organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N,N-Bis(pyridin-2-ylmeth­yl)cyclo­hexa­namine

aSchool of Chemistry and Physics, University of KwaZulu-Natal, Private Bag X01, Scottsville 3209, Pietermaritzburg, South Africa
*Correspondence e-mail: akermanm@ukzn.ac.za

(Received 6 June 2012; accepted 18 June 2012; online 23 June 2012)

The pyridine rings of the title compound, C18H23N3, are in a nearly perpendicular orientation relative to the plane defined by the three amino-bonded C atoms, making dihedral angles of 87.4 (1) ° and 84.2 (1) °. One of the pyridine N atoms acts as an hydrogen-bond acceptor for two pyridine C—H groups. By means of these intermolecular hydrogen bonds, the mol­ecules form a two-dimensional network parallel to the ab plane.

Related literature

For a kinetic and mechanistic study of the platinum(II) chelate of the title compound, see: Mambanda & Jaganyi (2012[Mambanda, A. & Jaganyi, D. (2012). Dalton Trans. 41, 908-920.]). For the synthesis of the title compound, see: Sato et al. (1992[Sato, M., Mori, Y. & Iida, T. (1992). Synthesis, 6, 539-540.]); Toftlund & Yde-Andersen (1981[Toftlund, H. & Yde-Andersen, S. (1981). Acta Chem. Scand. Ser. A, 35, 575-581.]); Anderegg & Wenk (1967[Anderegg, G. & Wenk, F. (1967). Helv. Chim. Acta, 50, 2330-2332.]). For the crystal structure of the related compound N,N-bis­(2-pyridyl­meth­yl)-tert-butyl­amine, see: Mambanda et al. (2009[Mambanda, A., Jaganyi, D. & Stewart, K. (2009). Acta Cryst. E65, o402.]). For the crystal structures of the hexa­dentate analogues, see: Mambanda et al. (2007[Mambanda, A., Jaganyi, D. & Munro, O. Q. (2007). Acta Cryst. C63, o676-o680.]). For dinuclear platinum(II) complexes structurally related to the complex of the title compound, see: Hofmann & van Eldik (2003[Hofmann, A. & van Eldik, R. (2003). Dalton Trans. pp. 2979-2985.]); Erteurk et al. (2007[Erteurk, H., Hofmann, A., Puchta, R. & van Eldik, R. (2007). Dalton Trans. pp. 2295-2301.], 2008[Erteurk, H., Maigut, J., Puchta, R. & van Eldik, R. (2008). Dalton Trans. pp. 2759-2766.]). For dinuclear metal complexes containing bis­(tridentate) chelates structurally related to the title compound, see: Fujihara et al. (2004[Fujihara, T., Saito, M. & Nagasawa, A. (2004). Acta Cryst. E60, o262-o263.]); Gunatilleke & Norman (2003[Gunatilleke, S. S. & Norman, R. E. (2003). Acta Cryst. E59, o269-o271.]); Fujii et al. (2003[Fujii, T., Naito, A., Yamaguchi, S., Wada, A., Funahashi, Y., Jitsukawa, K., Nagatomo, S., Kitagawa, T. & Masuda, H. (2003). Chem. Commun. 21, 2700-2701.]). For manganese–oxo complexes of N,N-bis­(2-pyridyl­meth­yl)ethyl­amine and N,N-bis­ (2-pyridyl­meth­yl)-tert-butyl­amine, see: Pal et al. (1992[Pal, S., Chan, M. K. & Armstrong, W. H. (1992). J. Am. Chem. Soc. 114, 6398-6404.]) and Mok et al. (1997[Mok, H. J., Davis, J. A., Pal, S., Mandal, S. K. & Armstrong, W. H. (1997). Inorg. Chim. Acta, 263, 385-394.]), respectively.

[Scheme 1]

Experimental

Crystal data
  • C18H23N3

  • Mr = 281.39

  • Monoclinic, C c

  • a = 6.2272 (2) Å

  • b = 18.1729 (7) Å

  • c = 14.3213 (5) Å

  • β = 102.118 (4)°

  • V = 1584.57 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 120 K

  • 0.60 × 0.50 × 0.30 mm

Data collection
  • Oxford Diffraction Xcalibur 2 CCD diffractometer

  • Absorption correction: multi-scan (Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.959, Tmax = 0.979

  • 7854 measured reflections

  • 2521 independent reflections

  • 2134 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.085

  • S = 0.98

  • 2134 reflections

  • 190 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯N2i 0.95 2.55 3.475 (2) 166 (1)
C11—H11⋯N2ii 0.95 2.64 3.511 (2) 153 (1)
Symmetry codes: (i) x-1, y, z; (ii) [x-{\script{1\over 2}}, y-{\script{1\over 2}}, z].

Data collection: CrysAlis CCD (Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The search for chelating ligands for the coordination of platinum(II) ions has led us to investigate bis-N-functionalized cyclohexylamine as a potential tridentate N-donor ligand.

The pyridine rings are in a near perpendicular orientation relative to the three-atom mean plane defined by the N-bonded carbon atoms making angles of 87.4 (1) ° and 84.2 (1) ° to the plane, for the rings containg N2 and N3, respectively. The near perpendicular orientation of the pyridyl rings allows for hydrogen bonding, stabilizing the lattice.

There are non-classical hydrogen bonds between the pyridine nitrogen atom, N2, and the pyridine hydrogen atoms, H4 and H11 of two separate, adjacent molecules. N2 acts as an acceptor for both hydrogen bonds. These bonds lead to the formation of an infinite two-dimensional hydrogen-bonded network. This network is co-planar with the ab plane. The network consists of one-dimensional chains with adjacent molecules linked by the N2···H4 hydrogen bond. These one-dimensional chains are then cross-linked by the N2···H11 hydrogen bond, thus forming an infinite, two-dimensional network. Although hydrogen bond length does not necessarily correlate linearly to bond strength, due to packing constraints in the lattice, these bonds are considerably shorter than the sum of their van der Waals radii and are thus likely to be moderate to high in strength. This also seems likely as the D—H···A bond angle of both bonds, 165.7 (1) ° and 153.1 (1) ° for N2···H4—C4 and N2···H11—C11 respectively, do not show a marked deviation from ideality. The hydrogen bond lengths and angles are summarized in Table 1.

Related literature top

For a kinetic and mechanistic study of the platinum(II) chelate of the title compound, see: Mambanda & Jaganyi (2012). For the synthesis of the title compound, see: Sato et al. (1992); Toftlund & Yde-Andersen (1981); Anderegg & Wenk (1967). For the crystal structure of the related compound N,N-bis(2-pyridylmethyl)-tert-butylamine, see: Mambanda et al. (2009). For the crystal structures of the hexadentate analogues, see: Mambanda et al. (2007). For dinuclear platinum(II) complexes structurally related to the complex of the title compound, see: Hofmann & van Eldik (2003); Erteurk et al. (2007, 2008). For dinuclear metal complexes containing bis(tridentate) chelates structurally related to the title compound, see: Fujihara et al. (2004); Gunatilleke & Norman (2003); Fujii et al. (2003). For manganese–oxo complexes of N,N-bis(2-pyridylmethyl)ethylamine and N,N-bis (2-pyridylmethyl)-tert-butylamine, see: Pal et al. (1992) and Mok et al. (1997), respectively.

Experimental top

The tridentate ligand is formed by reacting two molar equivalents of 2-picolyl chloride hydrochloride under basic aqueous conditions with one molar equivalent of cyclohexylamine, following an improved method of Sato et al., (1992) previously reported by Toftlund & Yde-Andersen (1981) as well as Anderegg & Wenk (1967). Colourless crystals were obtained by slow evaporation of an ethanol solution of the ligand over a period of several days. Yield: 1.276 g (44%).

Refinement top

The positions of all C-bonded hydrogen atoms were calculated using the standard riding model of SHELXL97 (Sheldrick, 2008) with C—H(aromatic) distances of 0.95 Å and Uiso = 1.2 Ueq, CH(methylene) distances of 0.99 Å and Uiso = 1.2 Ueq and a C—H(methine) distance of 1.00 Å and Uiso = 1.2 Ueq. In the absence of significant anamalous scattering, Friedel pairs were merged.

Structure description top

The search for chelating ligands for the coordination of platinum(II) ions has led us to investigate bis-N-functionalized cyclohexylamine as a potential tridentate N-donor ligand.

The pyridine rings are in a near perpendicular orientation relative to the three-atom mean plane defined by the N-bonded carbon atoms making angles of 87.4 (1) ° and 84.2 (1) ° to the plane, for the rings containg N2 and N3, respectively. The near perpendicular orientation of the pyridyl rings allows for hydrogen bonding, stabilizing the lattice.

There are non-classical hydrogen bonds between the pyridine nitrogen atom, N2, and the pyridine hydrogen atoms, H4 and H11 of two separate, adjacent molecules. N2 acts as an acceptor for both hydrogen bonds. These bonds lead to the formation of an infinite two-dimensional hydrogen-bonded network. This network is co-planar with the ab plane. The network consists of one-dimensional chains with adjacent molecules linked by the N2···H4 hydrogen bond. These one-dimensional chains are then cross-linked by the N2···H11 hydrogen bond, thus forming an infinite, two-dimensional network. Although hydrogen bond length does not necessarily correlate linearly to bond strength, due to packing constraints in the lattice, these bonds are considerably shorter than the sum of their van der Waals radii and are thus likely to be moderate to high in strength. This also seems likely as the D—H···A bond angle of both bonds, 165.7 (1) ° and 153.1 (1) ° for N2···H4—C4 and N2···H11—C11 respectively, do not show a marked deviation from ideality. The hydrogen bond lengths and angles are summarized in Table 1.

For a kinetic and mechanistic study of the platinum(II) chelate of the title compound, see: Mambanda & Jaganyi (2012). For the synthesis of the title compound, see: Sato et al. (1992); Toftlund & Yde-Andersen (1981); Anderegg & Wenk (1967). For the crystal structure of the related compound N,N-bis(2-pyridylmethyl)-tert-butylamine, see: Mambanda et al. (2009). For the crystal structures of the hexadentate analogues, see: Mambanda et al. (2007). For dinuclear platinum(II) complexes structurally related to the complex of the title compound, see: Hofmann & van Eldik (2003); Erteurk et al. (2007, 2008). For dinuclear metal complexes containing bis(tridentate) chelates structurally related to the title compound, see: Fujihara et al. (2004); Gunatilleke & Norman (2003); Fujii et al. (2003). For manganese–oxo complexes of N,N-bis(2-pyridylmethyl)ethylamine and N,N-bis (2-pyridylmethyl)-tert-butylamine, see: Pal et al. (1992) and Mok et al. (1997), respectively.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell refinement: CrysAlis CCD (Oxford Diffraction, 2008); data reduction: CrysAlis RED (Oxford Diffraction, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: WinGX (Farrugia, 1999); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot of (1), rendered at 50% probability. Hydrogen atoms are shown as spheres of arbitrary radius.
[Figure 2] Fig. 2. Two-dimensional hydrogen-bonded network of 1 viewed along the c-axis. Hydrogen bonds are represented by dashed purple lines.
N,N-Bis(pyridin-2-ylmethyl)cyclohexanamine top
Crystal data top
C18H23N3F(000) = 608
Mr = 281.39Dx = 1.180 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
Hall symbol: C -2ycCell parameters from 2134 reflections
a = 6.2272 (2) Åθ = 3.5–32.1°
b = 18.1729 (7) ŵ = 0.07 mm1
c = 14.3213 (5) ÅT = 120 K
β = 102.118 (4)°Planar, colourless
V = 1584.57 (10) Å30.60 × 0.50 × 0.30 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur 2 CCD
diffractometer
2521 independent reflections
Radiation source: fine-focus sealed tube2134 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
ω scans at fixed θ anglesθmax = 32.1°, θmin = 3.5°
Absorption correction: multi-scan
(Blessing, 1995)
h = 96
Tmin = 0.959, Tmax = 0.979k = 2625
7854 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.085H-atom parameters constrained
S = 0.98 w = 1/[σ2(Fo2) + (0.053P)2]
where P = (Fo2 + 2Fc2)/3
2134 reflections(Δ/σ)max < 0.001
190 parametersΔρmax = 0.15 e Å3
2 restraintsΔρmin = 0.25 e Å3
Crystal data top
C18H23N3V = 1584.57 (10) Å3
Mr = 281.39Z = 4
Monoclinic, CcMo Kα radiation
a = 6.2272 (2) ŵ = 0.07 mm1
b = 18.1729 (7) ÅT = 120 K
c = 14.3213 (5) Å0.60 × 0.50 × 0.30 mm
β = 102.118 (4)°
Data collection top
Oxford Diffraction Xcalibur 2 CCD
diffractometer
2521 independent reflections
Absorption correction: multi-scan
(Blessing, 1995)
2134 reflections with I > 2σ(I)
Tmin = 0.959, Tmax = 0.979Rint = 0.033
7854 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0382 restraints
wR(F2) = 0.085H-atom parameters constrained
S = 0.98Δρmax = 0.15 e Å3
2134 reflectionsΔρmin = 0.25 e Å3
190 parameters
Special details top

Experimental. Yield: 1.3432 g (40%), colourless block crystals. 1H NMR (400 MHz, CDCl3) δ (p.p.m.): 8.58 (d, 2H); 8.50–7.60 (m, 4H); 7.05 (t, 2H); 3.39 (s, 4H); 2.55 (m, 1H); 1.90 (d, 2H); 1.8 (m, 2H); 1.60 (d, 2H); 1.35 (m, 2H); 1.19 (m, 2H). 13C NMR (100 MHz, CDCl3) δ / p.p.m.: 27.0; 29; 57.0; 60.5; 122.0; 123.0; 136.0; 148.0; 161. IR (KBr, 4000–400 cm-1): 2958–2854 (alkyl C—H stretch); 1589 C=N (pyridyl). MS—ES+, m/e: 282.2069, (M +1)+. Anal. Calc. for C18H23N3: C, 76.81; H, 8.24; N, 14.93; Found: C, 76.8; H, 8.18; N, 14.89.

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.8715 (2)0.26180 (9)0.20552 (11)0.0220 (3)
H1A1.01030.28460.19670.026*
H1B0.90820.21350.23690.026*
C20.7709 (2)0.31007 (8)0.27025 (10)0.0186 (3)
C30.5510 (2)0.30374 (9)0.27499 (11)0.0235 (3)
H30.45700.27090.23380.028*
C40.4709 (3)0.34586 (10)0.34038 (12)0.0258 (3)
H40.32150.34200.34510.031*
C50.6111 (3)0.39369 (10)0.39884 (12)0.0265 (3)
H50.56100.42300.44490.032*
C60.8260 (3)0.39748 (9)0.38825 (12)0.0253 (3)
H60.92210.43080.42780.030*
C70.7975 (3)0.18410 (9)0.06711 (11)0.0219 (3)
H7A0.95830.18560.07190.026*
H7B0.72580.18390.00150.026*
C80.7384 (3)0.11434 (8)0.11310 (11)0.0215 (3)
C90.5374 (3)0.10687 (10)0.14035 (12)0.0270 (3)
H90.43480.14630.13100.032*
C100.4884 (3)0.04184 (10)0.18101 (13)0.0310 (4)
H100.35230.03580.20020.037*
C110.6412 (3)0.01444 (10)0.19330 (13)0.0313 (4)
H110.61370.05980.22160.038*
C120.8340 (3)0.00279 (10)0.16339 (14)0.0321 (4)
H120.93800.04170.17130.039*
C130.7079 (2)0.31684 (8)0.05181 (11)0.0196 (3)
H130.68550.35900.09360.024*
C140.9088 (3)0.33578 (9)0.01086 (12)0.0240 (3)
H14A1.03920.34060.06360.029*
H14B0.93700.29550.03150.029*
C150.8733 (3)0.40755 (10)0.04551 (13)0.0304 (4)
H15A1.00340.41790.07300.036*
H15B0.85670.44850.00200.036*
C160.6690 (3)0.40310 (10)0.12573 (12)0.0295 (4)
H16A0.64550.45100.15930.035*
H16B0.69100.36520.17250.035*
C170.4681 (3)0.38384 (10)0.08605 (12)0.0285 (4)
H17A0.33950.37820.13950.034*
H17B0.43670.42450.04490.034*
C180.5024 (3)0.31257 (10)0.02789 (12)0.0250 (3)
H18A0.37260.30340.00030.030*
H18B0.51650.27090.07070.030*
N10.7294 (2)0.24994 (7)0.11224 (9)0.0197 (3)
N20.9074 (2)0.35684 (7)0.32526 (10)0.0219 (3)
N30.8852 (2)0.05990 (8)0.12380 (11)0.0268 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0195 (7)0.0269 (8)0.0196 (7)0.0041 (6)0.0039 (5)0.0007 (6)
C20.0202 (7)0.0190 (7)0.0164 (6)0.0021 (5)0.0033 (5)0.0032 (5)
C30.0205 (7)0.0296 (8)0.0199 (7)0.0015 (6)0.0031 (6)0.0010 (6)
C40.0231 (7)0.0326 (9)0.0235 (7)0.0012 (6)0.0089 (6)0.0022 (7)
C50.0319 (8)0.0269 (8)0.0231 (7)0.0061 (7)0.0114 (6)0.0004 (6)
C60.0289 (8)0.0217 (8)0.0249 (7)0.0004 (6)0.0043 (6)0.0015 (6)
C70.0248 (7)0.0214 (7)0.0212 (7)0.0019 (6)0.0090 (6)0.0002 (6)
C80.0253 (7)0.0221 (7)0.0173 (6)0.0018 (6)0.0049 (6)0.0011 (6)
C90.0246 (8)0.0273 (8)0.0302 (8)0.0003 (6)0.0081 (7)0.0021 (7)
C100.0311 (8)0.0324 (9)0.0317 (9)0.0092 (7)0.0114 (7)0.0034 (7)
C110.0393 (10)0.0259 (8)0.0277 (8)0.0097 (7)0.0048 (7)0.0014 (7)
C120.0336 (9)0.0242 (9)0.0384 (10)0.0013 (7)0.0072 (8)0.0044 (8)
C130.0198 (7)0.0208 (7)0.0187 (6)0.0015 (6)0.0049 (5)0.0010 (6)
C140.0224 (7)0.0251 (8)0.0248 (7)0.0013 (6)0.0058 (6)0.0008 (6)
C150.0363 (9)0.0266 (9)0.0282 (8)0.0056 (7)0.0065 (7)0.0020 (7)
C160.0395 (10)0.0269 (8)0.0211 (7)0.0012 (7)0.0041 (7)0.0029 (6)
C170.0291 (8)0.0307 (8)0.0234 (7)0.0062 (7)0.0002 (6)0.0014 (7)
C180.0205 (7)0.0295 (8)0.0238 (7)0.0003 (6)0.0016 (6)0.0027 (6)
N10.0226 (6)0.0211 (6)0.0157 (6)0.0025 (5)0.0048 (5)0.0003 (5)
N20.0215 (6)0.0202 (6)0.0238 (6)0.0006 (5)0.0040 (5)0.0008 (5)
N30.0282 (7)0.0224 (7)0.0308 (7)0.0022 (6)0.0080 (6)0.0018 (6)
Geometric parameters (Å, º) top
C1—N11.4554 (19)C10—H100.9500
C1—C21.505 (2)C11—C121.373 (3)
C1—H1A0.9900C11—H110.9500
C1—H1B0.9900C12—N31.341 (2)
C2—N21.3359 (19)C12—H120.9500
C2—C31.390 (2)C13—N11.4821 (19)
C3—C41.381 (2)C13—C181.528 (2)
C3—H30.9500C13—C141.528 (2)
C4—C51.383 (2)C13—H131.0000
C4—H40.9500C14—C151.526 (2)
C5—C61.380 (2)C14—H14A0.9900
C5—H50.9500C14—H14B0.9900
C6—N21.345 (2)C15—C161.527 (2)
C6—H60.9500C15—H15A0.9900
C7—N11.4642 (19)C15—H15B0.9900
C7—C81.509 (2)C16—C171.520 (3)
C7—H7A0.9900C16—H16A0.9900
C7—H7B0.9900C16—H16B0.9900
C8—N31.334 (2)C17—C181.530 (2)
C8—C91.394 (2)C17—H17A0.9900
C9—C101.380 (2)C17—H17B0.9900
C9—H90.9500C18—H18A0.9900
C10—C111.383 (3)C18—H18B0.9900
N1—C1—C2113.59 (12)N1—C13—C18110.69 (13)
N1—C1—H1A108.8N1—C13—C14115.35 (12)
C2—C1—H1A108.8C18—C13—C14110.47 (13)
N1—C1—H1B108.8N1—C13—H13106.6
C2—C1—H1B108.8C18—C13—H13106.6
H1A—C1—H1B107.7C14—C13—H13106.6
N2—C2—C3122.37 (14)C15—C14—C13110.87 (14)
N2—C2—C1116.00 (13)C15—C14—H14A109.5
C3—C2—C1121.58 (14)C13—C14—H14A109.5
C4—C3—C2119.13 (15)C15—C14—H14B109.5
C4—C3—H3120.4C13—C14—H14B109.5
C2—C3—H3120.4H14A—C14—H14B108.1
C3—C4—C5119.17 (15)C14—C15—C16110.99 (14)
C3—C4—H4120.4C14—C15—H15A109.4
C5—C4—H4120.4C16—C15—H15A109.4
C6—C5—C4117.92 (15)C14—C15—H15B109.4
C6—C5—H5121.0C16—C15—H15B109.4
C4—C5—H5121.0H15A—C15—H15B108.0
N2—C6—C5123.87 (16)C17—C16—C15110.62 (14)
N2—C6—H6118.1C17—C16—H16A109.5
C5—C6—H6118.1C15—C16—H16A109.5
N1—C7—C8111.97 (12)C17—C16—H16B109.5
N1—C7—H7A109.2C15—C16—H16B109.5
C8—C7—H7A109.2H16A—C16—H16B108.1
N1—C7—H7B109.2C16—C17—C18111.50 (14)
C8—C7—H7B109.2C16—C17—H17A109.3
H7A—C7—H7B107.9C18—C17—H17A109.3
N3—C8—C9122.00 (15)C16—C17—H17B109.3
N3—C8—C7116.69 (14)C18—C17—H17B109.3
C9—C8—C7121.29 (14)H17A—C17—H17B108.0
C10—C9—C8119.52 (16)C13—C18—C17111.29 (14)
C10—C9—H9120.2C13—C18—H18A109.4
C8—C9—H9120.2C17—C18—H18A109.4
C9—C10—C11118.68 (17)C13—C18—H18B109.4
C9—C10—H10120.7C17—C18—H18B109.4
C11—C10—H10120.7H18A—C18—H18B108.0
C12—C11—C10118.01 (16)C1—N1—C7110.47 (12)
C12—C11—H11121.0C1—N1—C13112.17 (12)
C10—C11—H11121.0C7—N1—C13114.30 (12)
N3—C12—C11124.36 (17)C2—N2—C6117.52 (14)
N3—C12—H12117.8C8—N3—C12117.42 (15)
C11—C12—H12117.8
N1—C1—C2—N2142.02 (14)C15—C16—C17—C1855.53 (19)
N1—C1—C2—C340.6 (2)N1—C13—C18—C17175.48 (13)
N2—C2—C3—C41.6 (2)C14—C13—C18—C1755.51 (17)
C1—C2—C3—C4175.56 (14)C16—C17—C18—C1355.43 (18)
C2—C3—C4—C50.6 (2)C2—C1—N1—C7159.59 (13)
C3—C4—C5—C60.6 (2)C2—C1—N1—C1371.62 (17)
C4—C5—C6—N20.8 (3)C8—C7—N1—C173.28 (16)
N1—C7—C8—N3140.81 (14)C8—C7—N1—C13159.09 (13)
N1—C7—C8—C940.9 (2)C18—C13—N1—C1159.74 (12)
N3—C8—C9—C101.0 (2)C14—C13—N1—C173.93 (15)
C7—C8—C9—C10179.14 (15)C18—C13—N1—C773.51 (16)
C8—C9—C10—C110.2 (3)C14—C13—N1—C752.83 (17)
C9—C10—C11—C120.6 (3)C3—C2—N2—C61.4 (2)
C10—C11—C12—N30.7 (3)C1—C2—N2—C6175.90 (14)
N1—C13—C14—C15176.97 (13)C5—C6—N2—C20.2 (2)
C18—C13—C14—C1556.58 (17)C9—C8—N3—C120.9 (2)
C13—C14—C15—C1657.35 (18)C7—C8—N3—C12179.15 (15)
C14—C15—C16—C1756.55 (19)C11—C12—N3—C80.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···N2i0.952.553.475 (2)166 (1)
C11—H11···N2ii0.952.643.511 (2)153 (1)
Symmetry codes: (i) x1, y, z; (ii) x1/2, y1/2, z.

Experimental details

Crystal data
Chemical formulaC18H23N3
Mr281.39
Crystal system, space groupMonoclinic, Cc
Temperature (K)120
a, b, c (Å)6.2272 (2), 18.1729 (7), 14.3213 (5)
β (°) 102.118 (4)
V3)1584.57 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.60 × 0.50 × 0.30
Data collection
DiffractometerOxford Diffraction Xcalibur 2 CCD
Absorption correctionMulti-scan
(Blessing, 1995)
Tmin, Tmax0.959, 0.979
No. of measured, independent and
observed [I > 2σ(I)] reflections
7854, 2521, 2134
Rint0.033
(sin θ/λ)max1)0.747
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.085, 0.98
No. of reflections2134
No. of parameters190
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.15, 0.25

Computer programs: CrysAlis CCD (Oxford Diffraction, 2008), CrysAlis RED (Oxford Diffraction, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), WinGX (Farrugia, 1999), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···N2i0.952.5473.475 (2)165.7 (1)
C11—H11···N2ii0.952.6373.511 (2)153.1 (1)
Symmetry codes: (i) x1, y, z; (ii) x1/2, y1/2, z.
 

Acknowledgements

The authors gratefully acknowledge financial support from the University of KwaZulu-Natal and the National Research Foundation (NRF, Pretoria). We thank Mr C. Grimmer for the NMR analysis of the samples.

References

First citationAnderegg, G. & Wenk, F. (1967). Helv. Chim. Acta, 50, 2330–2332.  CrossRef CAS Web of Science Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationErteurk, H., Hofmann, A., Puchta, R. & van Eldik, R. (2007). Dalton Trans. pp. 2295–2301.  Google Scholar
First citationErteurk, H., Maigut, J., Puchta, R. & van Eldik, R. (2008). Dalton Trans. pp. 2759–2766.  Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFujihara, T., Saito, M. & Nagasawa, A. (2004). Acta Cryst. E60, o262–o263.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFujii, T., Naito, A., Yamaguchi, S., Wada, A., Funahashi, Y., Jitsukawa, K., Nagatomo, S., Kitagawa, T. & Masuda, H. (2003). Chem. Commun. 21, 2700–2701.  Web of Science CSD CrossRef Google Scholar
First citationGunatilleke, S. S. & Norman, R. E. (2003). Acta Cryst. E59, o269–o271.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHofmann, A. & van Eldik, R. (2003). Dalton Trans. pp. 2979–2985.  Web of Science CrossRef Google Scholar
First citationMambanda, A. & Jaganyi, D. (2012). Dalton Trans. 41, 908–920.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMambanda, A., Jaganyi, D. & Munro, O. Q. (2007). Acta Cryst. C63, o676–o680.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMambanda, A., Jaganyi, D. & Stewart, K. (2009). Acta Cryst. E65, o402.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMok, H. J., Davis, J. A., Pal, S., Mandal, S. K. & Armstrong, W. H. (1997). Inorg. Chim. Acta, 263, 385–394.  CSD CrossRef CAS Web of Science Google Scholar
First citationOxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationPal, S., Chan, M. K. & Armstrong, W. H. (1992). J. Am. Chem. Soc. 114, 6398–6404.  CSD CrossRef CAS Web of Science Google Scholar
First citationSato, M., Mori, Y. & Iida, T. (1992). Synthesis, 6, 539–540.  CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationToftlund, H. & Yde-Andersen, S. (1981). Acta Chem. Scand. Ser. A, 35, 575–581.  CrossRef Web of Science Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds