organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N,N,N′,N′,N′′-Penta­methyl-N′′-[3-(1,3,3-tri­methyl­ureido)prop­yl]guanidinium tetra­phenyl­borate

aInstitut für Organische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany, and bFakultät Chemie/Organische Chemie, Hochschule Aalen, Beethovenstrasse 1, D-73430 Aalen, Germany
*Correspondence e-mail: willi.kantlehner@htw-aalen.de

(Received 5 June 2012; accepted 14 June 2012; online 27 June 2012)

In the crystal structure of the title molecular salt, C13H30N5O+·C24H20B, discrete guanidinium cations and tetra­phenyl­borate anions are present. The C—N bond lengths in the CN3 unit are 1.3427 (12), 1.3445 (12) and 1.3453 (13) Å, indicating double-bond character. The central C atom is surrounded in a nearly ideal trigonal-planar geometry by three N atoms and the positive charge is delocalized on the CN3 plane. The bonds between the N atoms and the terminal C-methyl groups all have values close to a typical single bond [1.4595 (15)–1.4688 (12) Å]. In the crystal, cations are connected by C—H⋯O contacts generating a chain along the c axis.

Related literature

For the synthesis of 1-methyl- 2-dimethyl­amino-1,4,5,6-tetra­hydro­pyrimidine and N′′-[3-(1,3,3-trimethyl­ureido)prop­yl]-N,N,N′,N′,N′′-tetra­methyl­guanidine and derived guanidinium salts, see: Tiritiris & Kantlehner (2012[Tiritiris, I. & Kantlehner, W. (2012). Z. Naturforsch. Teil B. In the press.]). For the crystal structure of N,N,N′,N′- tetra­methyl­chloro­formamidinium-chloride, see: Tiritiris & Kantlehner (2008[Tiritiris, I. & Kantlehner, W. (2008). Z. Kristallogr. 223, 345-346.]) and of N,N,N′,N′-tetra­methyl­urea, see: Frampton & Parkes (1996[Frampton, C. S. & Parkes, K. E. B. (1996). Acta Cryst. C52, 3246-3248.]).

[Scheme 1]

Experimental

Crystal data
  • C13H30N5O+·C24H20B

  • Mr = 591.63

  • Monoclinic, P 21 /n

  • a = 16.6807 (7) Å

  • b = 9.7766 (4) Å

  • c = 21.6911 (9) Å

  • β = 110.743 (3)°

  • V = 3308.1 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 100 K

  • 0.26 × 0.20 × 0.17 mm

Data collection
  • Bruker Kappa APEXII DUO diffractometer

  • 69308 measured reflections

  • 10094 independent reflections

  • 7953 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.107

  • S = 1.01

  • 10094 reflections

  • 405 parameters

  • H-atom parameters constrained

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13C⋯O1i 0.98 2.67 3.395 (2) 131
Symmetry code: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In the synthesis of the cyclic guanidine compound 1-methyl- 2-dimethylamino-1,4,5,6-tetrahydropyrimidine (Tiritiris & Kantlehner, 2012) from N,N,N',N'-tetramethylchloroformamidinium- chloride (Tiritiris & Kantlehner, 2008) and N-methyl-propane-1,3-diamine, the guanidine-urea derivative N''-[3-(1,3,3-Trimethylureido)propyl]- N,N,N',N',N''-tetramethylguanidine was obtained as a byproduct. By alkylation of the free nitrogen of the guanidine moiety, a few guanidinium salts have been obtained and structurally characterised (Tiritiris & Kantlehner, 2012). One of them, is the here presented title compound. In the crystal structure of the salt, isolated cations and anions are present. No specific interactions between the guanidinium ions and the tetraphenylborate ions have been observed. Prominent bond parameters in the guanidinium ion are: C1–N1 = 1.345 (1) Å, C1–N2 = 1.343 (1) Å and C1–N3 = 1.345 (1) Å. The N–C1–N angles are: 119.65 (9)° (N1–C1–N2), 119.57 (9)° (N2–C1–N3) and 120.78 (9)° (N1–C1–N3), which indicate a nearly ideal trigonal-planar surrounding of the carbon centre by the nitrogen atoms. The positive charge is completely delocalised in the CN3 plane (Fig. 1). Bond lengths in the ureido group are: C11–O1 = 1.229 (1) Å, C11–N4 = 1.370 (1) Å and C11–N5 = 1.389 (1) Å. These values agree very well with the data from the crystal structure analysis of solid N,N,N',N'-tetramethylurea (Frampton & Parkes, 1996). Finally, C–H···O contacts between methyl hydrogen atoms and carbonyl oxygen atoms of neighbouring guanidinium ions have been observed [d(H···O) = 2.67 Å] (Tab. 1), generating a chain (Fig. 2). The anions are packed inbetween these chains by van der Waals interactions.

Related literature top

For the synthesis of 1-methyl- 2-dimethylamino-1,4,5,6-tetrahydropyrimidine and N''-[3-(1,3,3-trimethylureido)propyl]-N,N,N',N',N''-tetramethylguanidine and derived guanidinium salts, see: Tiritiris & Kantlehner (2012). For the crystal structure of N,N,N',N'- tetramethylchloroformamidinium-chloride, see: (Tiritiris & Kantlehner (2008) and of N,N,N',N'-tetramethylurea, see: Frampton & Parkes (1996).

Experimental top

The title compound was obtained by reaction of N''-[3-(1,3,3-Trimethylureido)propyl]- N,N,N',N',N''-tetramethylguanidine with dimethyl sulfate in acetonitrile at room temperature. After evaporation of the solvent the crude N''-[3-(1,3,3-Trimethylureido)propyl]-N,N,N', N',N''-pentamethylguanidinium-methylsulfate (I) was washed with diethylether and dried in vacuo. 1.00 g (2.6 mmol) of (I) was dissolved in 20 mL acetonitrile and 0.89 g (2.6 mmol) of sodium tetraphenylborate in 10 mL acetonitrile was added. After stirring for one h at room temperature, the precipitated sodium methylsulfate was filtered off. The title compound crystallised from a saturated acetonitrile solution after several days at 273 K, forming colourless single crystals. Yield: 1.18 g (76.9%).

Refinement top

The hydrogen atoms of the methyl groups were allowed to rotate with a fixed angle around the C–N bond to best fit the experimental electron density, with U(H) set to 1.5 Ueq(C) and d(C—H) = 0.98 Å. The remaining H atoms were placed in calculated positions with d(C—H) = 0.99 Å (H atoms in CH2 groups) and (C—H) = 0.95 Å (H atoms in aromatic rings). They were included in the refinement in the riding model approximation, with U(H) set to 1.2 Ueq(C).

Structure description top

In the synthesis of the cyclic guanidine compound 1-methyl- 2-dimethylamino-1,4,5,6-tetrahydropyrimidine (Tiritiris & Kantlehner, 2012) from N,N,N',N'-tetramethylchloroformamidinium- chloride (Tiritiris & Kantlehner, 2008) and N-methyl-propane-1,3-diamine, the guanidine-urea derivative N''-[3-(1,3,3-Trimethylureido)propyl]- N,N,N',N',N''-tetramethylguanidine was obtained as a byproduct. By alkylation of the free nitrogen of the guanidine moiety, a few guanidinium salts have been obtained and structurally characterised (Tiritiris & Kantlehner, 2012). One of them, is the here presented title compound. In the crystal structure of the salt, isolated cations and anions are present. No specific interactions between the guanidinium ions and the tetraphenylborate ions have been observed. Prominent bond parameters in the guanidinium ion are: C1–N1 = 1.345 (1) Å, C1–N2 = 1.343 (1) Å and C1–N3 = 1.345 (1) Å. The N–C1–N angles are: 119.65 (9)° (N1–C1–N2), 119.57 (9)° (N2–C1–N3) and 120.78 (9)° (N1–C1–N3), which indicate a nearly ideal trigonal-planar surrounding of the carbon centre by the nitrogen atoms. The positive charge is completely delocalised in the CN3 plane (Fig. 1). Bond lengths in the ureido group are: C11–O1 = 1.229 (1) Å, C11–N4 = 1.370 (1) Å and C11–N5 = 1.389 (1) Å. These values agree very well with the data from the crystal structure analysis of solid N,N,N',N'-tetramethylurea (Frampton & Parkes, 1996). Finally, C–H···O contacts between methyl hydrogen atoms and carbonyl oxygen atoms of neighbouring guanidinium ions have been observed [d(H···O) = 2.67 Å] (Tab. 1), generating a chain (Fig. 2). The anions are packed inbetween these chains by van der Waals interactions.

For the synthesis of 1-methyl- 2-dimethylamino-1,4,5,6-tetrahydropyrimidine and N''-[3-(1,3,3-trimethylureido)propyl]-N,N,N',N',N''-tetramethylguanidine and derived guanidinium salts, see: Tiritiris & Kantlehner (2012). For the crystal structure of N,N,N',N'- tetramethylchloroformamidinium-chloride, see: (Tiritiris & Kantlehner (2008) and of N,N,N',N'-tetramethylurea, see: Frampton & Parkes (1996).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound with atom labels and 50% probability displacement ellipsoids. All H atoms were omitted for clarity.
[Figure 2] Fig. 2. C–H···O contacts between the guanidinium ions, ab-view. The contacts are indicated by dashed lines.
N,N,N',N',N''-Pentamethyl-N''-[3-(1,3,3-trimethylureido)propyl]guanidinium tetraphenylborate top
Crystal data top
C13H30N5O+·C24H20BF(000) = 1280
Mr = 591.63Dx = 1.188 Mg m3
Monoclinic, P21/nMelting point: 426 K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 16.6807 (7) ÅCell parameters from 10094 reflections
b = 9.7766 (4) Åθ = 1.3–30.5°
c = 21.6911 (9) ŵ = 0.07 mm1
β = 110.743 (3)°T = 100 K
V = 3308.1 (2) Å3Polyhedral, colourless
Z = 40.26 × 0.20 × 0.17 mm
Data collection top
Bruker Kappa APEXII DUO
diffractometer
7953 reflections with I > 2σ(I)
Radiation source: sealed tubeRint = 0.037
Graphite monochromatorθmax = 30.5°, θmin = 1.3°
φ scans, and ω scansh = 2322
69308 measured reflectionsk = 1313
10094 independent reflectionsl = 2230
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: difference Fourier map
wR(F2) = 0.107H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0496P)2 + 1.1611P]
where P = (Fo2 + 2Fc2)/3
10094 reflections(Δ/σ)max < 0.001
405 parametersΔρmax = 0.39 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C13H30N5O+·C24H20BV = 3308.1 (2) Å3
Mr = 591.63Z = 4
Monoclinic, P21/nMo Kα radiation
a = 16.6807 (7) ŵ = 0.07 mm1
b = 9.7766 (4) ÅT = 100 K
c = 21.6911 (9) Å0.26 × 0.20 × 0.17 mm
β = 110.743 (3)°
Data collection top
Bruker Kappa APEXII DUO
diffractometer
7953 reflections with I > 2σ(I)
69308 measured reflectionsRint = 0.037
10094 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.107H-atom parameters constrained
S = 1.01Δρmax = 0.39 e Å3
10094 reflectionsΔρmin = 0.22 e Å3
405 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.00142 (6)0.43833 (10)0.28523 (5)0.01237 (18)
N10.04589 (5)0.54738 (9)0.27727 (4)0.01311 (16)
N20.01497 (5)0.39040 (9)0.34611 (4)0.01480 (16)
N30.05660 (5)0.37668 (9)0.23291 (4)0.01248 (16)
C20.00943 (6)0.65341 (11)0.22761 (5)0.01589 (19)
H2A0.05230.63780.20600.024*
H2B0.03710.65010.19460.024*
H2C0.01900.74340.24890.024*
C30.13425 (6)0.57032 (12)0.32099 (5)0.0181 (2)
H3A0.13540.64100.35330.027*
H3B0.16860.60030.29500.027*
H3C0.15800.48510.34400.027*
C40.03473 (7)0.48174 (12)0.40317 (5)0.0198 (2)
H4A0.09460.46890.43190.030*
H4B0.00300.46050.42770.030*
H4C0.02590.57690.38800.030*
C50.01339 (7)0.24405 (11)0.35967 (5)0.0184 (2)
H5A0.04030.22130.36620.028*
H5B0.06200.22110.39960.028*
H5C0.01740.19170.32230.028*
C60.13342 (6)0.31226 (11)0.23767 (5)0.0168 (2)
H6A0.12590.21280.24030.025*
H6B0.18320.33560.19860.025*
H6C0.14260.34530.27730.025*
C70.05146 (6)0.38013 (10)0.16672 (5)0.01345 (18)
H7A0.00130.42940.16880.016*
H7B0.10110.43180.13690.016*
C80.05061 (6)0.23790 (11)0.13824 (5)0.01458 (18)
H8A0.05250.24670.09230.017*
H8B0.10260.18770.13730.017*
C90.02876 (6)0.15555 (10)0.17809 (5)0.01427 (18)
H9A0.03150.14850.22430.017*
H9B0.02390.06180.15990.017*
N40.10752 (5)0.21848 (9)0.17680 (4)0.01459 (17)
C100.12466 (7)0.20148 (12)0.11575 (5)0.0187 (2)
H10A0.09530.27360.08460.028*
H10B0.10370.11190.09650.028*
H10C0.18650.20750.12520.028*
C110.16660 (6)0.26634 (10)0.23433 (5)0.01496 (19)
O10.16215 (5)0.24141 (9)0.28856 (4)0.02149 (17)
N50.23374 (6)0.34149 (10)0.22769 (5)0.0218 (2)
C120.30581 (7)0.36738 (14)0.28860 (7)0.0307 (3)
H12A0.29100.44160.31300.046*
H12B0.35620.39370.27800.046*
H12C0.31860.28430.31560.046*
C130.21641 (8)0.45323 (13)0.17992 (7)0.0283 (3)
H13A0.15690.44740.14940.042*
H13B0.25520.44620.15510.042*
H13C0.22550.54100.20320.042*
B10.27778 (7)0.66069 (11)0.56100 (5)0.01149 (19)
C140.25827 (6)0.49830 (10)0.54196 (4)0.01180 (17)
C150.22288 (6)0.40787 (11)0.57578 (5)0.01462 (19)
H15A0.21080.44100.61280.018*
C160.20468 (7)0.27111 (11)0.55717 (5)0.0179 (2)
H16A0.18130.21330.58170.021*
C170.22064 (7)0.21925 (11)0.50295 (5)0.0192 (2)
H17A0.20960.12590.49080.023*
C180.25315 (7)0.30673 (12)0.46684 (5)0.0185 (2)
H18A0.26310.27370.42900.022*
C190.27107 (6)0.44254 (11)0.48620 (5)0.01493 (19)
H19A0.29290.50030.46060.018*
C200.36740 (6)0.71189 (10)0.55261 (4)0.01193 (17)
C210.43511 (6)0.62355 (11)0.55543 (5)0.01413 (18)
H21A0.42700.52780.55780.017*
C220.51385 (6)0.67076 (11)0.55480 (5)0.0166 (2)
H22A0.55770.60730.55650.020*
C230.52831 (6)0.81001 (11)0.55176 (5)0.0165 (2)
H23A0.58180.84270.55150.020*
C240.46291 (6)0.90079 (11)0.54911 (5)0.01526 (19)
H24A0.47170.99640.54710.018*
C250.38455 (6)0.85204 (11)0.54939 (5)0.01370 (18)
H25A0.34090.91620.54730.016*
C260.19311 (6)0.74476 (10)0.51335 (5)0.01287 (18)
C270.18843 (6)0.82027 (11)0.45734 (5)0.01507 (19)
H27A0.23810.82660.44570.018*
C280.11366 (7)0.88671 (11)0.41778 (5)0.0189 (2)
H28A0.11330.93680.38020.023*
C290.03995 (7)0.87970 (12)0.43334 (5)0.0215 (2)
H29A0.01070.92600.40710.026*
C300.04144 (7)0.80373 (13)0.48794 (5)0.0220 (2)
H30A0.00870.79670.49890.026*
C310.11627 (6)0.73815 (12)0.52643 (5)0.0180 (2)
H31A0.11560.68640.56330.022*
C320.29464 (6)0.69109 (10)0.63942 (5)0.01246 (18)
C330.26863 (6)0.81209 (11)0.66204 (5)0.01528 (19)
H33A0.23450.87580.63060.018*
C340.29113 (7)0.84212 (12)0.72909 (5)0.0186 (2)
H34A0.27250.92520.74230.022*
C350.34055 (7)0.75121 (12)0.77639 (5)0.0200 (2)
H35A0.35610.77150.82200.024*
C360.36696 (7)0.62986 (12)0.75598 (5)0.0190 (2)
H36A0.40020.56590.78770.023*
C370.34463 (6)0.60215 (11)0.68907 (5)0.01543 (19)
H37A0.36410.51920.67640.019*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0118 (4)0.0119 (4)0.0141 (4)0.0013 (3)0.0054 (3)0.0010 (3)
N10.0113 (3)0.0124 (4)0.0149 (4)0.0008 (3)0.0037 (3)0.0006 (3)
N20.0171 (4)0.0150 (4)0.0122 (4)0.0007 (3)0.0052 (3)0.0008 (3)
N30.0118 (4)0.0127 (4)0.0131 (4)0.0022 (3)0.0046 (3)0.0007 (3)
C20.0164 (4)0.0112 (5)0.0205 (5)0.0002 (4)0.0072 (4)0.0017 (4)
C30.0123 (4)0.0204 (5)0.0196 (5)0.0039 (4)0.0035 (4)0.0042 (4)
C40.0218 (5)0.0244 (6)0.0143 (5)0.0031 (4)0.0077 (4)0.0054 (4)
C50.0231 (5)0.0165 (5)0.0159 (5)0.0006 (4)0.0073 (4)0.0032 (4)
C60.0131 (4)0.0179 (5)0.0200 (5)0.0042 (4)0.0065 (4)0.0012 (4)
C70.0150 (4)0.0131 (5)0.0114 (4)0.0004 (3)0.0036 (3)0.0008 (3)
C80.0137 (4)0.0154 (5)0.0129 (4)0.0021 (4)0.0026 (3)0.0024 (4)
C90.0142 (4)0.0131 (5)0.0148 (4)0.0016 (3)0.0042 (4)0.0007 (4)
N40.0130 (4)0.0173 (4)0.0128 (4)0.0021 (3)0.0038 (3)0.0025 (3)
C100.0202 (5)0.0219 (5)0.0149 (5)0.0011 (4)0.0073 (4)0.0019 (4)
C110.0120 (4)0.0125 (5)0.0182 (5)0.0033 (3)0.0027 (4)0.0038 (4)
O10.0207 (4)0.0264 (4)0.0143 (4)0.0011 (3)0.0025 (3)0.0052 (3)
N50.0139 (4)0.0202 (5)0.0291 (5)0.0035 (3)0.0047 (4)0.0070 (4)
C120.0138 (5)0.0307 (7)0.0418 (7)0.0025 (5)0.0029 (5)0.0197 (6)
C130.0324 (6)0.0196 (6)0.0395 (7)0.0088 (5)0.0207 (6)0.0057 (5)
B10.0122 (4)0.0115 (5)0.0111 (4)0.0009 (4)0.0044 (4)0.0003 (4)
C140.0101 (4)0.0133 (4)0.0104 (4)0.0006 (3)0.0016 (3)0.0002 (3)
C150.0142 (4)0.0159 (5)0.0130 (4)0.0026 (4)0.0038 (3)0.0010 (4)
C160.0179 (5)0.0155 (5)0.0176 (5)0.0040 (4)0.0031 (4)0.0016 (4)
C170.0189 (5)0.0136 (5)0.0209 (5)0.0006 (4)0.0017 (4)0.0034 (4)
C180.0179 (5)0.0195 (5)0.0164 (5)0.0014 (4)0.0042 (4)0.0050 (4)
C190.0142 (4)0.0172 (5)0.0130 (4)0.0003 (4)0.0044 (4)0.0008 (4)
C200.0129 (4)0.0145 (5)0.0076 (4)0.0008 (3)0.0027 (3)0.0007 (3)
C210.0126 (4)0.0142 (5)0.0140 (4)0.0004 (3)0.0027 (3)0.0027 (4)
C220.0123 (4)0.0198 (5)0.0171 (5)0.0030 (4)0.0043 (4)0.0035 (4)
C230.0139 (4)0.0213 (5)0.0145 (5)0.0034 (4)0.0052 (4)0.0010 (4)
C240.0195 (5)0.0143 (5)0.0134 (4)0.0042 (4)0.0076 (4)0.0010 (4)
C250.0153 (4)0.0144 (5)0.0119 (4)0.0008 (4)0.0055 (3)0.0014 (4)
C260.0130 (4)0.0124 (4)0.0123 (4)0.0009 (3)0.0034 (3)0.0021 (3)
C270.0173 (4)0.0145 (5)0.0132 (4)0.0011 (4)0.0050 (4)0.0013 (4)
C280.0231 (5)0.0175 (5)0.0133 (5)0.0039 (4)0.0029 (4)0.0016 (4)
C290.0188 (5)0.0229 (6)0.0172 (5)0.0069 (4)0.0003 (4)0.0014 (4)
C300.0132 (4)0.0313 (6)0.0200 (5)0.0028 (4)0.0042 (4)0.0013 (4)
C310.0148 (4)0.0225 (5)0.0161 (5)0.0000 (4)0.0045 (4)0.0017 (4)
C320.0115 (4)0.0134 (4)0.0130 (4)0.0032 (3)0.0050 (3)0.0009 (3)
C330.0145 (4)0.0153 (5)0.0171 (5)0.0019 (4)0.0069 (4)0.0020 (4)
C340.0177 (5)0.0206 (5)0.0210 (5)0.0056 (4)0.0113 (4)0.0079 (4)
C350.0224 (5)0.0265 (6)0.0130 (5)0.0098 (4)0.0086 (4)0.0058 (4)
C360.0222 (5)0.0204 (5)0.0125 (4)0.0054 (4)0.0039 (4)0.0016 (4)
C370.0178 (5)0.0140 (5)0.0133 (4)0.0023 (4)0.0041 (4)0.0004 (4)
Geometric parameters (Å, º) top
C1—N21.3427 (12)B1—C141.6437 (15)
C1—N11.3445 (12)B1—C261.6445 (15)
C1—N31.3453 (13)B1—C201.6467 (14)
N1—C31.4600 (13)B1—C321.6497 (14)
N1—C21.4632 (13)C14—C151.4054 (13)
N2—C51.4628 (14)C14—C191.4102 (13)
N2—C41.4660 (13)C15—C161.3986 (15)
N3—C61.4639 (12)C15—H15A0.9500
N3—C71.4688 (12)C16—C171.3902 (15)
C2—H2A0.9800C16—H16A0.9500
C2—H2B0.9800C17—C181.3927 (15)
C2—H2C0.9800C17—H17A0.9500
C3—H3A0.9800C18—C191.3928 (15)
C3—H3B0.9800C18—H18A0.9500
C3—H3C0.9800C19—H19A0.9500
C4—H4A0.9800C20—C211.4059 (13)
C4—H4B0.9800C20—C251.4065 (14)
C4—H4C0.9800C21—C221.3966 (13)
C5—H5A0.9800C21—H21A0.9500
C5—H5B0.9800C22—C231.3882 (15)
C5—H5C0.9800C22—H22A0.9500
C6—H6A0.9800C23—C241.3916 (14)
C6—H6B0.9800C23—H23A0.9500
C6—H6C0.9800C24—C251.3933 (13)
C7—C81.5237 (14)C24—H24A0.9500
C7—H7A0.9900C25—H25A0.9500
C7—H7B0.9900C26—C271.4000 (14)
C8—C91.5289 (14)C26—C311.4090 (13)
C8—H8A0.9900C27—C281.3985 (14)
C8—H8B0.9900C27—H27A0.9500
C9—N41.4600 (12)C28—C291.3872 (15)
C9—H9A0.9900C28—H28A0.9500
C9—H9B0.9900C29—C301.3906 (16)
N4—C111.3697 (13)C29—H29A0.9500
N4—C101.4597 (12)C30—C311.3885 (15)
C10—H10A0.9800C30—H30A0.9500
C10—H10B0.9800C31—H31A0.9500
C10—H10C0.9800C32—C371.4055 (14)
C11—O11.2292 (13)C32—C331.4069 (14)
C11—N51.3888 (13)C33—C341.3985 (14)
N5—C121.4595 (15)C33—H33A0.9500
N5—C131.4624 (16)C34—C351.3867 (17)
C12—H12A0.9800C34—H34A0.9500
C12—H12B0.9800C35—C361.3913 (16)
C12—H12C0.9800C35—H35A0.9500
C13—H13A0.9800C36—C371.3912 (14)
C13—H13B0.9800C36—H36A0.9500
C13—H13C0.9800C37—H37A0.9500
N2—C1—N1119.65 (9)H13A—C13—H13B109.5
N2—C1—N3119.57 (9)N5—C13—H13C109.5
N1—C1—N3120.78 (9)H13A—C13—H13C109.5
C1—N1—C3120.96 (9)H13B—C13—H13C109.5
C1—N1—C2123.50 (8)C14—B1—C26105.98 (8)
C3—N1—C2115.47 (8)C14—B1—C20111.87 (8)
C1—N2—C5122.02 (8)C26—B1—C20112.94 (8)
C1—N2—C4121.80 (9)C14—B1—C32112.29 (8)
C5—N2—C4116.15 (8)C26—B1—C32110.67 (7)
C1—N3—C6121.29 (8)C20—B1—C32103.25 (7)
C1—N3—C7122.73 (8)C15—C14—C19115.07 (9)
C6—N3—C7115.75 (8)C15—C14—B1123.97 (8)
N1—C2—H2A109.5C19—C14—B1120.81 (8)
N1—C2—H2B109.5C16—C15—C14122.61 (9)
H2A—C2—H2B109.5C16—C15—H15A118.7
N1—C2—H2C109.5C14—C15—H15A118.7
H2A—C2—H2C109.5C17—C16—C15120.39 (10)
H2B—C2—H2C109.5C17—C16—H16A119.8
N1—C3—H3A109.5C15—C16—H16A119.8
N1—C3—H3B109.5C16—C17—C18118.76 (10)
H3A—C3—H3B109.5C16—C17—H17A120.6
N1—C3—H3C109.5C18—C17—H17A120.6
H3A—C3—H3C109.5C17—C18—C19120.04 (9)
H3B—C3—H3C109.5C17—C18—H18A120.0
N2—C4—H4A109.5C19—C18—H18A120.0
N2—C4—H4B109.5C18—C19—C14123.07 (9)
H4A—C4—H4B109.5C18—C19—H19A118.5
N2—C4—H4C109.5C14—C19—H19A118.5
H4A—C4—H4C109.5C21—C20—C25115.23 (8)
H4B—C4—H4C109.5C21—C20—B1123.73 (9)
N2—C5—H5A109.5C25—C20—B1120.68 (8)
N2—C5—H5B109.5C22—C21—C20122.71 (9)
H5A—C5—H5B109.5C22—C21—H21A118.6
N2—C5—H5C109.5C20—C21—H21A118.6
H5A—C5—H5C109.5C23—C22—C21120.29 (9)
H5B—C5—H5C109.5C23—C22—H22A119.9
N3—C6—H6A109.5C21—C22—H22A119.9
N3—C6—H6B109.5C22—C23—C24118.72 (9)
H6A—C6—H6B109.5C22—C23—H23A120.6
N3—C6—H6C109.5C24—C23—H23A120.6
H6A—C6—H6C109.5C23—C24—C25120.30 (10)
H6B—C6—H6C109.5C23—C24—H24A119.9
N3—C7—C8112.80 (8)C25—C24—H24A119.9
N3—C7—H7A109.0C24—C25—C20122.75 (9)
C8—C7—H7A109.0C24—C25—H25A118.6
N3—C7—H7B109.0C20—C25—H25A118.6
C8—C7—H7B109.0C27—C26—C31115.08 (9)
H7A—C7—H7B107.8C27—C26—B1125.48 (8)
C7—C8—C9112.45 (8)C31—C26—B1119.37 (8)
C7—C8—H8A109.1C28—C27—C26122.74 (9)
C9—C8—H8A109.1C28—C27—H27A118.6
C7—C8—H8B109.1C26—C27—H27A118.6
C9—C8—H8B109.1C29—C28—C27120.17 (10)
H8A—C8—H8B107.8C29—C28—H28A119.9
N4—C9—C8111.85 (8)C27—C28—H28A119.9
N4—C9—H9A109.2C28—C29—C30118.91 (10)
C8—C9—H9A109.2C28—C29—H29A120.5
N4—C9—H9B109.2C30—C29—H29A120.5
C8—C9—H9B109.2C31—C30—C29120.00 (10)
H9A—C9—H9B107.9C31—C30—H30A120.0
C11—N4—C10123.81 (8)C29—C30—H30A120.0
C11—N4—C9119.24 (8)C30—C31—C26123.08 (10)
C10—N4—C9115.85 (8)C30—C31—H31A118.5
N4—C10—H10A109.5C26—C31—H31A118.5
N4—C10—H10B109.5C37—C32—C33115.18 (9)
H10A—C10—H10B109.5C37—C32—B1121.13 (8)
N4—C10—H10C109.5C33—C32—B1123.37 (9)
H10A—C10—H10C109.5C34—C33—C32122.47 (10)
H10B—C10—H10C109.5C34—C33—H33A118.8
O1—C11—N4122.44 (9)C32—C33—H33A118.8
O1—C11—N5121.90 (10)C35—C34—C33120.34 (10)
N4—C11—N5115.64 (9)C35—C34—H34A119.8
C11—N5—C12115.71 (10)C33—C34—H34A119.8
C11—N5—C13120.29 (9)C34—C35—C36118.91 (10)
C12—N5—C13113.87 (10)C34—C35—H35A120.5
N5—C12—H12A109.5C36—C35—H35A120.5
N5—C12—H12B109.5C37—C36—C35120.00 (10)
H12A—C12—H12B109.5C37—C36—H36A120.0
N5—C12—H12C109.5C35—C36—H36A120.0
H12A—C12—H12C109.5C36—C37—C32123.09 (10)
H12B—C12—H12C109.5C36—C37—H37A118.5
N5—C13—H13A109.5C32—C37—H37A118.5
N5—C13—H13B109.5
N2—C1—N1—C333.82 (13)C26—B1—C20—C21143.51 (9)
N3—C1—N1—C3146.25 (9)C32—B1—C20—C2196.93 (10)
N2—C1—N1—C2143.10 (9)C14—B1—C20—C25163.19 (8)
N3—C1—N1—C236.83 (13)C26—B1—C20—C2543.71 (12)
N1—C1—N2—C5143.09 (10)C32—B1—C20—C2575.85 (10)
N3—C1—N2—C536.98 (13)C25—C20—C21—C220.26 (14)
N1—C1—N2—C435.05 (13)B1—C20—C21—C22173.40 (9)
N3—C1—N2—C4144.88 (9)C20—C21—C22—C230.45 (15)
N2—C1—N3—C632.16 (14)C21—C22—C23—C240.24 (15)
N1—C1—N3—C6147.77 (9)C22—C23—C24—C250.13 (15)
N2—C1—N3—C7153.50 (9)C23—C24—C25—C200.31 (15)
N1—C1—N3—C726.57 (14)C21—C20—C25—C240.12 (14)
C1—N3—C7—C8124.04 (10)B1—C20—C25—C24173.24 (9)
C6—N3—C7—C861.33 (11)C14—B1—C26—C27103.76 (10)
N3—C7—C8—C963.95 (10)C20—B1—C26—C2719.06 (13)
C7—C8—C9—N463.61 (10)C32—B1—C26—C27134.25 (10)
C8—C9—N4—C11115.84 (10)C14—B1—C26—C3173.21 (11)
C8—C9—N4—C1075.68 (11)C20—B1—C26—C31163.97 (9)
C10—N4—C11—O1156.85 (10)C32—B1—C26—C3148.77 (12)
C9—N4—C11—O110.66 (15)C31—C26—C27—C281.18 (15)
C10—N4—C11—N521.14 (14)B1—C26—C27—C28178.27 (10)
C9—N4—C11—N5171.34 (9)C26—C27—C28—C290.07 (16)
O1—C11—N5—C1210.68 (15)C27—C28—C29—C301.18 (17)
N4—C11—N5—C12167.32 (9)C28—C29—C30—C310.97 (17)
O1—C11—N5—C13132.58 (11)C29—C30—C31—C260.38 (18)
N4—C11—N5—C1349.42 (13)C27—C26—C31—C301.41 (16)
C26—B1—C14—C1594.51 (10)B1—C26—C31—C30178.69 (10)
C20—B1—C14—C15142.00 (9)C14—B1—C32—C3741.83 (12)
C32—B1—C14—C1526.43 (13)C26—B1—C32—C37160.03 (9)
C26—B1—C14—C1980.96 (10)C20—B1—C32—C3778.85 (10)
C20—B1—C14—C1942.53 (12)C14—B1—C32—C33145.01 (9)
C32—B1—C14—C19158.10 (8)C26—B1—C32—C3326.81 (12)
C19—C14—C15—C162.36 (14)C20—B1—C32—C3394.31 (10)
B1—C14—C15—C16178.07 (9)C37—C32—C33—C340.24 (14)
C14—C15—C16—C170.62 (16)B1—C32—C33—C34173.29 (9)
C15—C16—C17—C181.42 (16)C32—C33—C34—C350.30 (15)
C16—C17—C18—C191.58 (16)C33—C34—C35—C360.23 (15)
C17—C18—C19—C140.30 (16)C34—C35—C36—C370.79 (15)
C15—C14—C19—C182.21 (14)C35—C36—C37—C320.87 (16)
B1—C14—C19—C18178.07 (9)C33—C32—C37—C360.34 (14)
C14—B1—C20—C2124.04 (13)B1—C32—C37—C36174.03 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13C···O1i0.982.673.395 (2)131
Symmetry code: (i) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC13H30N5O+·C24H20B
Mr591.63
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)16.6807 (7), 9.7766 (4), 21.6911 (9)
β (°) 110.743 (3)
V3)3308.1 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.26 × 0.20 × 0.17
Data collection
DiffractometerBruker Kappa APEXII DUO
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
69308, 10094, 7953
Rint0.037
(sin θ/λ)max1)0.715
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.107, 1.01
No. of reflections10094
No. of parameters405
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.39, 0.22

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2005).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13C···O1i0.982.673.395 (2)131
Symmetry code: (i) x+1/2, y+1/2, z+1/2.
 

Acknowledgements

The authors thank Dr W. Frey (Institut für Organische Chemie, Universität Stuttgart) for the data collection.

References

First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFrampton, C. S. & Parkes, K. E. B. (1996). Acta Cryst. C52, 3246–3248.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTiritiris, I. & Kantlehner, W. (2008). Z. Kristallogr. 223, 345–346.  CAS Google Scholar
First citationTiritiris, I. & Kantlehner, W. (2012). Z. Naturforsch. Teil B. In the press.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds