organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(1R,3R,3aS,8aR)-4-Oxo-3-phenyl-1-[(1R)-1-phenyl­eth­yl]deca­hydro­cyclo­hepta­[b]pyrrol-1-ium bromide

aDepartment of Chemistry, Moscow State University, 119992 Moscow, Russian Federation
*Correspondence e-mail: rybakov20021@yandex.ru

(Received 15 June 2012; accepted 20 June 2012; online 27 June 2012)

The title chiral compound, C23H28NO+·Br, was obtained from an optically active amino­ethanol precursor. The pyrrolidine heterocycle has an envelope conformation, with the C atom α-positioned with respect to the keto group deviating by 0.570 (6) Å from the mean plane of other atoms. The trans-fused seven-membered ring adopts a pseudo-chair conformation. The two phenyl rings form a dihedral angle of 85.1 (2)°. The cationic center and the bromide anion are connected through an N—H⋯Br hydrogen bond.

Related literature

For general background to the aza-Cope–Mannich sequence, see: Overman (1992[Overman, L. E. (1992). Acc. Chem. Res. 25, 352-359.], 2009[Overman, L. E. (2009). Tetrahedron, 65, 6432-6446.]). For natural products with cyclo­hepta­[b]pyrrolidine, see: Earley et al. (2005[Earley, W. G., Jacobsen, J. E., Madin, A., Meier, G. P., O'Donnell, C. J., Oh, T., Old, D. W., Overman, L. E. & Sharp, M. J. (2005). J. Am. Chem. Soc. 127, 18046-18053.]); Martin et al. (2008[Martin, C. L., Overman, L. E. & Rohde, J. M. (2008). J. Am. Chem. Soc. 130, 7568-7569.]). For biologically active compounds, see: Tamiz et al. (2000[Tamiz, A. P., Smith, M. P. & Kozikowski, A. P. (2000). Bioorg. Med. Chem. Lett. 10, 297-300.]). For the preparation of cis-cyclo­hepta­[b]pyrrolidines, see: Belov et al. (2011[Belov, D. S., Lukyanenko, E. R., Kurkin, A. V. & Yurovskaya, M. A. (2011). Tetrahedron, 67, 9214-9218.]). For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C23H28NO+·Br

  • Mr = 414.36

  • Monoclinic, P 21

  • a = 6.7996 (4) Å

  • b = 13.3136 (8) Å

  • c = 11.3167 (8) Å

  • β = 94.449 (5)°

  • V = 1021.38 (11) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.02 mm−1

  • T = 295 K

  • 0.25 × 0.25 × 0.13 mm

Data collection
  • Stoe STADI-VARI Pilatus-100K diffractometer

  • Absorption correction: integration (X-RED32; Stoe & Cie, 2012[Stoe & Cie (2012). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.]) Tmin = 0.229, Tmax = 0.482

  • 8956 measured reflections

  • 2995 independent reflections

  • 2116 reflections with I > 2σ(I)

  • Rint = 0.071

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.104

  • S = 0.97

  • 2995 reflections

  • 230 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.29 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 897 Friedel pairs

  • Flack parameter: −0.018 (14)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯Br1 0.91 2.44 3.266 (4) 151

Data collection: X-AREA (Stoe & Cie, 2012[Stoe & Cie (2012). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2012[Stoe & Cie (2012). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Cyclohepta[b]pyrrolidine moiety has been found in several natural products - gelsemine (Earley et al., 2005), actinophyllic acid (Martin et al., 2008) and other biologically active compounds (Tamiz et al., 2000). For natural products and pharmaceuticals containing more than one chiral center, identification of diastereomers is of great importance because of their different physical and, most importantly, biological properties. Recently we reported an improved procedure for preparation of cis-cyclohepta[b]pyrrolidines (Belov et al., 2011). In this article we developed a method for stereoselective synthesis of the trans-cyclohepta[b]pyrrol core via aza-Cope-Mannich sequence (Overman, 1992; 2009) in an optically pure form using (1R)-1-phenylethanamine as a chiral auxillary (Fig. 1). The molecular structure is presented in Fig. 2. All bond lengths are within expected ranges (Allen et al., 1987).

Related literature top

For general background to the aza-Cope–Mannich

sequence, see: Overman (1992, 2009). For natural products with cyclohepta[b]pyrrolidine, see: Earley et al. (2005); Martin et al. (2008); Tamiz et al. (2000). For the preparation of cis-cyclohepta[b]pyrrolidines, see: Belov et al. (2011). For standard bond lengths, see: Allen et al. (1987).

Experimental top

To a vigorously stirred mixture containing (1S,2R)-2-{[(1R)-1-phenylethyl]amino}-1- [(E)-2-phenylethenyl]cyclohexanol (1.00 g, 3.1 mmol), anhydrous Na2SO4 (3.10 g, 21.7 mmol, 7 eqv), camphorsulfonic acid (0.22, 0.9 mmol, 0.3 eqv) and CH2Cl2 (16 ml), 98 ml of formalin (37% in water, 0.54 ml, 6.8 mmol, 2.2 eqv) were added dropwise at RT. The reaction mixture was vigorously stirred overnight. The mixture was washed with saturated NaHCO3 solution (50 ml) and dried (Na2SO4). Concentration gave product which was dissolved in MTBE-EtOH (1:1, 10 ml) and aqueous HBr was added to the solution (0.35 ml) causing precipitation of (3R,3aS,8aR)-3-phenyl-1-[(1S)-1-phenylethyl] octahydrocyclohepta[b]pyrrol-4(1H)-one as a hydrobromide salt (1.16 g, 90%). M.p. = 498.1–498.5 K.

Refinement top

The N- and C-bound H atoms were placed in calculated positions with C—H 0.93 Å–0.98 Å and N—H 0.91 Å and refined as riding with Uiso(H) = 1.2 and (1.5)Ueq(C,N). The positions of H atoms of methyl group were rotationally optimized by using instruction HFIX 137 in SHELXL program.

Structure description top

Cyclohepta[b]pyrrolidine moiety has been found in several natural products - gelsemine (Earley et al., 2005), actinophyllic acid (Martin et al., 2008) and other biologically active compounds (Tamiz et al., 2000). For natural products and pharmaceuticals containing more than one chiral center, identification of diastereomers is of great importance because of their different physical and, most importantly, biological properties. Recently we reported an improved procedure for preparation of cis-cyclohepta[b]pyrrolidines (Belov et al., 2011). In this article we developed a method for stereoselective synthesis of the trans-cyclohepta[b]pyrrol core via aza-Cope-Mannich sequence (Overman, 1992; 2009) in an optically pure form using (1R)-1-phenylethanamine as a chiral auxillary (Fig. 1). The molecular structure is presented in Fig. 2. All bond lengths are within expected ranges (Allen et al., 1987).

For general background to the aza-Cope–Mannich

sequence, see: Overman (1992, 2009). For natural products with cyclohepta[b]pyrrolidine, see: Earley et al. (2005); Martin et al. (2008); Tamiz et al. (2000). For the preparation of cis-cyclohepta[b]pyrrolidines, see: Belov et al. (2011). For standard bond lengths, see: Allen et al. (1987).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2012); cell refinement: X-AREA (Stoe & Cie, 2012); data reduction: X-AREA (Stoe & Cie, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Synthetic path for the title compound.
[Figure 2] Fig. 2. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipoids are drawn at the 30% probability level. H atoms are presented as small spheres of an arbitrary radius.
(1R,3R,3aS,8aR)-4-Oxo-3-phenyl-1-[(1R)- 1-phenylethyl]decahydrocyclohepta[b]pyrrol-1-ium bromide top
Crystal data top
C23H28NO+·BrF(000) = 432
Mr = 414.36Dx = 1.347 Mg m3
Monoclinic, P21Melting point = 498.1–498.5 K
Hall symbol: P 2ybMo Kα radiation, λ = 0.71073 Å
a = 6.7996 (4) ÅCell parameters from 6482 reflections
b = 13.3136 (8) Åθ = 1.8–29.2°
c = 11.3167 (8) ŵ = 2.02 mm1
β = 94.449 (5)°T = 295 K
V = 1021.38 (11) Å3Prism, colourless
Z = 20.25 × 0.25 × 0.13 mm
Data collection top
Stoe STADI-VARI Pilatus-100K
diffractometer
2995 independent reflections
Radiation source: LFF Sealed Tube2116 reflections with I > 2σ(I)
Plane graphite monochromatorRint = 0.071
Detector resolution: 5.81 pixels mm-1θmax = 26.0°, θmin = 1.8°
Rotation method scansh = 88
Absorption correction: integration
(X-AREA; Stoe & Cie, 2012)
k = 1611
Tmin = 0.229, Tmax = 0.482l = 139
8956 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043H-atom parameters constrained
wR(F2) = 0.104 w = 1/[σ2(Fo2) + (0.0568P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.97(Δ/σ)max < 0.001
2995 reflectionsΔρmax = 0.41 e Å3
230 parametersΔρmin = 0.29 e Å3
1 restraintAbsolute structure: Flack (1983), 897 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.018 (14)
Crystal data top
C23H28NO+·BrV = 1021.38 (11) Å3
Mr = 414.36Z = 2
Monoclinic, P21Mo Kα radiation
a = 6.7996 (4) ŵ = 2.02 mm1
b = 13.3136 (8) ÅT = 295 K
c = 11.3167 (8) Å0.25 × 0.25 × 0.13 mm
β = 94.449 (5)°
Data collection top
Stoe STADI-VARI Pilatus-100K
diffractometer
2995 independent reflections
Absorption correction: integration
(X-AREA; Stoe & Cie, 2012)
2116 reflections with I > 2σ(I)
Tmin = 0.229, Tmax = 0.482Rint = 0.071
8956 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.043H-atom parameters constrained
wR(F2) = 0.104Δρmax = 0.41 e Å3
S = 0.97Δρmin = 0.29 e Å3
2995 reflectionsAbsolute structure: Flack (1983), 897 Friedel pairs
230 parametersAbsolute structure parameter: 0.018 (14)
1 restraint
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S/i> are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.23660 (6)0.27140 (5)0.02750 (6)0.0688 (2)
N10.1339 (5)0.1146 (3)0.0108 (3)0.0368 (8)
H10.01420.14070.03580.044*
C20.2616 (6)0.2019 (4)0.0343 (4)0.0395 (10)
H2A0.18550.26360.03200.047*
H2B0.37230.21050.01390.047*
C30.3348 (4)0.1755 (3)0.1631 (2)0.0388 (10)
H30.45560.13530.16300.047*
C310.3719 (4)0.2642 (3)0.2411 (2)0.0458 (9)
C320.5629 (4)0.2789 (3)0.2920 (2)0.0660 (14)
H320.66330.23540.27380.079*
C330.6034 (13)0.3576 (6)0.3693 (6)0.086 (2)
H330.73210.36680.40160.104*
C340.4647 (15)0.4206 (7)0.3991 (6)0.091 (3)
H340.49530.47240.45250.110*
C350.2722 (14)0.4082 (5)0.3494 (6)0.083 (2)
H350.17310.45180.36920.100*
C360.2295 (9)0.3297 (4)0.2695 (5)0.0582 (14)
H360.10160.32210.23530.070*
C40.1632 (7)0.1082 (4)0.2013 (4)0.0406 (10)
H40.05280.15100.22080.049*
C50.2251 (8)0.0412 (4)0.3074 (5)0.0548 (13)
O50.3950 (7)0.0369 (5)0.3429 (4)0.0983 (18)
C60.0720 (9)0.0179 (6)0.3648 (5)0.0705 (16)
H6A0.06660.00730.44500.085*
H6B0.11730.08690.37110.085*
C70.1365 (8)0.0190 (5)0.3073 (5)0.0598 (14)
H7A0.18530.04940.30330.072*
H7B0.21880.05660.35790.072*
C80.1601 (10)0.0640 (5)0.1835 (6)0.0589 (16)
H8A0.29540.08660.16820.071*
H8B0.07570.12260.18150.071*
C90.1110 (7)0.0073 (4)0.0835 (5)0.0496 (12)
H9A0.13740.02700.00830.059*
H9B0.19830.06490.08360.059*
C100.1002 (6)0.0443 (4)0.0921 (4)0.0402 (11)
H100.18910.01350.08930.048*
C110.2090 (7)0.0586 (4)0.1164 (4)0.0424 (11)
H110.12820.00210.12740.051*
C120.4193 (7)0.0238 (5)0.0901 (5)0.0547 (13)
H12A0.50380.08110.07640.082*
H12B0.46030.01360.15650.082*
H12C0.42760.01810.02100.082*
C130.1697 (9)0.1210 (4)0.2284 (5)0.0470 (13)
C140.3192 (9)0.1652 (5)0.2867 (6)0.0695 (17)
H140.44910.16140.25470.083*
C150.2742 (13)0.2154 (6)0.3935 (7)0.089 (2)
H150.37480.24380.43360.107*
C160.0841 (14)0.2229 (6)0.4391 (6)0.085 (2)
H160.05580.25550.51110.102*
C170.0640 (12)0.1837 (6)0.3811 (6)0.083 (2)
H170.19390.19090.41230.100*
C180.0238 (9)0.1330 (5)0.2762 (5)0.0640 (15)
H180.12690.10630.23680.077*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0468 (2)0.0492 (3)0.1123 (5)0.0021 (4)0.0192 (2)0.0044 (5)
N10.0392 (18)0.039 (2)0.032 (2)0.0024 (16)0.0008 (15)0.0033 (17)
C20.044 (2)0.037 (2)0.038 (3)0.0071 (19)0.0080 (18)0.002 (2)
C30.040 (2)0.043 (3)0.033 (3)0.0001 (19)0.0018 (18)0.002 (2)
C310.058 (2)0.046 (2)0.033 (2)0.001 (4)0.0015 (17)0.008 (3)
C320.073 (3)0.069 (4)0.053 (3)0.016 (4)0.014 (2)0.006 (4)
C330.112 (6)0.082 (5)0.060 (4)0.023 (5)0.027 (4)0.003 (4)
C340.157 (9)0.076 (5)0.040 (4)0.049 (6)0.001 (4)0.010 (4)
C350.142 (7)0.052 (4)0.059 (4)0.005 (4)0.037 (4)0.009 (3)
C360.074 (3)0.055 (3)0.048 (3)0.006 (3)0.014 (3)0.001 (3)
C40.046 (2)0.042 (3)0.034 (3)0.005 (2)0.0054 (19)0.005 (2)
C50.063 (3)0.057 (3)0.044 (3)0.006 (3)0.007 (2)0.007 (3)
O50.067 (3)0.144 (5)0.081 (3)0.003 (3)0.015 (2)0.061 (3)
C60.083 (4)0.074 (4)0.054 (3)0.007 (4)0.005 (3)0.025 (4)
C70.062 (3)0.058 (3)0.063 (3)0.001 (3)0.025 (3)0.014 (3)
C80.057 (3)0.057 (4)0.064 (4)0.013 (3)0.015 (3)0.013 (3)
C90.050 (2)0.052 (3)0.047 (3)0.015 (2)0.001 (2)0.008 (2)
C100.041 (2)0.043 (3)0.036 (3)0.000 (2)0.0045 (19)0.006 (2)
C110.051 (3)0.041 (3)0.037 (3)0.006 (2)0.010 (2)0.008 (2)
C120.056 (3)0.053 (3)0.056 (3)0.010 (2)0.012 (2)0.001 (3)
C130.062 (3)0.042 (3)0.038 (3)0.004 (2)0.008 (2)0.000 (3)
C140.069 (4)0.074 (4)0.067 (4)0.010 (3)0.021 (3)0.017 (4)
C150.120 (6)0.084 (5)0.069 (5)0.011 (4)0.046 (4)0.029 (4)
C160.135 (7)0.080 (5)0.040 (4)0.023 (5)0.008 (4)0.006 (3)
C170.109 (5)0.095 (5)0.044 (4)0.004 (5)0.011 (4)0.006 (4)
C180.071 (4)0.076 (4)0.044 (3)0.009 (3)0.004 (3)0.003 (3)
Geometric parameters (Å, º) top
N1—C21.515 (6)C6—H6B0.9700
N1—C101.525 (6)C7—C81.521 (9)
N1—C111.530 (6)C7—H7A0.9700
N1—H10.9100C7—H7B0.9700
C2—C31.543 (5)C8—C91.534 (8)
C2—H2A0.9700C8—H8A0.9700
C2—H2B0.9700C8—H8B0.9700
C3—C311.484 (5)C9—C101.514 (6)
C3—C41.559 (5)C9—H9A0.9700
C3—H30.9800C9—H9B0.9700
C31—C361.360 (6)C10—H100.9800
C31—C321.393 (4)C11—C121.511 (7)
C32—C331.380 (9)C11—C131.522 (8)
C32—H320.9300C11—H110.9800
C33—C341.325 (12)C12—H12A0.9600
C33—H330.9300C12—H12B0.9600
C34—C351.394 (11)C12—H12C0.9600
C34—H340.9300C13—C141.385 (8)
C35—C361.397 (9)C13—C181.392 (8)
C35—H350.9300C14—C151.393 (9)
C36—H360.9300C14—H140.9300
C4—C51.528 (7)C15—C161.358 (11)
C4—C101.535 (7)C15—H150.9300
C4—H40.9800C16—C171.350 (11)
C5—O51.195 (7)C16—H160.9300
C5—C61.493 (8)C17—C181.375 (9)
C6—C71.514 (8)C17—H170.9300
C6—H6A0.9700C18—H180.9300
C2—N1—C10109.3 (3)C8—C7—H7A108.4
C2—N1—C11114.8 (3)C6—C7—H7B108.4
C10—N1—C11112.1 (4)C8—C7—H7B108.4
C2—N1—H1106.7H7A—C7—H7B107.5
C10—N1—H1106.7C7—C8—C9115.0 (5)
C11—N1—H1106.7C7—C8—H8A108.5
N1—C2—C3106.2 (3)C9—C8—H8A108.5
N1—C2—H2A110.5C7—C8—H8B108.5
C3—C2—H2A110.5C9—C8—H8B108.5
N1—C2—H2B110.5H8A—C8—H8B107.5
C3—C2—H2B110.5C10—C9—C8114.4 (5)
H2A—C2—H2B108.7C10—C9—H9A108.7
C31—C3—C2114.1 (2)C8—C9—H9A108.7
C31—C3—C4112.8 (2)C10—C9—H9B108.7
C2—C3—C4101.5 (3)C8—C9—H9B108.7
C31—C3—H3109.4H9A—C9—H9B107.6
C2—C3—H3109.4C9—C10—N1110.4 (4)
C4—C3—H3109.4C9—C10—C4115.9 (4)
C36—C31—C32118.0 (3)N1—C10—C4103.0 (4)
C36—C31—C3124.1 (3)C9—C10—H10109.1
C32—C31—C3117.9 (3)N1—C10—H10109.1
C33—C32—C31120.2 (4)C4—C10—H10109.1
C33—C32—H32119.9C12—C11—C13115.7 (4)
C31—C32—H32119.9C12—C11—N1111.3 (4)
C34—C33—C32122.1 (7)C13—C11—N1109.7 (4)
C34—C33—H33119.0C12—C11—H11106.5
C32—C33—H33119.0C13—C11—H11106.5
C33—C34—C35119.1 (7)N1—C11—H11106.5
C33—C34—H34120.4C11—C12—H12A109.5
C35—C34—H34120.4C11—C12—H12B109.5
C34—C35—C36119.4 (7)H12A—C12—H12B109.5
C34—C35—H35120.3C11—C12—H12C109.5
C36—C35—H35120.3H12A—C12—H12C109.5
C31—C36—C35121.1 (6)H12B—C12—H12C109.5
C31—C36—H36119.4C14—C13—C18118.2 (5)
C35—C36—H36119.4C14—C13—C11122.7 (5)
C5—C4—C10110.6 (4)C18—C13—C11119.0 (5)
C5—C4—C3112.8 (4)C13—C14—C15119.8 (6)
C10—C4—C3105.3 (3)C13—C14—H14120.1
C5—C4—H4109.4C15—C14—H14120.1
C10—C4—H4109.4C16—C15—C14120.2 (6)
C3—C4—H4109.4C16—C15—H15119.9
O5—C5—C6121.2 (5)C14—C15—H15119.9
O5—C5—C4119.5 (5)C17—C16—C15120.7 (7)
C6—C5—C4119.4 (5)C17—C16—H16119.6
C5—C6—C7118.7 (5)C15—C16—H16119.6
C5—C6—H6A107.7C16—C17—C18120.3 (7)
C7—C6—H6A107.7C16—C17—H17119.9
C5—C6—H6B107.7C18—C17—H17119.9
C7—C6—H6B107.7C17—C18—C13120.7 (6)
H6A—C6—H6B107.1C17—C18—H18119.7
C6—C7—C8115.4 (5)C13—C18—H18119.7
C6—C7—H7A108.4
C10—N1—C2—C39.1 (4)C7—C8—C9—C1061.4 (7)
C11—N1—C2—C3117.9 (4)C8—C9—C10—N1179.8 (5)
N1—C2—C3—C31150.5 (2)C8—C9—C10—C463.3 (6)
N1—C2—C3—C428.9 (4)C2—N1—C10—C9139.4 (4)
C2—C3—C31—C3663.8 (4)C11—N1—C10—C992.1 (5)
C4—C3—C31—C3651.3 (4)C2—N1—C10—C415.1 (4)
C2—C3—C31—C32118.9 (2)C11—N1—C10—C4143.5 (4)
C4—C3—C31—C32125.9 (2)C5—C4—C10—C983.8 (5)
C36—C31—C32—C330.3 (4)C3—C4—C10—C9154.1 (4)
C3—C31—C32—C33177.1 (4)C5—C4—C10—N1155.5 (4)
C31—C32—C33—C340.9 (9)C3—C4—C10—N133.5 (4)
C32—C33—C34—C351.1 (11)C2—N1—C11—C1254.3 (5)
C33—C34—C35—C360.1 (10)C10—N1—C11—C1271.1 (5)
C32—C31—C36—C351.3 (6)C2—N1—C11—C1375.0 (5)
C3—C31—C36—C35176.0 (4)C10—N1—C11—C13159.5 (4)
C34—C35—C36—C311.1 (9)C12—C11—C13—C1415.9 (8)
C31—C3—C4—C578.0 (4)N1—C11—C13—C14111.1 (6)
C2—C3—C4—C5159.5 (4)C12—C11—C13—C18162.8 (5)
C31—C3—C4—C10161.3 (2)N1—C11—C13—C1870.3 (6)
C2—C3—C4—C1038.8 (4)C18—C13—C14—C153.3 (10)
C10—C4—C5—O5109.6 (6)C11—C13—C14—C15175.4 (6)
C3—C4—C5—O58.0 (8)C13—C14—C15—C161.4 (11)
C10—C4—C5—C670.3 (6)C14—C15—C16—C171.2 (12)
C3—C4—C5—C6172.1 (5)C15—C16—C17—C181.8 (12)
O5—C5—C6—C7172.8 (7)C16—C17—C18—C130.2 (11)
C4—C5—C6—C77.1 (9)C14—C13—C18—C172.7 (10)
C5—C6—C7—C862.0 (8)C11—C13—C18—C17176.0 (6)
C6—C7—C8—C981.5 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Br10.912.443.266 (4)151

Experimental details

Crystal data
Chemical formulaC23H28NO+·Br
Mr414.36
Crystal system, space groupMonoclinic, P21
Temperature (K)295
a, b, c (Å)6.7996 (4), 13.3136 (8), 11.3167 (8)
β (°) 94.449 (5)
V3)1021.38 (11)
Z2
Radiation typeMo Kα
µ (mm1)2.02
Crystal size (mm)0.25 × 0.25 × 0.13
Data collection
DiffractometerStoe STADI-VARI Pilatus-100K
Absorption correctionIntegration
(X-AREA; Stoe & Cie, 2012)
Tmin, Tmax0.229, 0.482
No. of measured, independent and
observed [I > 2σ(I)] reflections
8956, 2995, 2116
Rint0.071
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.104, 0.97
No. of reflections2995
No. of parameters230
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.41, 0.29
Absolute structureFlack (1983), 897 Friedel pairs
Absolute structure parameter0.018 (14)

Computer programs: X-AREA (Stoe & Cie, 2012), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Br10.912.443.266 (4)150.5
 

Acknowledgements

This study was supported by the Russian Foundation for Basic Research (RFBR), Russia (grant No. 11-03-00444a).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBelov, D. S., Lukyanenko, E. R., Kurkin, A. V. & Yurovskaya, M. A. (2011). Tetrahedron, 67, 9214–9218.  Web of Science CrossRef CAS Google Scholar
First citationEarley, W. G., Jacobsen, J. E., Madin, A., Meier, G. P., O'Donnell, C. J., Oh, T., Old, D. W., Overman, L. E. & Sharp, M. J. (2005). J. Am. Chem. Soc. 127, 18046–18053.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMartin, C. L., Overman, L. E. & Rohde, J. M. (2008). J. Am. Chem. Soc. 130, 7568–7569.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationOverman, L. E. (1992). Acc. Chem. Res. 25, 352–359.  CrossRef CAS Web of Science Google Scholar
First citationOverman, L. E. (2009). Tetrahedron, 65, 6432–6446.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2012). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar
First citationTamiz, A. P., Smith, M. P. & Kozikowski, A. P. (2000). Bioorg. Med. Chem. Lett. 10, 297–300.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds