis[benzyl(diethyl ether)magnesium] top
Crystal data top
[Mg2Br2(C7H7)2(C4H10O)2]F(000) = 552
Mr = 538.93Dx = 1.363 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5006 reflections
a = 8.0657 (4) Åθ = 2.3–23.5°
b = 12.4288 (6) ŵ = 3.15 mm1
c = 13.1840 (6) ÅT = 193 K
β = 96.370 (3)°Prism, colourless
V = 1313.50 (11) Å30.38 × 0.27 × 0.23 mm
Z = 2
Data collection top
Bruker Platform APEXII CCD
diffractometer
2396 independent reflections
Radiation source: normal-focus sealed tube1808 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.078
profile data from φ and ω scansθmax = 25.3°, θmin = 2.3°
Absorption correction: integration
(SADABS; Bruker, 2007)
h = 99
Tmin = 0.440, Tmax = 0.635k = 1414
22801 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.073H-atom parameters not refined
S = 1.04 w = 1/[σ2(Fo2) + (0.0305P)2 + 0.0177P]
where P = (Fo2 + 2Fc2)/3
2396 reflections(Δ/σ)max = 0.001
129 parametersΔρmax = 0.42 e Å3
0 restraintsΔρmin = 0.36 e Å3
Crystal data top
[Mg2Br2(C7H7)2(C4H10O)2]V = 1313.50 (11) Å3
Mr = 538.93Z = 2
Monoclinic, P21/cMo Kα radiation
a = 8.0657 (4) ŵ = 3.15 mm1
b = 12.4288 (6) ÅT = 193 K
c = 13.1840 (6) Å0.38 × 0.27 × 0.23 mm
β = 96.370 (3)°
Data collection top
Bruker Platform APEXII CCD
diffractometer
2396 independent reflections
Absorption correction: integration
(SADABS; Bruker, 2007)
1808 reflections with I > 2σ(I)
Tmin = 0.440, Tmax = 0.635Rint = 0.078
22801 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.073H-atom parameters not refined
S = 1.04Δρmax = 0.42 e Å3
2396 reflectionsΔρmin = 0.36 e Å3
129 parameters
Special details top

Experimental. One distinct cell was identified using APEX2 (Bruker, 2010). Ten frame series were integrated and filtered for statistical outliers using SAINT (Bruker, 2005) then corrected for absorption by integration using SHELXTL/XPREP V2005/2 (Bruker, 2005) before using SADABS (Bruker, 2005) to sort, merge, and scale the combined data. No decay correction was applied.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. The structure was phased by direct methods (Sheldrick, 2008). The systematic conditions suggested the unambiguous space group. The space group choice was confirmed by successful convergence of the full-matrix least-squares refinement on F2. The highest peaks in the final difference Fourier map were in the vicinity of atom Br1; the final map had no other significant features. A final analysis of variance between observed and calculated structure factors showed little dependence on amplitude or resolution.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mg11.18152 (11)0.47556 (7)0.08013 (7)0.0396 (2)
Br10.89572 (3)0.55206 (2)0.11052 (2)0.05037 (13)
O11.1776 (2)0.32859 (13)0.14171 (14)0.0459 (5)
C11.3770 (3)0.6793 (2)0.0998 (2)0.0396 (7)
C21.4242 (4)0.7119 (2)0.0058 (2)0.0521 (8)
H21.47020.66040.03640.063*
C31.4058 (4)0.8173 (3)0.0276 (3)0.0655 (10)
H31.43940.83700.09190.079*
C41.3403 (4)0.8927 (3)0.0310 (3)0.0712 (10)
H41.32880.96510.00800.085*
C51.2908 (4)0.8638 (2)0.1233 (3)0.0624 (9)
H51.24480.91640.16440.075*
C61.3072 (3)0.7593 (2)0.1567 (2)0.0488 (7)
H61.27020.74070.22030.059*
C71.3934 (3)0.56671 (19)0.1365 (2)0.0468 (7)
H7A1.40570.56580.21200.056*
H7B1.49470.53400.11340.056*
C81.0390 (4)0.2534 (2)0.1235 (2)0.0545 (8)
H8A0.95970.28040.06650.065*
H8B0.97940.24990.18520.065*
C91.0940 (4)0.1444 (2)0.0986 (2)0.0708 (10)
H9A0.99640.09770.08380.106*
H9B1.16650.11530.15670.106*
H9C1.15570.14770.03870.106*
C101.2862 (4)0.3105 (2)0.2361 (2)0.0547 (8)
H10A1.39580.34460.23070.066*
H10B1.30470.23220.24570.066*
C111.2145 (4)0.3549 (3)0.3267 (2)0.0777 (10)
H11A1.29280.34310.38800.117*
H11B1.10880.31870.33450.117*
H11C1.19480.43230.31730.117*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mg10.0341 (5)0.0340 (5)0.0493 (6)0.0000 (4)0.0015 (4)0.0023 (4)
Br10.0424 (2)0.0587 (2)0.0502 (2)0.00999 (14)0.00602 (14)0.00680 (14)
O10.0356 (11)0.0375 (10)0.0617 (12)0.0040 (8)0.0073 (9)0.0111 (9)
C10.0255 (16)0.0405 (16)0.0514 (18)0.0041 (12)0.0023 (13)0.0063 (13)
C20.0464 (19)0.0541 (19)0.056 (2)0.0063 (15)0.0071 (16)0.0068 (15)
C30.059 (2)0.069 (2)0.069 (2)0.0160 (18)0.0071 (19)0.0179 (18)
C40.059 (2)0.042 (2)0.109 (3)0.0042 (17)0.005 (2)0.015 (2)
C50.050 (2)0.0429 (19)0.093 (3)0.0043 (16)0.0063 (19)0.0131 (18)
C60.0376 (18)0.0501 (18)0.0593 (19)0.0034 (14)0.0081 (15)0.0048 (14)
C70.0356 (17)0.0392 (16)0.064 (2)0.0012 (13)0.0001 (14)0.0002 (13)
C80.0441 (18)0.0441 (17)0.074 (2)0.0092 (15)0.0004 (16)0.0044 (15)
C90.093 (3)0.0498 (19)0.068 (2)0.0076 (19)0.001 (2)0.0049 (16)
C100.0472 (19)0.0471 (18)0.065 (2)0.0049 (14)0.0134 (17)0.0164 (15)
C110.087 (3)0.085 (3)0.060 (2)0.004 (2)0.002 (2)0.0078 (19)
Geometric parameters (Å, º) top
Mg1—O12.0006 (18)C5—C61.373 (4)
Mg1—C72.115 (3)C5—H50.9500
Mg1—Br1i2.5448 (9)C6—H60.9500
Mg1—Br12.5659 (9)C7—H7A0.9900
Mg1—Mg1i3.4690 (17)C7—H7B0.9900
Br1—Mg1i2.5448 (9)C8—C91.474 (4)
O1—C81.456 (3)C8—H8A0.9900
O1—C101.458 (3)C8—H8B0.9900
C1—C21.396 (4)C9—H9A0.9800
C1—C61.401 (3)C9—H9B0.9800
C1—C71.482 (3)C9—H9C0.9800
C2—C31.385 (4)C10—C111.490 (4)
C2—H20.9500C10—H10A0.9900
C3—C41.358 (4)C10—H10B0.9900
C3—H30.9500C11—H11A0.9800
C4—C51.371 (4)C11—H11B0.9800
C4—H40.9500C11—H11C0.9800
O1—Mg1—C7113.26 (9)C1—C6—H6119.0
O1—Mg1—Br1i105.34 (6)C1—C7—Mg1110.56 (17)
C7—Mg1—Br1i121.26 (9)C1—C7—H7A109.5
O1—Mg1—Br1102.71 (6)Mg1—C7—H7A109.5
C7—Mg1—Br1116.84 (8)C1—C7—H7B109.5
Br1i—Mg1—Br194.50 (3)Mg1—C7—H7B109.5
O1—Mg1—Mg1i110.90 (6)H7A—C7—H7B108.1
C7—Mg1—Mg1i135.62 (8)O1—C8—C9112.5 (3)
Br1i—Mg1—Mg1i47.51 (2)O1—C8—H8A109.1
Br1—Mg1—Mg1i47.00 (2)C9—C8—H8A109.1
Mg1i—Br1—Mg185.50 (3)O1—C8—H8B109.1
C8—O1—C10114.8 (2)C9—C8—H8B109.1
C8—O1—Mg1124.43 (16)H8A—C8—H8B107.8
C10—O1—Mg1116.89 (15)C8—C9—H9A109.5
C2—C1—C6115.8 (3)C8—C9—H9B109.5
C2—C1—C7122.7 (3)H9A—C9—H9B109.5
C6—C1—C7121.5 (3)C8—C9—H9C109.5
C3—C2—C1121.7 (3)H9A—C9—H9C109.5
C3—C2—H2119.1H9B—C9—H9C109.5
C1—C2—H2119.1O1—C10—C11112.2 (2)
C4—C3—C2120.5 (3)O1—C10—H10A109.2
C4—C3—H3119.7C11—C10—H10A109.2
C2—C3—H3119.7O1—C10—H10B109.2
C3—C4—C5119.6 (3)C11—C10—H10B109.2
C3—C4—H4120.2H10A—C10—H10B107.9
C5—C4—H4120.2C10—C11—H11A109.5
C4—C5—C6120.3 (3)C10—C11—H11B109.5
C4—C5—H5119.8H11A—C11—H11B109.5
C6—C5—H5119.8C10—C11—H11C109.5
C5—C6—C1122.0 (3)H11A—C11—H11C109.5
C5—C6—H6119.0H11B—C11—H11C109.5
Symmetry code: (i) x+2, y+1, z.

Experimental details

Crystal data
Chemical formula[Mg2Br2(C7H7)2(C4H10O)2]
Mr538.93
Crystal system, space groupMonoclinic, P21/c
Temperature (K)193
a, b, c (Å)8.0657 (4), 12.4288 (6), 13.1840 (6)
β (°) 96.370 (3)
V3)1313.50 (11)
Z2
Radiation typeMo Kα
µ (mm1)3.15
Crystal size (mm)0.38 × 0.27 × 0.23
Data collection
DiffractometerBruker Platform APEXII CCD
Absorption correctionIntegration
(SADABS; Bruker, 2007)
Tmin, Tmax0.440, 0.635
No. of measured, independent and
observed [I > 2σ(I)] reflections
22801, 2396, 1808
Rint0.078
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.073, 1.04
No. of reflections2396
No. of parameters129
H-atom treatmentH-atom parameters not refined
Δρmax, Δρmin (e Å3)0.42, 0.36

Computer programs: APEX2 (Bruker, 2010), SAINT (Bruker, 2005), SAINT and XPREP (Bruker, 2005), SHELXTL (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), XCIF (Bruker, 2005).

Selected bond lengths (Å) top
Mg1—O12.0006 (18)Mg1—Br1i2.5448 (9)
Mg1—C72.115 (3)Mg1—Br12.5659 (9)
Symmetry code: (i) x+2, y+1, z.
 

Acknowledgements

This work was supported financially by the National Science Foundation (CHE-1112360). X-ray data were collected in the Materials Chemistry Laboratory at the University of Illinois (supported in part by grants NSF CHE 95–03145 and NSF CHE 03–43032 from the National Science Foundation).

References

First citationAntolini, F., Hitchcock, P. B., Lappert, M. F. & Wei, X.-H. (2003). Organometallics, 22, 2505—2516.  Web of Science CSD CrossRef Google Scholar
First citationAvent, A. G., Caro, C. F., Hitchcock, P. B., Lappert, M. F., Li, Z. & Wei, X.-H. (2004). Dalton Trans. pp. 1567–1577.  Web of Science CSD CrossRef Google Scholar
First citationBruker (2005). SAINT, XCIF and XPREP. Bruker AXS, Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2010). APEX2. Bruker AXS, Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEngelhardt, L. M., Harvey, S., Raston, C. L. & White, A. H. (1988). J. Organomet. Chem. 341, 39—51.  CSD CrossRef Web of Science Google Scholar
First citationGuggenberger, L. J. & Rundle, R. E. (1968). J. Am. Chem. Soc. 90, 5375—5378.  CSD CrossRef Web of Science Google Scholar
First citationKrieck, S., Görls, H., Yu, L., Reiher, M. & Westerhausen, M. (2009). J. Am. Chem. Soc. 131, 2977—2985.  Web of Science CSD CrossRef Google Scholar
First citationMaurice, V. J. (1969). J. Organomet. Chem. 20, 1–10.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L., Voorbergen, P., Schat, G., Blomberg, C. & Bickelhaupt, F. J. (1974). J. Organomet. Chem. 77, 147–151.  CSD CrossRef CAS Web of Science Google Scholar
First citationStucky, G. & Rundle, R. E. (1964). J. Am. Chem. Soc. 86, 4825–4830.  CSD CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds