organic compounds
N,N-Bis(pyridin-2-ylmethyl)cyclohexanamine
aSchool of Chemistry and Physics, University of KwaZulu-Natal, Private Bag X01, Scottsville 3209, Pietermaritzburg, South Africa
*Correspondence e-mail: akermanm@ukzn.ac.za
The pyridine rings of the title compound, C18H23N3, are in a nearly perpendicular orientation relative to the plane defined by the three amino-bonded C atoms, making dihedral angles of 87.4 (1) ° and 84.2 (1) °. One of the pyridine N atoms acts as an hydrogen-bond acceptor for two pyridine C—H groups. By means of these intermolecular hydrogen bonds, the molecules form a two-dimensional network parallel to the ab plane.
Related literature
For a kinetic and mechanistic study of the platinum(II) chelate of the title compound, see: Mambanda & Jaganyi (2012). For the synthesis of the title compound, see: Sato et al. (1992); Toftlund & Yde-Andersen (1981); Anderegg & Wenk (1967). For the of the related compound N,N-bis(2-pyridylmethyl)-tert-butylamine, see: Mambanda et al. (2009). For the crystal structures of the hexadentate analogues, see: Mambanda et al. (2007). For dinuclear platinum(II) complexes structurally related to the complex of the title compound, see: Hofmann & van Eldik (2003); Erteurk et al. (2007, 2008). For dinuclear metal complexes containing bis(tridentate) chelates structurally related to the title compound, see: Fujihara et al. (2004); Gunatilleke & Norman (2003); Fujii et al. (2003). For manganese–oxo complexes of N,N-bis(2-pyridylmethyl)ethylamine and N,N-bis (2-pyridylmethyl)-tert-butylamine, see: Pal et al. (1992) and Mok et al. (1997), respectively.
Experimental
Crystal data
|
Refinement
|
Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: WinGX (Farrugia, 1999); software used to prepare material for publication: publCIF (Westrip, 2010).
Supporting information
https://doi.org/10.1107/S1600536812027572/ld2063sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536812027572/ld2063Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S1600536812027572/ld2063Isup3.cml
The tridentate ligand is formed by reacting two molar equivalents of 2-picolyl chloride hydrochloride under basic aqueous conditions with one molar equivalent of cyclohexylamine, following an improved method of Sato et al., (1992) previously reported by Toftlund & Yde-Andersen (1981) as well as Anderegg & Wenk (1967). Colourless crystals were obtained by slow evaporation of an ethanol solution of the ligand over a period of several days. Yield: 1.276 g (44%).
The positions of all C-bonded hydrogen atoms were calculated using the standard riding model of SHELXL97 (Sheldrick, 2008) with C—H(aromatic) distances of 0.95 Å and Uiso = 1.2 Ueq, C—H(methylene) distances of 0.99 Å and Uiso = 1.2 Ueq and a C—H(methine) distance of 1.00 Å and Uiso = 1.2 Ueq. In the absence of significant anamalous scattering, Friedel pairs were merged.
The search for chelating ligands for the coordination of platinum(II) ions has led us to investigate bis-N-functionalized cyclohexylamine as a potential tridentate N-donor ligand.
The pyridine rings are in a near perpendicular orientation relative to the three-atom mean plane defined by the N-bonded carbon atoms making angles of 87.4 (1) ° and 84.2 (1) ° to the plane, for the rings containg N2 and N3, respectively. The near perpendicular orientation of the pyridyl rings allows for hydrogen bonding, stabilizing the lattice.
There are non-classical hydrogen bonds between the pyridine nitrogen atom, N2, and the pyridine hydrogen atoms, H4 and H11 of two separate, adjacent molecules. N2 acts as an acceptor for both hydrogen bonds. These bonds lead to the formation of an infinite two-dimensional hydrogen-bonded network. This network is co-planar with the ab plane. The network consists of one-dimensional chains with adjacent molecules linked by the N2···H4 hydrogen bond. These one-dimensional chains are then cross-linked by the N2···H11 hydrogen bond, thus forming an infinite, two-dimensional network. Although hydrogen bond length does not necessarily correlate linearly to bond strength, due to packing constraints in the lattice, these bonds are considerably shorter than the sum of their van der Waals radii and are thus likely to be moderate to high in strength. This also seems likely as the D—H···A bond angle of both bonds, 165.7 (1) ° and 153.1 (1) ° for N2···H4—C4 and N2···H11—C11 respectively, do not show a marked deviation from ideality. The hydrogen bond lengths and angles are summarized in Table 1.
For a kinetic and mechanistic study of the platinum(II) chelate of the title compound, see: Mambanda & Jaganyi (2012). For the synthesis of the title compound, see: Sato et al. (1992); Toftlund & Yde-Andersen (1981); Anderegg & Wenk (1967). For the
of the related compound N,N-bis(2-pyridylmethyl)-tert-butylamine, see: Mambanda et al. (2009). For the crystal structures of the hexadentate analogues, see: Mambanda et al. (2007). For dinuclear platinum(II) complexes structurally related to the complex of the title compound, see: Hofmann & van Eldik (2003); Erteurk et al. (2007, 2008). For dinuclear metal complexes containing bis(tridentate) chelates structurally related to the title compound, see: Fujihara et al. (2004); Gunatilleke & Norman (2003); Fujii et al. (2003). For manganese–oxo complexes of N,N-bis(2-pyridylmethyl)ethylamine and N,N-bis (2-pyridylmethyl)-tert-butylamine, see: Pal et al. (1992) and Mok et al. (1997), respectively.Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell
CrysAlis CCD (Oxford Diffraction, 2008); data reduction: CrysAlis RED (Oxford Diffraction, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: WinGX (Farrugia, 1999); software used to prepare material for publication: publCIF (Westrip, 2010).C18H23N3 | F(000) = 608 |
Mr = 281.39 | Dx = 1.180 Mg m−3 |
Monoclinic, Cc | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: C -2yc | Cell parameters from 2134 reflections |
a = 6.2272 (2) Å | θ = 3.5–32.1° |
b = 18.1729 (7) Å | µ = 0.07 mm−1 |
c = 14.3213 (5) Å | T = 120 K |
β = 102.118 (4)° | Planar, colourless |
V = 1584.57 (10) Å3 | 0.60 × 0.50 × 0.30 mm |
Z = 4 |
Oxford Diffraction Xcalibur 2 CCD diffractometer | 2521 independent reflections |
Radiation source: fine-focus sealed tube | 2134 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.033 |
ω scans at fixed θ angles | θmax = 32.1°, θmin = 3.5° |
Absorption correction: multi-scan (Blessing, 1995) | h = −9→6 |
Tmin = 0.959, Tmax = 0.979 | k = −26→25 |
7854 measured reflections | l = −20→20 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.038 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.085 | H-atom parameters constrained |
S = 0.98 | w = 1/[σ2(Fo2) + (0.053P)2] where P = (Fo2 + 2Fc2)/3 |
2134 reflections | (Δ/σ)max < 0.001 |
190 parameters | Δρmax = 0.15 e Å−3 |
2 restraints | Δρmin = −0.25 e Å−3 |
C18H23N3 | V = 1584.57 (10) Å3 |
Mr = 281.39 | Z = 4 |
Monoclinic, Cc | Mo Kα radiation |
a = 6.2272 (2) Å | µ = 0.07 mm−1 |
b = 18.1729 (7) Å | T = 120 K |
c = 14.3213 (5) Å | 0.60 × 0.50 × 0.30 mm |
β = 102.118 (4)° |
Oxford Diffraction Xcalibur 2 CCD diffractometer | 2521 independent reflections |
Absorption correction: multi-scan (Blessing, 1995) | 2134 reflections with I > 2σ(I) |
Tmin = 0.959, Tmax = 0.979 | Rint = 0.033 |
7854 measured reflections |
R[F2 > 2σ(F2)] = 0.038 | 2 restraints |
wR(F2) = 0.085 | H-atom parameters constrained |
S = 0.98 | Δρmax = 0.15 e Å−3 |
2134 reflections | Δρmin = −0.25 e Å−3 |
190 parameters |
Experimental. Yield: 1.3432 g (40%), colourless block crystals. 1H NMR (400 MHz, CDCl3) δ (p.p.m.): 8.58 (d, 2H); 8.50–7.60 (m, 4H); 7.05 (t, 2H); 3.39 (s, 4H); 2.55 (m, 1H); 1.90 (d, 2H); 1.8 (m, 2H); 1.60 (d, 2H); 1.35 (m, 2H); 1.19 (m, 2H). 13C NMR (100 MHz, CDCl3) δ / p.p.m.: 27.0; 29; 57.0; 60.5; 122.0; 123.0; 136.0; 148.0; 161. IR (KBr, 4000–400 cm-1): 2958–2854 (alkyl C—H stretch); 1589 C=N (pyridyl). MS—ES+, m/e: 282.2069, (M +1)+. Anal. Calc. for C18H23N3: C, 76.81; H, 8.24; N, 14.93; Found: C, 76.8; H, 8.18; N, 14.89. |
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.8715 (2) | 0.26180 (9) | 0.20552 (11) | 0.0220 (3) | |
H1A | 1.0103 | 0.2846 | 0.1967 | 0.026* | |
H1B | 0.9082 | 0.2135 | 0.2369 | 0.026* | |
C2 | 0.7709 (2) | 0.31007 (8) | 0.27025 (10) | 0.0186 (3) | |
C3 | 0.5510 (2) | 0.30374 (9) | 0.27499 (11) | 0.0235 (3) | |
H3 | 0.4570 | 0.2709 | 0.2338 | 0.028* | |
C4 | 0.4709 (3) | 0.34586 (10) | 0.34038 (12) | 0.0258 (3) | |
H4 | 0.3215 | 0.3420 | 0.3451 | 0.031* | |
C5 | 0.6111 (3) | 0.39369 (10) | 0.39884 (12) | 0.0265 (3) | |
H5 | 0.5610 | 0.4230 | 0.4449 | 0.032* | |
C6 | 0.8260 (3) | 0.39748 (9) | 0.38825 (12) | 0.0253 (3) | |
H6 | 0.9221 | 0.4308 | 0.4278 | 0.030* | |
C7 | 0.7975 (3) | 0.18410 (9) | 0.06711 (11) | 0.0219 (3) | |
H7A | 0.9583 | 0.1856 | 0.0719 | 0.026* | |
H7B | 0.7258 | 0.1839 | −0.0015 | 0.026* | |
C8 | 0.7384 (3) | 0.11434 (8) | 0.11310 (11) | 0.0215 (3) | |
C9 | 0.5374 (3) | 0.10687 (10) | 0.14035 (12) | 0.0270 (3) | |
H9 | 0.4348 | 0.1463 | 0.1310 | 0.032* | |
C10 | 0.4884 (3) | 0.04184 (10) | 0.18101 (13) | 0.0310 (4) | |
H10 | 0.3523 | 0.0358 | 0.2002 | 0.037* | |
C11 | 0.6412 (3) | −0.01444 (10) | 0.19330 (13) | 0.0313 (4) | |
H11 | 0.6137 | −0.0598 | 0.2216 | 0.038* | |
C12 | 0.8340 (3) | −0.00279 (10) | 0.16339 (14) | 0.0321 (4) | |
H12 | 0.9380 | −0.0417 | 0.1713 | 0.039* | |
C13 | 0.7079 (2) | 0.31684 (8) | 0.05181 (11) | 0.0196 (3) | |
H13 | 0.6855 | 0.3590 | 0.0936 | 0.024* | |
C14 | 0.9088 (3) | 0.33578 (9) | 0.01086 (12) | 0.0240 (3) | |
H14A | 1.0392 | 0.3406 | 0.0636 | 0.029* | |
H14B | 0.9370 | 0.2955 | −0.0315 | 0.029* | |
C15 | 0.8733 (3) | 0.40755 (10) | −0.04551 (13) | 0.0304 (4) | |
H15A | 1.0034 | 0.4179 | −0.0730 | 0.036* | |
H15B | 0.8567 | 0.4485 | −0.0020 | 0.036* | |
C16 | 0.6690 (3) | 0.40310 (10) | −0.12573 (12) | 0.0295 (4) | |
H16A | 0.6455 | 0.4510 | −0.1593 | 0.035* | |
H16B | 0.6910 | 0.3652 | −0.1725 | 0.035* | |
C17 | 0.4681 (3) | 0.38384 (10) | −0.08605 (12) | 0.0285 (4) | |
H17A | 0.3395 | 0.3782 | −0.1395 | 0.034* | |
H17B | 0.4367 | 0.4245 | −0.0449 | 0.034* | |
C18 | 0.5024 (3) | 0.31257 (10) | −0.02789 (12) | 0.0250 (3) | |
H18A | 0.3726 | 0.3034 | 0.0003 | 0.030* | |
H18B | 0.5165 | 0.2709 | −0.0707 | 0.030* | |
N1 | 0.7294 (2) | 0.24994 (7) | 0.11224 (9) | 0.0197 (3) | |
N2 | 0.9074 (2) | 0.35684 (7) | 0.32526 (10) | 0.0219 (3) | |
N3 | 0.8852 (2) | 0.05990 (8) | 0.12380 (11) | 0.0268 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0195 (7) | 0.0269 (8) | 0.0196 (7) | 0.0041 (6) | 0.0039 (5) | 0.0007 (6) |
C2 | 0.0202 (7) | 0.0190 (7) | 0.0164 (6) | 0.0021 (5) | 0.0033 (5) | 0.0032 (5) |
C3 | 0.0205 (7) | 0.0296 (8) | 0.0199 (7) | −0.0015 (6) | 0.0031 (6) | −0.0010 (6) |
C4 | 0.0231 (7) | 0.0326 (9) | 0.0235 (7) | 0.0012 (6) | 0.0089 (6) | 0.0022 (7) |
C5 | 0.0319 (8) | 0.0269 (8) | 0.0231 (7) | 0.0061 (7) | 0.0114 (6) | −0.0004 (6) |
C6 | 0.0289 (8) | 0.0217 (8) | 0.0249 (7) | 0.0004 (6) | 0.0043 (6) | −0.0015 (6) |
C7 | 0.0248 (7) | 0.0214 (7) | 0.0212 (7) | 0.0019 (6) | 0.0090 (6) | 0.0002 (6) |
C8 | 0.0253 (7) | 0.0221 (7) | 0.0173 (6) | −0.0018 (6) | 0.0049 (6) | −0.0011 (6) |
C9 | 0.0246 (8) | 0.0273 (8) | 0.0302 (8) | −0.0003 (6) | 0.0081 (7) | −0.0021 (7) |
C10 | 0.0311 (8) | 0.0324 (9) | 0.0317 (9) | −0.0092 (7) | 0.0114 (7) | −0.0034 (7) |
C11 | 0.0393 (10) | 0.0259 (8) | 0.0277 (8) | −0.0097 (7) | 0.0048 (7) | 0.0014 (7) |
C12 | 0.0336 (9) | 0.0242 (9) | 0.0384 (10) | 0.0013 (7) | 0.0072 (8) | 0.0044 (8) |
C13 | 0.0198 (7) | 0.0208 (7) | 0.0187 (6) | 0.0015 (6) | 0.0049 (5) | −0.0010 (6) |
C14 | 0.0224 (7) | 0.0251 (8) | 0.0248 (7) | −0.0013 (6) | 0.0058 (6) | 0.0008 (6) |
C15 | 0.0363 (9) | 0.0266 (9) | 0.0282 (8) | −0.0056 (7) | 0.0065 (7) | 0.0020 (7) |
C16 | 0.0395 (10) | 0.0269 (8) | 0.0211 (7) | 0.0012 (7) | 0.0041 (7) | 0.0029 (6) |
C17 | 0.0291 (8) | 0.0307 (8) | 0.0234 (7) | 0.0062 (7) | 0.0002 (6) | 0.0014 (7) |
C18 | 0.0205 (7) | 0.0295 (8) | 0.0238 (7) | 0.0003 (6) | 0.0016 (6) | 0.0027 (6) |
N1 | 0.0226 (6) | 0.0211 (6) | 0.0157 (6) | 0.0025 (5) | 0.0048 (5) | −0.0003 (5) |
N2 | 0.0215 (6) | 0.0202 (6) | 0.0238 (6) | 0.0006 (5) | 0.0040 (5) | 0.0008 (5) |
N3 | 0.0282 (7) | 0.0224 (7) | 0.0308 (7) | 0.0022 (6) | 0.0080 (6) | 0.0018 (6) |
C1—N1 | 1.4554 (19) | C10—H10 | 0.9500 |
C1—C2 | 1.505 (2) | C11—C12 | 1.373 (3) |
C1—H1A | 0.9900 | C11—H11 | 0.9500 |
C1—H1B | 0.9900 | C12—N3 | 1.341 (2) |
C2—N2 | 1.3359 (19) | C12—H12 | 0.9500 |
C2—C3 | 1.390 (2) | C13—N1 | 1.4821 (19) |
C3—C4 | 1.381 (2) | C13—C18 | 1.528 (2) |
C3—H3 | 0.9500 | C13—C14 | 1.528 (2) |
C4—C5 | 1.383 (2) | C13—H13 | 1.0000 |
C4—H4 | 0.9500 | C14—C15 | 1.526 (2) |
C5—C6 | 1.380 (2) | C14—H14A | 0.9900 |
C5—H5 | 0.9500 | C14—H14B | 0.9900 |
C6—N2 | 1.345 (2) | C15—C16 | 1.527 (2) |
C6—H6 | 0.9500 | C15—H15A | 0.9900 |
C7—N1 | 1.4642 (19) | C15—H15B | 0.9900 |
C7—C8 | 1.509 (2) | C16—C17 | 1.520 (3) |
C7—H7A | 0.9900 | C16—H16A | 0.9900 |
C7—H7B | 0.9900 | C16—H16B | 0.9900 |
C8—N3 | 1.334 (2) | C17—C18 | 1.530 (2) |
C8—C9 | 1.394 (2) | C17—H17A | 0.9900 |
C9—C10 | 1.380 (2) | C17—H17B | 0.9900 |
C9—H9 | 0.9500 | C18—H18A | 0.9900 |
C10—C11 | 1.383 (3) | C18—H18B | 0.9900 |
N1—C1—C2 | 113.59 (12) | N1—C13—C18 | 110.69 (13) |
N1—C1—H1A | 108.8 | N1—C13—C14 | 115.35 (12) |
C2—C1—H1A | 108.8 | C18—C13—C14 | 110.47 (13) |
N1—C1—H1B | 108.8 | N1—C13—H13 | 106.6 |
C2—C1—H1B | 108.8 | C18—C13—H13 | 106.6 |
H1A—C1—H1B | 107.7 | C14—C13—H13 | 106.6 |
N2—C2—C3 | 122.37 (14) | C15—C14—C13 | 110.87 (14) |
N2—C2—C1 | 116.00 (13) | C15—C14—H14A | 109.5 |
C3—C2—C1 | 121.58 (14) | C13—C14—H14A | 109.5 |
C4—C3—C2 | 119.13 (15) | C15—C14—H14B | 109.5 |
C4—C3—H3 | 120.4 | C13—C14—H14B | 109.5 |
C2—C3—H3 | 120.4 | H14A—C14—H14B | 108.1 |
C3—C4—C5 | 119.17 (15) | C14—C15—C16 | 110.99 (14) |
C3—C4—H4 | 120.4 | C14—C15—H15A | 109.4 |
C5—C4—H4 | 120.4 | C16—C15—H15A | 109.4 |
C6—C5—C4 | 117.92 (15) | C14—C15—H15B | 109.4 |
C6—C5—H5 | 121.0 | C16—C15—H15B | 109.4 |
C4—C5—H5 | 121.0 | H15A—C15—H15B | 108.0 |
N2—C6—C5 | 123.87 (16) | C17—C16—C15 | 110.62 (14) |
N2—C6—H6 | 118.1 | C17—C16—H16A | 109.5 |
C5—C6—H6 | 118.1 | C15—C16—H16A | 109.5 |
N1—C7—C8 | 111.97 (12) | C17—C16—H16B | 109.5 |
N1—C7—H7A | 109.2 | C15—C16—H16B | 109.5 |
C8—C7—H7A | 109.2 | H16A—C16—H16B | 108.1 |
N1—C7—H7B | 109.2 | C16—C17—C18 | 111.50 (14) |
C8—C7—H7B | 109.2 | C16—C17—H17A | 109.3 |
H7A—C7—H7B | 107.9 | C18—C17—H17A | 109.3 |
N3—C8—C9 | 122.00 (15) | C16—C17—H17B | 109.3 |
N3—C8—C7 | 116.69 (14) | C18—C17—H17B | 109.3 |
C9—C8—C7 | 121.29 (14) | H17A—C17—H17B | 108.0 |
C10—C9—C8 | 119.52 (16) | C13—C18—C17 | 111.29 (14) |
C10—C9—H9 | 120.2 | C13—C18—H18A | 109.4 |
C8—C9—H9 | 120.2 | C17—C18—H18A | 109.4 |
C9—C10—C11 | 118.68 (17) | C13—C18—H18B | 109.4 |
C9—C10—H10 | 120.7 | C17—C18—H18B | 109.4 |
C11—C10—H10 | 120.7 | H18A—C18—H18B | 108.0 |
C12—C11—C10 | 118.01 (16) | C1—N1—C7 | 110.47 (12) |
C12—C11—H11 | 121.0 | C1—N1—C13 | 112.17 (12) |
C10—C11—H11 | 121.0 | C7—N1—C13 | 114.30 (12) |
N3—C12—C11 | 124.36 (17) | C2—N2—C6 | 117.52 (14) |
N3—C12—H12 | 117.8 | C8—N3—C12 | 117.42 (15) |
C11—C12—H12 | 117.8 | ||
N1—C1—C2—N2 | −142.02 (14) | C15—C16—C17—C18 | −55.53 (19) |
N1—C1—C2—C3 | 40.6 (2) | N1—C13—C18—C17 | 175.48 (13) |
N2—C2—C3—C4 | −1.6 (2) | C14—C13—C18—C17 | −55.51 (17) |
C1—C2—C3—C4 | 175.56 (14) | C16—C17—C18—C13 | 55.43 (18) |
C2—C3—C4—C5 | 0.6 (2) | C2—C1—N1—C7 | −159.59 (13) |
C3—C4—C5—C6 | 0.6 (2) | C2—C1—N1—C13 | 71.62 (17) |
C4—C5—C6—N2 | −0.8 (3) | C8—C7—N1—C1 | 73.28 (16) |
N1—C7—C8—N3 | −140.81 (14) | C8—C7—N1—C13 | −159.09 (13) |
N1—C7—C8—C9 | 40.9 (2) | C18—C13—N1—C1 | −159.74 (12) |
N3—C8—C9—C10 | 1.0 (2) | C14—C13—N1—C1 | 73.93 (15) |
C7—C8—C9—C10 | 179.14 (15) | C18—C13—N1—C7 | 73.51 (16) |
C8—C9—C10—C11 | −0.2 (3) | C14—C13—N1—C7 | −52.83 (17) |
C9—C10—C11—C12 | −0.6 (3) | C3—C2—N2—C6 | 1.4 (2) |
C10—C11—C12—N3 | 0.7 (3) | C1—C2—N2—C6 | −175.90 (14) |
N1—C13—C14—C15 | −176.97 (13) | C5—C6—N2—C2 | −0.2 (2) |
C18—C13—C14—C15 | 56.58 (17) | C9—C8—N3—C12 | −0.9 (2) |
C13—C14—C15—C16 | −57.35 (18) | C7—C8—N3—C12 | −179.15 (15) |
C14—C15—C16—C17 | 56.55 (19) | C11—C12—N3—C8 | 0.1 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
C4—H4···N2i | 0.95 | 2.55 | 3.475 (2) | 166 (1) |
C11—H11···N2ii | 0.95 | 2.64 | 3.511 (2) | 153 (1) |
Symmetry codes: (i) x−1, y, z; (ii) x−1/2, y−1/2, z. |
Experimental details
Crystal data | |
Chemical formula | C18H23N3 |
Mr | 281.39 |
Crystal system, space group | Monoclinic, Cc |
Temperature (K) | 120 |
a, b, c (Å) | 6.2272 (2), 18.1729 (7), 14.3213 (5) |
β (°) | 102.118 (4) |
V (Å3) | 1584.57 (10) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.07 |
Crystal size (mm) | 0.60 × 0.50 × 0.30 |
Data collection | |
Diffractometer | Oxford Diffraction Xcalibur 2 CCD |
Absorption correction | Multi-scan (Blessing, 1995) |
Tmin, Tmax | 0.959, 0.979 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 7854, 2521, 2134 |
Rint | 0.033 |
(sin θ/λ)max (Å−1) | 0.747 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.038, 0.085, 0.98 |
No. of reflections | 2134 |
No. of parameters | 190 |
No. of restraints | 2 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.15, −0.25 |
Computer programs: CrysAlis CCD (Oxford Diffraction, 2008), CrysAlis RED (Oxford Diffraction, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), WinGX (Farrugia, 1999), publCIF (Westrip, 2010).
D—H···A | D—H | H···A | D···A | D—H···A |
C4—H4···N2i | 0.95 | 2.547 | 3.475 (2) | 165.7 (1) |
C11—H11···N2ii | 0.95 | 2.637 | 3.511 (2) | 153.1 (1) |
Symmetry codes: (i) x−1, y, z; (ii) x−1/2, y−1/2, z. |
Acknowledgements
The authors gratefully acknowledge financial support from the University of KwaZulu-Natal and the National Research Foundation (NRF, Pretoria). We thank Mr C. Grimmer for the NMR analysis of the samples.
References
Anderegg, G. & Wenk, F. (1967). Helv. Chim. Acta, 50, 2330–2332. CrossRef CAS Web of Science Google Scholar
Blessing, R. H. (1995). Acta Cryst. A51, 33–38. CrossRef CAS Web of Science IUCr Journals Google Scholar
Erteurk, H., Hofmann, A., Puchta, R. & van Eldik, R. (2007). Dalton Trans. pp. 2295–2301. Google Scholar
Erteurk, H., Maigut, J., Puchta, R. & van Eldik, R. (2008). Dalton Trans. pp. 2759–2766. Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Fujihara, T., Saito, M. & Nagasawa, A. (2004). Acta Cryst. E60, o262–o263. Web of Science CSD CrossRef IUCr Journals Google Scholar
Fujii, T., Naito, A., Yamaguchi, S., Wada, A., Funahashi, Y., Jitsukawa, K., Nagatomo, S., Kitagawa, T. & Masuda, H. (2003). Chem. Commun. 21, 2700–2701. Web of Science CSD CrossRef Google Scholar
Gunatilleke, S. S. & Norman, R. E. (2003). Acta Cryst. E59, o269–o271. Web of Science CSD CrossRef IUCr Journals Google Scholar
Hofmann, A. & van Eldik, R. (2003). Dalton Trans. pp. 2979–2985. Web of Science CrossRef Google Scholar
Mambanda, A. & Jaganyi, D. (2012). Dalton Trans. 41, 908–920. Web of Science CrossRef CAS PubMed Google Scholar
Mambanda, A., Jaganyi, D. & Munro, O. Q. (2007). Acta Cryst. C63, o676–o680. Web of Science CSD CrossRef IUCr Journals Google Scholar
Mambanda, A., Jaganyi, D. & Stewart, K. (2009). Acta Cryst. E65, o402. Web of Science CSD CrossRef IUCr Journals Google Scholar
Mok, H. J., Davis, J. A., Pal, S., Mandal, S. K. & Armstrong, W. H. (1997). Inorg. Chim. Acta, 263, 385–394. CSD CrossRef CAS Web of Science Google Scholar
Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England. Google Scholar
Pal, S., Chan, M. K. & Armstrong, W. H. (1992). J. Am. Chem. Soc. 114, 6398–6404. CSD CrossRef CAS Web of Science Google Scholar
Sato, M., Mori, Y. & Iida, T. (1992). Synthesis, 6, 539–540. CrossRef Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Toftlund, H. & Yde-Andersen, S. (1981). Acta Chem. Scand. Ser. A, 35, 575–581. CrossRef Web of Science Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The search for chelating ligands for the coordination of platinum(II) ions has led us to investigate bis-N-functionalized cyclohexylamine as a potential tridentate N-donor ligand.
The pyridine rings are in a near perpendicular orientation relative to the three-atom mean plane defined by the N-bonded carbon atoms making angles of 87.4 (1) ° and 84.2 (1) ° to the plane, for the rings containg N2 and N3, respectively. The near perpendicular orientation of the pyridyl rings allows for hydrogen bonding, stabilizing the lattice.
There are non-classical hydrogen bonds between the pyridine nitrogen atom, N2, and the pyridine hydrogen atoms, H4 and H11 of two separate, adjacent molecules. N2 acts as an acceptor for both hydrogen bonds. These bonds lead to the formation of an infinite two-dimensional hydrogen-bonded network. This network is co-planar with the ab plane. The network consists of one-dimensional chains with adjacent molecules linked by the N2···H4 hydrogen bond. These one-dimensional chains are then cross-linked by the N2···H11 hydrogen bond, thus forming an infinite, two-dimensional network. Although hydrogen bond length does not necessarily correlate linearly to bond strength, due to packing constraints in the lattice, these bonds are considerably shorter than the sum of their van der Waals radii and are thus likely to be moderate to high in strength. This also seems likely as the D—H···A bond angle of both bonds, 165.7 (1) ° and 153.1 (1) ° for N2···H4—C4 and N2···H11—C11 respectively, do not show a marked deviation from ideality. The hydrogen bond lengths and angles are summarized in Table 1.