metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[trans-bis­­(cyclo­hexane-1,2-di­amine-κ2N,N)cadmium]-μ-iodido-(di­iodidocadmium)-μ-iodido]

aLaboratory of Bioorganic and Medicinal Chemistry, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People's Republic of China
*Correspondence e-mail: zhouch@swu.edu.cn

(Received 25 April 2012; accepted 31 May 2012; online 13 June 2012)

In the title compound, [Cd2I4(C6H14N2)2]n, there are two independent CdII ions. One CdII ion is coordinated in a slightly distorted octa­hedral coordination environment by four N atoms from two cyclo­hexane-1,2-diamine ligands and two iodido ligands. The other CdII ion is coordinated by four iodido ligands in a slightly distorted tetra­hedral coordination environment. Two of the iodido ligands act as bridging ligands connecting CdII ions and forming a one-dimensional polymer along [010]. In the crystal, N—H⋯I hydrogen bonds connect the one-dimensional structure into a two-dimensional framework parallel to (001).

Related literature

For general information on supra­molecular recognition, see: Zhou et al. (2009[Zhou, C.-H., Gan, L.-L., Zhang, Y.-Y., Zhang, F.-F., Wang, G.-Z., Jin, L. & Geng, R.-X. (2009). Sci. China Ser. B, 52, 415-458.], 2010[Zhou, C.-H., Zhang, Y.-Y., Yan, C. Y., Wan, K., Gan, L. L. & Shi, Y. (2010). Anticancer Agents Med. Chem. 10, 371-395.]). For information on the selective recognition of CdII ions, see: Soisungwan (2012[Soisungwan, S. (2012). Curr. Drug Metab. 13, 257-271.]).

[Scheme 1]

Experimental

Crystal data
  • [Cd2I4(C6H14N2)2]

  • Mr = 960.78

  • Monoclinic, P 21

  • a = 9.6627 (5) Å

  • b = 12.1821 (7) Å

  • c = 10.9665 (6) Å

  • β = 109.584 (1)°

  • V = 1216.21 (12) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 6.83 mm−1

  • T = 296 K

  • 0.35 × 0.33 × 0.32 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.199, Tmax = 0.219

  • 9784 measured reflections

  • 4039 independent reflections

  • 3967 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.021

  • wR(F2) = 0.050

  • S = 1.03

  • 4039 reflections

  • 201 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.86 e Å−3

  • Δρmin = −0.62 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1626 Friedel pairs

  • Flack parameter: 0.03 (2)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1B⋯I4i 0.90 2.84 3.723 (4) 167
N2—H2B⋯I4ii 0.90 2.81 3.681 (5) 162
N3—H3A⋯I3i 0.90 2.94 3.809 (4) 162
N4—H4A⋯I3ii 0.90 3.03 3.875 (5) 157
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+1]; (ii) [-x, y-{\script{1\over 2}}, -z+1].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Organometallic supramolecular chemistry is an increasingly active interdiscipline, which is a new extensive expansion of many natural sciences including chemical, pharmaceutical, biological and material scicences. The supramolecular recognition field attracts increasingly special attention (Zhou et al., 2009;2010). Our interest is to develop a novel efficient supramolecule for selective recognition of CdII ions (Soisungwan, 2012). Herein, the molecular structure of title compound is reported.

There are two independent CdII ions. One CdII ion is coordinated in a slightly distorted octahedral coordination environment by four N atoms from two cyclohexane-1,2-diamine ligands and two iodide ligands. The other CdII ion is coordinated by four iodide ligands in a slightly distorted tetrahedral coordination enviroment. Two of the iodide ligands act as bridging to connect CdII ions and form a one-dimensional polymer along [010] (Fig. 1). In the crystal, N—H···I hydrogen bonds connect the one-dimensional structure in a two-dimensional framework parallel to (001) (Fig. 2).

Related literature top

For general information on supramolecular recognition, see: Zhou et al. (2009, 2010). For information on the selective recognition of CdII ions, see: Soisungwan (2012).

Experimental top

A mixture of cyclohexane-1,2-diamine (0.11 g, 0.1 mol) and cadmium (II) iodide (0.38 g, 0.1 mol) in ethanol (10.0 ml) was stirred for 8 h under reflux. The white formed precipitate was filtered and then washed with cold methanol to afford a yellow solid. A crystal suitable for X-ray analysis was grown from a solution of the title compound in chloroform by slow evaporation at room temperature.

Refinement top

H atoms were placed in calculated positions with C—H = 0.97-0.98 and N—H = 0.90Å Å. The Uiso(H) values were set equal to 1.2Ueq(C,N).

Structure description top

Organometallic supramolecular chemistry is an increasingly active interdiscipline, which is a new extensive expansion of many natural sciences including chemical, pharmaceutical, biological and material scicences. The supramolecular recognition field attracts increasingly special attention (Zhou et al., 2009;2010). Our interest is to develop a novel efficient supramolecule for selective recognition of CdII ions (Soisungwan, 2012). Herein, the molecular structure of title compound is reported.

There are two independent CdII ions. One CdII ion is coordinated in a slightly distorted octahedral coordination environment by four N atoms from two cyclohexane-1,2-diamine ligands and two iodide ligands. The other CdII ion is coordinated by four iodide ligands in a slightly distorted tetrahedral coordination enviroment. Two of the iodide ligands act as bridging to connect CdII ions and form a one-dimensional polymer along [010] (Fig. 1). In the crystal, N—H···I hydrogen bonds connect the one-dimensional structure in a two-dimensional framework parallel to (001) (Fig. 2).

For general information on supramolecular recognition, see: Zhou et al. (2009, 2010). For information on the selective recognition of CdII ions, see: Soisungwan (2012).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Part of the one-dimensional structure showing displacement ellipsoids at the 50% probability level. H atoms bonded to C atoms are not shown and only the asymmetric unit is labeled.
[Figure 2] Fig. 2. Part of the crystal structure with hydrogen bonds shown as dashed lines. H atoms bonded to C atoms are not shown.
catena-Poly[[trans-bis(cyclohexane-1,2-diamine- κ2N,N)cadmium]-µ-iodido-(diiodidocadmium)-µ-iodido] top
Crystal data top
[Cd2I4(C6H14N2)2]F(000) = 872
Mr = 960.78Dx = 2.624 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 2403 reflections
a = 9.6627 (5) Åθ = 2.0–26.0°
b = 12.1821 (7) ŵ = 6.83 mm1
c = 10.9665 (6) ÅT = 296 K
β = 109.584 (1)°Block, colorless
V = 1216.21 (12) Å30.35 × 0.33 × 0.32 mm
Z = 2
Data collection top
Bruker SMART APEXII CCD
diffractometer
4039 independent reflections
Radiation source: fine-focus sealed tube3967 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
φ and ω scansθmax = 26.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1111
Tmin = 0.199, Tmax = 0.219k = 1414
9784 measured reflectionsl = 1312
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.021 w = 1/[σ2(Fo2) + (0.0249P)2 + 0.0879P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.050(Δ/σ)max = 0.002
S = 1.03Δρmax = 0.86 e Å3
4039 reflectionsΔρmin = 0.62 e Å3
201 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
1 restraintExtinction coefficient: 0.0054 (2)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 1626 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.03 (2)
Crystal data top
[Cd2I4(C6H14N2)2]V = 1216.21 (12) Å3
Mr = 960.78Z = 2
Monoclinic, P21Mo Kα radiation
a = 9.6627 (5) ŵ = 6.83 mm1
b = 12.1821 (7) ÅT = 296 K
c = 10.9665 (6) Å0.35 × 0.33 × 0.32 mm
β = 109.584 (1)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
4039 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3967 reflections with I > 2σ(I)
Tmin = 0.199, Tmax = 0.219Rint = 0.026
9784 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.021H-atom parameters constrained
wR(F2) = 0.050Δρmax = 0.86 e Å3
S = 1.03Δρmin = 0.62 e Å3
4039 reflectionsAbsolute structure: Flack (1983), 1626 Friedel pairs
201 parametersAbsolute structure parameter: 0.03 (2)
1 restraint
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2321 (6)0.2128 (4)0.2157 (5)0.0265 (11)
H1C0.25800.13890.19550.032*
C20.2491 (7)0.2898 (5)0.1134 (6)0.0381 (14)
H2C0.34520.27880.10570.046*
H2D0.24440.36490.14120.046*
C30.1322 (8)0.2735 (6)0.0191 (6)0.0480 (17)
H3C0.14280.32970.07800.058*
H3D0.14580.20260.05360.058*
C40.0207 (8)0.2797 (6)0.0097 (6)0.0482 (17)
H4C0.03680.35180.02050.058*
H4D0.09360.26780.09430.058*
C50.0360 (7)0.1927 (6)0.0838 (6)0.0429 (15)
H5A0.02200.12090.05160.051*
H5B0.13470.19550.08790.051*
C60.0746 (6)0.2081 (5)0.2196 (5)0.0268 (11)
H6A0.05390.27900.25210.032*
C70.4059 (6)0.1103 (4)0.8002 (5)0.0257 (11)
H7A0.34150.16400.82090.031*
C80.5348 (7)0.0864 (5)0.9240 (6)0.0352 (14)
H8A0.60380.03830.90320.042*
H8B0.58530.15460.95700.042*
C90.4876 (7)0.0330 (6)1.0288 (6)0.0405 (15)
H9A0.43090.08531.05940.049*
H9B0.57410.01371.10120.049*
C100.3952 (7)0.0700 (5)0.9800 (6)0.0376 (14)
H10A0.45570.12670.96140.045*
H10B0.35880.09731.04670.045*
C110.2670 (7)0.0446 (4)0.8590 (6)0.0303 (12)
H11A0.20110.00620.88020.036*
H11B0.21290.11160.82680.036*
C120.3179 (6)0.0057 (4)0.7529 (5)0.0254 (11)
H12A0.38310.04740.73270.030*
N10.3315 (5)0.2411 (4)0.3470 (4)0.0278 (10)
H1A0.32600.31360.36060.033*
H1B0.42470.22520.35370.033*
N20.0665 (5)0.1242 (4)0.3116 (5)0.0325 (11)
H2A0.06750.05700.27780.039*
H2B0.01750.13160.32940.039*
N30.4548 (5)0.1568 (4)0.6965 (4)0.0283 (10)
H3A0.53390.11980.69280.034*
H3B0.48040.22760.71410.034*
N40.1941 (5)0.0265 (4)0.6327 (4)0.0272 (10)
H4A0.11890.05650.65190.033*
H4B0.16320.03730.59110.033*
Cd10.26771 (5)0.14437 (4)0.50053 (4)0.03445 (11)
Cd20.29638 (4)0.51532 (3)0.54349 (4)0.02758 (10)
I10.13000 (4)0.34667 (3)0.60022 (4)0.02942 (10)
I20.58302 (4)0.43699 (3)0.59181 (4)0.02991 (10)
I30.16270 (4)0.56236 (3)0.28416 (4)0.03520 (10)
I40.29511 (4)0.70585 (3)0.67547 (4)0.03244 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.028 (3)0.028 (3)0.027 (3)0.005 (2)0.013 (2)0.003 (2)
C20.046 (4)0.036 (3)0.040 (3)0.007 (3)0.024 (3)0.007 (3)
C30.069 (5)0.047 (4)0.033 (3)0.005 (3)0.024 (3)0.004 (3)
C40.056 (4)0.050 (4)0.030 (3)0.014 (3)0.004 (3)0.005 (3)
C50.035 (3)0.058 (4)0.028 (3)0.005 (3)0.001 (3)0.009 (3)
C60.028 (3)0.029 (3)0.023 (3)0.005 (2)0.007 (2)0.003 (2)
C70.023 (3)0.028 (3)0.027 (3)0.002 (2)0.010 (2)0.004 (2)
C80.037 (3)0.033 (3)0.031 (3)0.000 (2)0.006 (3)0.009 (2)
C90.041 (4)0.050 (4)0.028 (3)0.004 (3)0.009 (3)0.001 (3)
C100.048 (4)0.035 (3)0.037 (3)0.006 (3)0.024 (3)0.006 (3)
C110.040 (3)0.025 (3)0.032 (3)0.000 (2)0.021 (3)0.002 (2)
C120.031 (3)0.022 (3)0.026 (3)0.001 (2)0.012 (2)0.004 (2)
N10.019 (2)0.029 (2)0.035 (3)0.0024 (18)0.008 (2)0.0027 (19)
N20.021 (2)0.038 (3)0.038 (3)0.0028 (19)0.010 (2)0.001 (2)
N30.021 (2)0.031 (2)0.033 (3)0.0003 (18)0.0095 (19)0.002 (2)
N40.021 (2)0.031 (2)0.031 (2)0.0069 (18)0.0106 (19)0.0069 (19)
Cd10.0276 (2)0.0449 (2)0.0285 (2)0.00507 (18)0.00643 (17)0.00808 (18)
Cd20.0274 (2)0.0250 (2)0.0318 (2)0.00032 (15)0.01194 (17)0.00169 (16)
I10.02921 (19)0.02459 (18)0.0380 (2)0.00129 (13)0.01589 (16)0.00353 (14)
I20.02389 (19)0.02559 (18)0.0414 (2)0.00116 (13)0.01243 (15)0.00022 (15)
I30.0283 (2)0.0457 (2)0.0310 (2)0.00090 (16)0.00928 (16)0.00441 (16)
I40.02979 (19)0.02561 (18)0.0454 (2)0.00135 (14)0.01721 (16)0.00706 (16)
Geometric parameters (Å, º) top
C1—N11.479 (7)C10—C111.513 (9)
C1—C21.513 (8)C10—H10A0.9700
C1—C61.537 (7)C10—H10B0.9700
C1—H1C0.9800C11—C121.535 (8)
C2—C31.525 (9)C11—H11A0.9700
C2—H2C0.9700C11—H11B0.9700
C2—H2D0.9700C12—N41.474 (7)
C3—C41.517 (11)C12—H12A0.9800
C3—H3C0.9700N1—Cd12.302 (5)
C3—H3D0.9700N1—H1A0.9000
C4—C51.515 (10)N1—H1B0.9000
C4—H4C0.9700N2—Cd12.331 (5)
C4—H4D0.9700N2—H2A0.9000
C5—C61.526 (7)N2—H2B0.9000
C5—H5A0.9700N3—Cd12.303 (4)
C5—H5B0.9700N3—H3A0.9000
C6—N21.457 (7)N3—H3B0.9000
C6—H6A0.9800N4—Cd12.315 (5)
C7—N31.483 (7)N4—H4A0.9000
C7—C121.523 (7)N4—H4B0.9000
C7—C81.532 (8)Cd1—I13.1646 (6)
C7—H7A0.9800Cd1—I2i3.2353 (6)
C8—C91.517 (9)Cd2—I42.7374 (5)
C8—H8A0.9700Cd2—I32.7609 (6)
C8—H8B0.9700Cd2—I12.8041 (5)
C9—C101.529 (9)Cd2—I22.8070 (5)
C9—H9A0.9700I2—Cd1ii3.2353 (6)
C9—H9B0.9700
N1—C1—C2112.4 (5)C10—C11—C12111.8 (5)
N1—C1—C6107.9 (4)C10—C11—H11A109.3
C2—C1—C6113.4 (5)C12—C11—H11A109.3
N1—C1—H1C107.6C10—C11—H11B109.3
C2—C1—H1C107.6C12—C11—H11B109.3
C6—C1—H1C107.6H11A—C11—H11B107.9
C1—C2—C3113.3 (5)N4—C12—C7110.7 (4)
C1—C2—H2C108.9N4—C12—C11112.1 (4)
C3—C2—H2C108.9C7—C12—C11111.1 (4)
C1—C2—H2D108.9N4—C12—H12A107.6
C3—C2—H2D108.9C7—C12—H12A107.6
H2C—C2—H2D107.7C11—C12—H12A107.6
C4—C3—C2110.9 (5)C1—N1—Cd1110.3 (3)
C4—C3—H3C109.5C1—N1—H1A109.6
C2—C3—H3C109.5Cd1—N1—H1A109.6
C4—C3—H3D109.5C1—N1—H1B109.6
C2—C3—H3D109.5Cd1—N1—H1B109.6
H3C—C3—H3D108.1H1A—N1—H1B108.1
C5—C4—C3109.3 (5)C6—N2—Cd1108.6 (3)
C5—C4—H4C109.8C6—N2—H2A110.0
C3—C4—H4C109.8Cd1—N2—H2A110.0
C5—C4—H4D109.8C6—N2—H2B110.0
C3—C4—H4D109.8Cd1—N2—H2B110.0
H4C—C4—H4D108.3H2A—N2—H2B108.3
C4—C5—C6112.3 (5)C7—N3—Cd1109.8 (3)
C4—C5—H5A109.2C7—N3—H3A109.7
C6—C5—H5A109.2Cd1—N3—H3A109.7
C4—C5—H5B109.2C7—N3—H3B109.7
C6—C5—H5B109.2Cd1—N3—H3B109.7
H5A—C5—H5B107.9H3A—N3—H3B108.2
N2—C6—C5114.0 (5)C12—N4—Cd1109.8 (3)
N2—C6—C1109.2 (4)C12—N4—H4A109.7
C5—C6—C1110.7 (5)Cd1—N4—H4A109.7
N2—C6—H6A107.6C12—N4—H4B109.7
C5—C6—H6A107.6Cd1—N4—H4B109.7
C1—C6—H6A107.6H4A—N4—H4B108.2
N3—C7—C12110.1 (4)N1—Cd1—N3109.27 (16)
N3—C7—C8112.3 (4)N1—Cd1—N4171.57 (16)
C12—C7—C8109.8 (4)N3—Cd1—N476.48 (15)
N3—C7—H7A108.2N1—Cd1—N275.63 (16)
C12—C7—H7A108.2N3—Cd1—N2175.06 (17)
C8—C7—H7A108.2N4—Cd1—N298.71 (16)
C9—C8—C7113.0 (5)N1—Cd1—I195.78 (12)
C9—C8—H8A109.0N3—Cd1—I185.16 (12)
C7—C8—H8A109.0N4—Cd1—I190.79 (12)
C9—C8—H8B109.0N2—Cd1—I193.84 (13)
C7—C8—H8B109.0N1—Cd1—I2i85.07 (12)
H8A—C8—H8B107.8N3—Cd1—I2i92.92 (12)
C8—C9—C10112.1 (5)N4—Cd1—I2i88.53 (12)
C8—C9—H9A109.2N2—Cd1—I2i88.06 (13)
C10—C9—H9A109.2I1—Cd1—I2i178.059 (17)
C8—C9—H9B109.2I4—Cd2—I3106.571 (18)
C10—C9—H9B109.2I4—Cd2—I1113.542 (17)
H9A—C9—H9B107.9I3—Cd2—I1105.992 (17)
C11—C10—C9110.4 (5)I4—Cd2—I2111.559 (17)
C11—C10—H10A109.6I3—Cd2—I2110.876 (17)
C9—C10—H10A109.6I1—Cd2—I2108.170 (16)
C11—C10—H10B109.6Cd2—I1—Cd198.931 (15)
C9—C10—H10B109.6Cd2—I2—Cd1ii100.991 (14)
H10A—C10—H10B108.1
N1—C1—C2—C3171.1 (5)C1—N1—Cd1—N434.1 (12)
C6—C1—C2—C348.3 (7)C1—N1—Cd1—N214.4 (3)
C1—C2—C3—C453.4 (7)C1—N1—Cd1—I1106.9 (3)
C2—C3—C4—C558.4 (7)C1—N1—Cd1—I2i74.8 (3)
C3—C4—C5—C660.4 (7)C7—N3—Cd1—N1171.0 (3)
C4—C5—C6—N2178.3 (5)C7—N3—Cd1—N415.4 (3)
C4—C5—C6—C154.7 (7)C7—N3—Cd1—N22 (2)
N1—C1—C6—N260.4 (5)C7—N3—Cd1—I176.6 (3)
C2—C1—C6—N2174.4 (4)C7—N3—Cd1—I2i103.2 (3)
N1—C1—C6—C5173.3 (5)C12—N4—Cd1—N1120.8 (10)
C2—C1—C6—C548.1 (6)C12—N4—Cd1—N313.1 (3)
N3—C7—C8—C9176.9 (5)C12—N4—Cd1—N2168.1 (3)
C12—C7—C8—C954.1 (6)C12—N4—Cd1—I197.9 (3)
C7—C8—C9—C1053.6 (7)C12—N4—Cd1—I2i80.3 (3)
C8—C9—C10—C1153.5 (7)C6—N2—Cd1—N117.3 (3)
C9—C10—C11—C1255.7 (6)C6—N2—Cd1—N3156 (2)
N3—C7—C12—N455.2 (5)C6—N2—Cd1—N4169.0 (3)
C8—C7—C12—N4179.3 (4)C6—N2—Cd1—I177.7 (3)
N3—C7—C12—C11179.5 (4)C6—N2—Cd1—I2i102.7 (3)
C8—C7—C12—C1155.5 (6)I4—Cd2—I1—Cd1161.301 (17)
C10—C11—C12—N4177.6 (4)I3—Cd2—I1—Cd182.052 (18)
C10—C11—C12—C757.9 (6)I2—Cd2—I1—Cd136.908 (19)
C2—C1—N1—Cd1168.5 (4)N1—Cd1—I1—Cd228.11 (11)
C6—C1—N1—Cd142.7 (4)N3—Cd1—I1—Cd280.81 (11)
C5—C6—N2—Cd1170.3 (4)N4—Cd1—I1—Cd2157.17 (11)
C1—C6—N2—Cd145.9 (5)N2—Cd1—I1—Cd2104.04 (12)
C12—C7—N3—Cd141.4 (5)I2i—Cd1—I1—Cd287.7 (5)
C8—C7—N3—Cd1164.0 (3)I4—Cd2—I2—Cd1ii57.90 (2)
C7—C12—N4—Cd139.5 (5)I3—Cd2—I2—Cd1ii60.712 (19)
C11—C12—N4—Cd1164.2 (3)I1—Cd2—I2—Cd1ii176.530 (16)
C1—N1—Cd1—N3166.2 (3)
Symmetry codes: (i) x+1, y1/2, z+1; (ii) x+1, y+1/2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···I4i0.902.843.723 (4)167
N2—H2B···I4iii0.902.813.681 (5)162
N3—H3A···I3i0.902.943.809 (4)162
N4—H4A···I3iii0.903.033.875 (5)157
Symmetry codes: (i) x+1, y1/2, z+1; (iii) x, y1/2, z+1.

Experimental details

Crystal data
Chemical formula[Cd2I4(C6H14N2)2]
Mr960.78
Crystal system, space groupMonoclinic, P21
Temperature (K)296
a, b, c (Å)9.6627 (5), 12.1821 (7), 10.9665 (6)
β (°) 109.584 (1)
V3)1216.21 (12)
Z2
Radiation typeMo Kα
µ (mm1)6.83
Crystal size (mm)0.35 × 0.33 × 0.32
Data collection
DiffractometerBruker SMART APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.199, 0.219
No. of measured, independent and
observed [I > 2σ(I)] reflections
9784, 4039, 3967
Rint0.026
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.021, 0.050, 1.03
No. of reflections4039
No. of parameters201
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.86, 0.62
Absolute structureFlack (1983), 1626 Friedel pairs
Absolute structure parameter0.03 (2)

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···I4i0.902.843.723 (4)167.0
N2—H2B···I4ii0.902.813.681 (5)161.9
N3—H3A···I3i0.902.943.809 (4)162.3
N4—H4A···I3ii0.903.033.875 (5)157.4
Symmetry codes: (i) x+1, y1/2, z+1; (ii) x, y1/2, z+1.
 

Acknowledgements

This work was partially supported by the National Natural Science Foundation of China (grant No. 21172181), the key program from the Natural Science Foundation of Chongqing (grant No. CSTC2012jjB10026), the Specialized Research Fund for the Doctoral Program of Higher Education of China (grant No. SRFDP 20110182110007) and the Research Funds for the Central Universities (grant Nos. XDJK2011D007, XDJK2012B026).

References

First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSoisungwan, S. (2012). Curr. Drug Metab. 13, 257–271.  Web of Science PubMed Google Scholar
First citationZhou, C.-H., Gan, L.-L., Zhang, Y.-Y., Zhang, F.-F., Wang, G.-Z., Jin, L. & Geng, R.-X. (2009). Sci. China Ser. B, 52, 415–458.  Web of Science CrossRef CAS Google Scholar
First citationZhou, C.-H., Zhang, Y.-Y., Yan, C. Y., Wan, K., Gan, L. L. & Shi, Y. (2010). Anticancer Agents Med. Chem. 10, 371–395.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds