metal-organic compounds
Poly[μ2-aqua-μ4-(2-{3-[(6-chloropyridin-3-yl)methyl]-2-oxoimidazolidin-1-yl}acetato)-sodium]
aX-ray Crystallography Laboratory, Post-Graduate Department of Physics & Electronics, University of Jammu, Jammu Tawi 180 006, India, bDepartment of Chemistry, Shivaji University, Kolhapur, 416 004, India, and cNational Research Centre for Grapes, Pune 412 307, India
*Correspondence e-mail: rkvk.paper11@gmail.com
In the title compound, [Na(C11H11ClN3O3)(H2O)]n, there are two independent NaI ions, one of which lies on an inversion center and is coordinated in a slightly distorted octahedral environment. The other NaI ion lies on a twofold rotation axis and is cooordinated in a slightly distorted trigonal–bipyramidal coordination environment. In the organic ligand, the imidazolidine ring adopts a half-chair conformation. The NaI ions bridge organic ligands and water molecules, forming a two-dimensional structure parallel to (100). There are intermolecular O—H⋯O and weak C—H⋯O hydrogen bonds within the two-dimensional structure.
Related literature
For background to the insecticidal applications of imidacloprid {systematic name: N-[1-[(6-chloro-3-pyridyl)methyl]-4,5-dihydroimidazol-2-yl]nitramide}, see: Legocki & Polec (2008); Kovganko & Kashkan (2004); Zhao et al. (2009); Tanner et al. (2010); Xu et al. (2010). For ring conformations, see: Duax & Norton (1975). For related structures, see: Kapoor et al. (2011, 2012); Kant et al. (2012).
Experimental
Crystal data
|
Refinement
|
Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2009).
Supporting information
https://doi.org/10.1107/S1600536812025007/lh5481sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536812025007/lh5481Isup2.hkl
Ethyl[3-[(6-chloropyridin-3-yl)methyl]-2-(nitroimino)imidazolidin -1-yl]acetate (0.341 g m, 0.001 mol) was dissolved in 5 ml methanol and 5 ml 1 N NaOH solution was added. The reaction mixture was refluxed on a water bath at 343K for 12 h, and then cooled. The compound was re-precipitated upon neutralization with 1 N HCl. The compound was dissolved in methanol and crystallized in a fume hood at room temperature by the process of slow evaporation.
m.p. 575 K IR (KBr) νmax: 3421, 3300, 2872, 2930, 1668, 1606 cm-1. LC—MS/MS: 270, 252, 224, 149, 126 m/z.
All H atoms except water H atoms were positioned geometrically and were treated as riding on their parent C atoms, with C—H distances of 0.93–0.97 Å and with Uiso(H) = 1.2Ueq(C). Water H atoms were found in a difference map and isotropically refined
For the development of nicotinoid insecticides the crucial turning-point could be traced back to the work done by the scientists from Nihon Tokushu Noyaku Seizo K and Nippon Bayer (Legocki & Polec, 2008). Insects become resistant to insecticides due to continuous use and hence it is imperative to introduce new molecules having novel mode of action (Kovganko & Kashkan, 2004). The outstanding development of neonicotinoid insecticides has been achieved for the modern crop protection, consumer products, and animal health markets between 1990 and today reflects the enormous importance of this chemical class (Zhao et al., 2009). Neonicotinoids have low toxicity toward mammals and no teratogenic or mutagenic effects (Xu et al., 2010). The biological activity and agricultural uses of neonicotinoid insecticides are enormous (Zhao et al., 2009). From investigations it is revealed that the neonicotinoids are converted into numerous and variable metabolites in plants as well as in mammals (Tanner et al., 2010).
The
is shown in Fig. 1. The bond lengths and angles observed in (I) show normal values and are comparable to those in related structures (Kapoor et al., 2011; Kant et al., 2012). There are two independent NaI ions, one of which lies on an inversion center and is coordinated in a slightly disotorted octahedral environment. The other NaI ion lies on a twofold rotation axis and is cooordinated in a slightly distorted trigonal bipyramidal coordination environment. In the organic ligand the imidazole ring adopts half-chair conformation (asymmetry parameter: ΔC2(C9—C10) = 2.31). The NaI ions bridge organic ligands and solvent water molecules to form a two-dimensional structure parallel to (100). There are intermolecular O—H···O and weak C—H···O hydrogen bonds within the two-dimensional structure.For background to the insecticidal applications of imidacloprid {systematic name: N-[1-[(6-chloro-3-pyridyl)methyl]-4,5-dihydroimidazol-2-yl]nitramide}, see: Legocki & Polec (2008); Kovganko & Kashkan (2004); Zhao et al. (2009); Tanner et al. (2010); Xu et al. (2010). For ring conformations, see: Duax et al. (1975). For related structures, see: Kapoor et al. (2011, 2012); Kant et al. (2012).
Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell
CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2009).[Na(C11H11ClN3O3)(H2O)] | F(000) = 1280 |
Mr = 309.68 | Dx = 1.499 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -C 2yc | Cell parameters from 5286 reflections |
a = 45.655 (2) Å | θ = 3.6–29.0° |
b = 4.9113 (2) Å | µ = 0.33 mm−1 |
c = 12.5205 (7) Å | T = 293 K |
β = 102.184 (5)° | Block, white |
V = 2744.2 (2) Å3 | 0.3 × 0.2 × 0.1 mm |
Z = 8 |
Oxford Diffraction Xcalibur Sapphire3 diffractometer | 2678 independent reflections |
Radiation source: fine-focus sealed tube | 1909 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.038 |
Detector resolution: 16.1049 pixels mm-1 | θmax = 26.0°, θmin = 3.6° |
ω scan | h = −56→52 |
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010) | k = −6→5 |
Tmin = 0.836, Tmax = 1.000 | l = −15→15 |
9498 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.046 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.112 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.02 | w = 1/[σ2(Fo2) + (0.0459P)2 + 2.523P] where P = (Fo2 + 2Fc2)/3 |
2678 reflections | (Δ/σ)max = 0.001 |
191 parameters | Δρmax = 0.44 e Å−3 |
0 restraints | Δρmin = −0.46 e Å−3 |
[Na(C11H11ClN3O3)(H2O)] | V = 2744.2 (2) Å3 |
Mr = 309.68 | Z = 8 |
Monoclinic, C2/c | Mo Kα radiation |
a = 45.655 (2) Å | µ = 0.33 mm−1 |
b = 4.9113 (2) Å | T = 293 K |
c = 12.5205 (7) Å | 0.3 × 0.2 × 0.1 mm |
β = 102.184 (5)° |
Oxford Diffraction Xcalibur Sapphire3 diffractometer | 2678 independent reflections |
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010) | 1909 reflections with I > 2σ(I) |
Tmin = 0.836, Tmax = 1.000 | Rint = 0.038 |
9498 measured reflections |
R[F2 > 2σ(F2)] = 0.046 | 0 restraints |
wR(F2) = 0.112 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.02 | Δρmax = 0.44 e Å−3 |
2678 reflections | Δρmin = −0.46 e Å−3 |
191 parameters |
Experimental. CrysAlis PRO, Oxford Diffraction Ltd., Version 1.171.34.40 (release 27–08-2010 CrysAlis171. NET) (compiled Aug 27 2010,11:50:40) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Na1 | 1.0000 | 1.0000 | 0.0000 | 0.0267 (3) | |
Na2 | 1.0000 | 1.0028 (2) | 0.2500 | 0.0286 (3) | |
Cl1 | 0.76939 (2) | 0.7478 (2) | 0.18991 (10) | 0.0963 (4) | |
N1 | 0.81725 (5) | 0.4509 (6) | 0.2281 (2) | 0.0652 (7) | |
C2 | 0.81005 (7) | 0.2440 (7) | 0.0194 (3) | 0.0685 (9) | |
H2 | 0.8072 | 0.1756 | −0.0513 | 0.082* | |
C3 | 0.83467 (6) | 0.1665 (5) | 0.0972 (2) | 0.0447 (7) | |
C4 | 0.83683 (7) | 0.2781 (6) | 0.1992 (3) | 0.0570 (8) | |
H4 | 0.8534 | 0.2292 | 0.2529 | 0.068* | |
C5 | 0.78956 (7) | 0.4245 (8) | 0.0471 (3) | 0.0769 (11) | |
H5 | 0.7728 | 0.4802 | −0.0043 | 0.092* | |
C6 | 0.79453 (7) | 0.5174 (7) | 0.1510 (3) | 0.0614 (8) | |
C7 | 0.85914 (6) | −0.0155 (5) | 0.0735 (2) | 0.0491 (7) | |
H7A | 0.8676 | −0.1189 | 0.1387 | 0.059* | |
H7B | 0.8505 | −0.1439 | 0.0167 | 0.059* | |
N8 | 0.88292 (4) | 0.1344 (4) | 0.03879 (16) | 0.0377 (5) | |
C9 | 0.87821 (7) | 0.2620 (6) | −0.0683 (2) | 0.0549 (8) | |
H9A | 0.8602 | 0.3723 | −0.0825 | 0.066* | |
H9B | 0.8770 | 0.1275 | −0.1257 | 0.066* | |
C10 | 0.90605 (6) | 0.4362 (6) | −0.0581 (2) | 0.0512 (7) | |
H10A | 0.9219 | 0.3394 | −0.0829 | 0.061* | |
H10B | 0.9018 | 0.6046 | −0.0989 | 0.061* | |
N11 | 0.91385 (4) | 0.4864 (4) | 0.05842 (16) | 0.0331 (5) | |
C12 | 0.90251 (5) | 0.2884 (5) | 0.11303 (19) | 0.0299 (5) | |
O12 | 0.90778 (4) | 0.2517 (4) | 0.21182 (13) | 0.0437 (5) | |
C13 | 0.94038 (5) | 0.6403 (5) | 0.1062 (2) | 0.0360 (6) | |
H13A | 0.9397 | 0.6836 | 0.1812 | 0.043* | |
H13B | 0.9401 | 0.8108 | 0.0668 | 0.043* | |
C14 | 0.96972 (5) | 0.4954 (4) | 0.10520 (16) | 0.0228 (5) | |
O15 | 0.99295 (3) | 0.6404 (3) | 0.12325 (12) | 0.0268 (4) | |
O16 | 0.96893 (3) | 0.2446 (3) | 0.09003 (13) | 0.0302 (4) | |
O1W | 1.03482 (4) | 1.2101 (4) | 0.15005 (15) | 0.0364 (4) | |
H1W | 1.0512 (7) | 1.220 (6) | 0.189 (3) | 0.055 (9)* | |
H2W | 1.0263 (8) | 1.361 (8) | 0.152 (3) | 0.082 (12)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Na1 | 0.0343 (7) | 0.0252 (6) | 0.0226 (6) | −0.0001 (5) | 0.0104 (5) | −0.0014 (5) |
Na2 | 0.0387 (7) | 0.0243 (6) | 0.0236 (6) | 0.000 | 0.0084 (5) | 0.000 |
Cl1 | 0.0693 (6) | 0.1034 (8) | 0.1248 (9) | 0.0315 (5) | 0.0398 (6) | 0.0245 (6) |
N1 | 0.0462 (15) | 0.0806 (19) | 0.0682 (18) | 0.0095 (14) | 0.0111 (13) | 0.0045 (15) |
C2 | 0.0438 (18) | 0.095 (3) | 0.059 (2) | −0.0028 (18) | −0.0058 (15) | −0.0005 (19) |
C3 | 0.0307 (13) | 0.0456 (15) | 0.0556 (18) | −0.0117 (12) | 0.0042 (12) | 0.0062 (13) |
C4 | 0.0397 (16) | 0.073 (2) | 0.0546 (19) | 0.0058 (15) | 0.0004 (13) | 0.0096 (16) |
C5 | 0.0401 (18) | 0.104 (3) | 0.079 (3) | 0.0158 (18) | −0.0045 (17) | 0.019 (2) |
C6 | 0.0423 (17) | 0.067 (2) | 0.078 (2) | 0.0010 (15) | 0.0184 (16) | 0.0143 (18) |
C7 | 0.0412 (15) | 0.0387 (14) | 0.0650 (19) | −0.0123 (13) | 0.0060 (13) | −0.0015 (14) |
N8 | 0.0363 (11) | 0.0375 (11) | 0.0369 (12) | −0.0057 (10) | 0.0024 (9) | −0.0023 (9) |
C9 | 0.0507 (17) | 0.074 (2) | 0.0349 (16) | −0.0085 (15) | −0.0032 (13) | −0.0032 (14) |
C10 | 0.0439 (15) | 0.074 (2) | 0.0327 (15) | −0.0043 (14) | 0.0015 (12) | 0.0151 (14) |
N11 | 0.0278 (10) | 0.0322 (10) | 0.0386 (11) | −0.0006 (9) | 0.0057 (8) | 0.0036 (9) |
C12 | 0.0242 (11) | 0.0327 (12) | 0.0327 (14) | 0.0049 (10) | 0.0057 (10) | −0.0007 (10) |
O12 | 0.0328 (9) | 0.0672 (12) | 0.0308 (10) | −0.0053 (8) | 0.0057 (7) | 0.0033 (9) |
C13 | 0.0331 (13) | 0.0251 (11) | 0.0517 (16) | 0.0000 (10) | 0.0133 (11) | −0.0013 (11) |
C14 | 0.0302 (11) | 0.0213 (10) | 0.0173 (10) | 0.0011 (10) | 0.0063 (9) | 0.0016 (9) |
O15 | 0.0288 (8) | 0.0230 (7) | 0.0283 (8) | −0.0029 (7) | 0.0056 (6) | −0.0017 (6) |
O16 | 0.0329 (9) | 0.0182 (7) | 0.0410 (9) | −0.0002 (6) | 0.0116 (7) | −0.0023 (6) |
O1W | 0.0315 (10) | 0.0405 (11) | 0.0347 (10) | −0.0025 (9) | 0.0011 (8) | −0.0037 (8) |
Na1—O16i | 2.3239 (14) | C5—C6 | 1.351 (5) |
Na1—O16ii | 2.3239 (14) | C5—H5 | 0.9300 |
Na1—O15iii | 2.4112 (14) | C7—N8 | 1.452 (3) |
Na1—O15 | 2.4112 (14) | C7—H7A | 0.9700 |
Na1—O1Wiii | 2.4208 (18) | C7—H7B | 0.9700 |
Na1—O1W | 2.4208 (18) | N8—C12 | 1.373 (3) |
Na1—Na2iii | 3.1302 (2) | N8—C9 | 1.454 (3) |
Na1—Na2 | 3.1302 (2) | C9—C10 | 1.515 (4) |
Na2—O15 | 2.3611 (16) | C9—H9A | 0.9700 |
Na2—O15iv | 2.3611 (16) | C9—H9B | 0.9700 |
Na2—O1W | 2.4432 (18) | C10—N11 | 1.448 (3) |
Na2—O1Wiv | 2.4432 (18) | C10—H10A | 0.9700 |
Na2—O16v | 2.4969 (16) | C10—H10B | 0.9700 |
Na2—O16ii | 2.4968 (16) | N11—C12 | 1.353 (3) |
Na2—Na1iv | 3.1302 (2) | N11—C13 | 1.446 (3) |
Na2—H2W | 2.58 (3) | C12—O12 | 1.223 (3) |
Cl1—C6 | 1.753 (3) | C13—C14 | 1.519 (3) |
N1—C6 | 1.301 (4) | C13—H13A | 0.9700 |
N1—C4 | 1.336 (4) | C13—H13B | 0.9700 |
C2—C3 | 1.377 (4) | C14—O16 | 1.246 (2) |
C2—C5 | 1.385 (5) | C14—O15 | 1.257 (2) |
C2—H2 | 0.9300 | O16—Na1vi | 2.3239 (14) |
C3—C4 | 1.374 (4) | O16—Na2vi | 2.4968 (16) |
C3—C7 | 1.509 (4) | O1W—H1W | 0.81 (3) |
C4—H4 | 0.9300 | O1W—H2W | 0.84 (4) |
O16i—Na1—O16ii | 180.00 (5) | C6—N1—C4 | 115.7 (3) |
O16i—Na1—O15iii | 83.72 (5) | C3—C2—C5 | 119.6 (3) |
O16ii—Na1—O15iii | 96.28 (5) | C3—C2—H2 | 120.2 |
O16i—Na1—O15 | 96.28 (5) | C5—C2—H2 | 120.2 |
O16ii—Na1—O15 | 83.72 (5) | C4—C3—C2 | 115.8 (3) |
O15iii—Na1—O15 | 180.00 (7) | C4—C3—C7 | 120.6 (2) |
O16i—Na1—O1Wiii | 76.78 (6) | C2—C3—C7 | 123.5 (3) |
O16ii—Na1—O1Wiii | 103.22 (6) | N1—C4—C3 | 125.7 (3) |
O15iii—Na1—O1Wiii | 88.29 (6) | N1—C4—H4 | 117.1 |
O15—Na1—O1Wiii | 91.71 (6) | C3—C4—H4 | 117.1 |
O16i—Na1—O1W | 103.22 (6) | C6—C5—C2 | 118.2 (3) |
O16ii—Na1—O1W | 76.78 (6) | C6—C5—H5 | 120.9 |
O15iii—Na1—O1W | 91.71 (6) | C2—C5—H5 | 120.9 |
O15—Na1—O1W | 88.29 (6) | N1—C6—C5 | 125.1 (3) |
O1Wiii—Na1—O1W | 180.00 (8) | N1—C6—Cl1 | 115.0 (3) |
O16i—Na1—Na2iii | 51.96 (4) | C5—C6—Cl1 | 119.9 (3) |
O16ii—Na1—Na2iii | 128.04 (4) | N8—C7—C3 | 112.9 (2) |
O15iii—Na1—Na2iii | 48.32 (4) | N8—C7—H7A | 109.0 |
O15—Na1—Na2iii | 131.68 (4) | C3—C7—H7A | 109.0 |
O1Wiii—Na1—Na2iii | 50.26 (4) | N8—C7—H7B | 109.0 |
O1W—Na1—Na2iii | 129.74 (4) | C3—C7—H7B | 109.0 |
O16i—Na1—Na2 | 128.04 (4) | H7A—C7—H7B | 107.8 |
O16ii—Na1—Na2 | 51.96 (4) | C12—N8—C7 | 119.9 (2) |
O15iii—Na1—Na2 | 131.68 (4) | C12—N8—C9 | 109.6 (2) |
O15—Na1—Na2 | 48.32 (4) | C7—N8—C9 | 121.3 (2) |
O1Wiii—Na1—Na2 | 129.74 (4) | N8—C9—C10 | 102.0 (2) |
O1W—Na1—Na2 | 50.26 (4) | N8—C9—H9A | 111.4 |
Na2iii—Na1—Na2 | 180.00 (4) | C10—C9—H9A | 111.4 |
O15—Na2—O15iv | 82.15 (8) | N8—C9—H9B | 111.4 |
O15—Na2—O1W | 88.91 (5) | C10—C9—H9B | 111.4 |
O15iv—Na2—O1W | 130.33 (6) | H9A—C9—H9B | 109.2 |
O15—Na2—O1Wiv | 130.33 (6) | N11—C10—C9 | 101.8 (2) |
O15iv—Na2—O1Wiv | 88.91 (6) | N11—C10—H10A | 111.4 |
O1W—Na2—O1Wiv | 130.75 (10) | C9—C10—H10A | 111.4 |
O15—Na2—O16v | 150.63 (6) | N11—C10—H10B | 111.4 |
O15iv—Na2—O16v | 81.11 (5) | C9—C10—H10B | 111.4 |
O1W—Na2—O16v | 83.79 (6) | H10A—C10—H10B | 109.3 |
O1Wiv—Na2—O16v | 73.25 (6) | C12—N11—C13 | 122.9 (2) |
O15—Na2—O16ii | 81.11 (5) | C12—N11—C10 | 110.4 (2) |
O15iv—Na2—O16ii | 150.63 (6) | C13—N11—C10 | 120.80 (19) |
O1W—Na2—O16ii | 73.25 (6) | O12—C12—N11 | 127.1 (2) |
O1Wiv—Na2—O16ii | 83.79 (6) | O12—C12—N8 | 124.4 (2) |
O16v—Na2—O16ii | 123.21 (8) | N11—C12—N8 | 108.5 (2) |
O15—Na2—Na1iv | 129.79 (5) | N11—C13—C14 | 114.54 (18) |
O15iv—Na2—Na1iv | 49.71 (3) | N11—C13—H13A | 108.6 |
O1W—Na2—Na1iv | 130.64 (5) | C14—C13—H13A | 108.6 |
O1Wiv—Na2—Na1iv | 49.63 (4) | N11—C13—H13B | 108.6 |
O16v—Na2—Na1iv | 47.14 (3) | C14—C13—H13B | 108.6 |
O16ii—Na2—Na1iv | 133.19 (4) | H13A—C13—H13B | 107.6 |
O15—Na2—Na1 | 49.71 (3) | O16—C14—O15 | 125.69 (19) |
O15iv—Na2—Na1 | 129.79 (5) | O16—C14—C13 | 117.84 (18) |
O1W—Na2—Na1 | 49.63 (4) | O15—C14—C13 | 116.43 (18) |
O1Wiv—Na2—Na1 | 130.65 (5) | C14—O15—Na2 | 122.53 (12) |
O16v—Na2—Na1 | 133.19 (4) | C14—O15—Na1 | 121.41 (12) |
O16ii—Na2—Na1 | 47.14 (3) | Na2—O15—Na1 | 81.97 (5) |
Na1iv—Na2—Na1 | 179.49 (4) | C14—O16—Na1vi | 125.73 (13) |
O15—Na2—H2W | 101.9 (8) | C14—O16—Na2vi | 110.77 (13) |
O15iv—Na2—H2W | 145.3 (8) | Na1vi—O16—Na2vi | 80.89 (5) |
O1W—Na2—H2W | 19.0 (8) | Na1—O1W—Na2 | 80.11 (5) |
O1Wiv—Na2—H2W | 112.1 (8) | Na1—O1W—H1W | 151 (2) |
O16v—Na2—H2W | 79.3 (8) | Na2—O1W—H1W | 110 (2) |
O16ii—Na2—H2W | 62.4 (8) | Na1—O1W—H2W | 100 (2) |
Na1iv—Na2—H2W | 125.2 (8) | Na2—O1W—H2W | 90 (2) |
Na1—Na2—H2W | 55.2 (8) | H1W—O1W—H2W | 108 (3) |
O16i—Na1—Na2—O15 | −59.31 (6) | C13—N11—C12—N8 | −163.81 (19) |
O16ii—Na1—Na2—O15 | 120.69 (6) | C10—N11—C12—N8 | −10.9 (3) |
O15iii—Na1—Na2—O15 | 180.000 (3) | C7—N8—C12—O12 | 23.0 (3) |
O1Wiii—Na1—Na2—O15 | 46.52 (8) | C9—N8—C12—O12 | 170.2 (2) |
O1W—Na1—Na2—O15 | −133.48 (8) | C7—N8—C12—N11 | −155.4 (2) |
O16i—Na1—Na2—O15iv | −39.26 (7) | C9—N8—C12—N11 | −8.1 (3) |
O16ii—Na1—Na2—O15iv | 140.74 (7) | C12—N11—C13—C14 | 80.5 (3) |
O15iii—Na1—Na2—O15iv | −159.94 (9) | C10—N11—C13—C14 | −69.7 (3) |
O15—Na1—Na2—O15iv | 20.06 (9) | N11—C13—C14—O16 | −17.1 (3) |
O1Wiii—Na1—Na2—O15iv | 66.58 (8) | N11—C13—C14—O15 | 164.93 (18) |
O1W—Na1—Na2—O15iv | −113.42 (8) | O16—C14—O15—Na2 | −140.66 (17) |
O16i—Na1—Na2—O1W | 74.17 (8) | C13—C14—O15—Na2 | 37.1 (2) |
O16ii—Na1—Na2—O1W | −105.83 (8) | O16—C14—O15—Na1 | 118.07 (19) |
O15iii—Na1—Na2—O1W | −46.52 (8) | C13—C14—O15—Na1 | −64.2 (2) |
O15—Na1—Na2—O1W | 133.48 (8) | O15iv—Na2—O15—C14 | 73.13 (14) |
O1Wiii—Na1—Na2—O1W | 180.000 (2) | O1W—Na2—O15—C14 | −155.86 (15) |
O16i—Na1—Na2—O1Wiv | −172.30 (8) | O1Wiv—Na2—O15—C14 | −8.69 (18) |
O16ii—Na1—Na2—O1Wiv | 7.70 (8) | O16v—Na2—O15—C14 | 128.87 (15) |
O15iii—Na1—Na2—O1Wiv | 67.01 (9) | O16ii—Na2—O15—C14 | −82.65 (15) |
O15—Na1—Na2—O1Wiv | −112.99 (9) | Na1iv—Na2—O15—C14 | 57.82 (16) |
O1Wiii—Na1—Na2—O1Wiv | −66.47 (14) | Na1—Na2—O15—C14 | −122.29 (16) |
O1W—Na1—Na2—O1Wiv | 113.53 (14) | O15iv—Na2—O15—Na1 | −164.57 (7) |
O16i—Na1—Na2—O16v | 81.15 (10) | O1W—Na2—O15—Na1 | −33.57 (6) |
O16ii—Na1—Na2—O16v | −98.85 (10) | O1Wiv—Na2—O15—Na1 | 113.60 (7) |
O15iii—Na1—Na2—O16v | −39.54 (8) | O16v—Na2—O15—Na1 | −108.84 (10) |
O15—Na1—Na2—O16v | 140.46 (8) | O16ii—Na2—O15—Na1 | 39.65 (4) |
O1Wiii—Na1—Na2—O16v | −173.02 (8) | Na1iv—Na2—O15—Na1 | −179.885 (9) |
O1W—Na1—Na2—O16v | 6.98 (8) | O16i—Na1—O15—C14 | −99.57 (14) |
O16i—Na1—Na2—O16ii | 180.000 (1) | O16ii—Na1—O15—C14 | 80.43 (14) |
O15iii—Na1—Na2—O16ii | 59.31 (6) | O1Wiii—Na1—O15—C14 | −22.69 (15) |
O15—Na1—Na2—O16ii | −120.69 (6) | O1W—Na1—O15—C14 | 157.31 (15) |
O1Wiii—Na1—Na2—O16ii | −74.17 (8) | Na2iii—Na1—O15—C14 | −56.62 (15) |
O1W—Na1—Na2—O16ii | 105.83 (8) | Na2—Na1—O15—C14 | 123.38 (15) |
C5—C2—C3—C4 | 0.2 (4) | O16i—Na1—O15—Na2 | 137.04 (5) |
C5—C2—C3—C7 | −176.3 (3) | O16ii—Na1—O15—Na2 | −42.96 (5) |
C6—N1—C4—C3 | −0.6 (5) | O1Wiii—Na1—O15—Na2 | −146.07 (6) |
C2—C3—C4—N1 | 0.3 (5) | O1W—Na1—O15—Na2 | 33.93 (6) |
C7—C3—C4—N1 | 176.9 (3) | Na2iii—Na1—O15—Na2 | 180.000 (2) |
C3—C2—C5—C6 | −0.4 (5) | O15—C14—O16—Na1vi | −35.2 (3) |
C4—N1—C6—C5 | 0.4 (5) | C13—C14—O16—Na1vi | 147.11 (16) |
C4—N1—C6—Cl1 | −179.1 (2) | O15—C14—O16—Na2vi | 58.5 (2) |
C2—C5—C6—N1 | 0.1 (6) | C13—C14—O16—Na2vi | −119.20 (17) |
C2—C5—C6—Cl1 | 179.6 (3) | O16i—Na1—O1W—Na2 | −128.89 (6) |
C4—C3—C7—N8 | −87.5 (3) | O16ii—Na1—O1W—Na2 | 51.11 (6) |
C2—C3—C7—N8 | 88.8 (3) | O15iii—Na1—O1W—Na2 | 147.16 (6) |
C3—C7—N8—C12 | 71.7 (3) | O15—Na1—O1W—Na2 | −32.83 (6) |
C3—C7—N8—C9 | −71.6 (3) | Na2iii—Na1—O1W—Na2 | 180.000 (1) |
C12—N8—C9—C10 | 22.3 (3) | O15—Na2—O1W—Na1 | 33.61 (5) |
C7—N8—C9—C10 | 169.0 (2) | O15iv—Na2—O1W—Na1 | 112.35 (8) |
N8—C9—C10—N11 | −26.8 (3) | O1Wiv—Na2—O1W—Na1 | −113.33 (6) |
C9—C10—N11—C12 | 24.0 (3) | O16v—Na2—O1W—Na1 | −174.89 (6) |
C9—C10—N11—C13 | 177.6 (2) | O16ii—Na2—O1W—Na1 | −47.43 (5) |
C13—N11—C12—O12 | 17.9 (3) | Na1iv—Na2—O1W—Na1 | 179.44 (4) |
C10—N11—C12—O12 | 170.9 (2) |
Symmetry codes: (i) −x+2, −y+1, −z; (ii) x, y+1, z; (iii) −x+2, −y+2, −z; (iv) −x+2, y, −z+1/2; (v) −x+2, y+1, −z+1/2; (vi) x, y−1, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1W—H1W···O12v | 0.80 (4) | 2.02 (4) | 2.826 (3) | 179 (3) |
O1W—H2W···O15ii | 0.84 (4) | 2.02 (4) | 2.822 (2) | 158 (3) |
C10—H10B···O12vii | 0.97 | 2.54 | 3.279 (3) | 133 |
C13—H13B···O16ii | 0.97 | 2.49 | 3.265 (3) | 137 |
Symmetry codes: (ii) x, y+1, z; (v) −x+2, y+1, −z+1/2; (vii) x, −y+1, z−1/2. |
Experimental details
Crystal data | |
Chemical formula | [Na(C11H11ClN3O3)(H2O)] |
Mr | 309.68 |
Crystal system, space group | Monoclinic, C2/c |
Temperature (K) | 293 |
a, b, c (Å) | 45.655 (2), 4.9113 (2), 12.5205 (7) |
β (°) | 102.184 (5) |
V (Å3) | 2744.2 (2) |
Z | 8 |
Radiation type | Mo Kα |
µ (mm−1) | 0.33 |
Crystal size (mm) | 0.3 × 0.2 × 0.1 |
Data collection | |
Diffractometer | Oxford Diffraction Xcalibur Sapphire3 |
Absorption correction | Multi-scan (CrysAlis PRO; Oxford Diffraction, 2010) |
Tmin, Tmax | 0.836, 1.000 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 9498, 2678, 1909 |
Rint | 0.038 |
(sin θ/λ)max (Å−1) | 0.617 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.046, 0.112, 1.02 |
No. of reflections | 2678 |
No. of parameters | 191 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.44, −0.46 |
Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
O1W—H1W···O12i | 0.80 (4) | 2.02 (4) | 2.826 (3) | 179 (3) |
O1W—H2W···O15ii | 0.84 (4) | 2.02 (4) | 2.822 (2) | 158 (3) |
C10—H10B···O12iii | 0.97 | 2.54 | 3.279 (3) | 133 |
C13—H13B···O16ii | 0.97 | 2.49 | 3.265 (3) | 137 |
Symmetry codes: (i) −x+2, y+1, −z+1/2; (ii) x, y+1, z; (iii) x, −y+1, z−1/2. |
Acknowledgements
RK acknowledges the Department of Science & Technology for the single-crystal X-ray diffractometer sanctioned as a National Facility under project No. SR/S2/CMP-47/2003. He is also thankful to the University of Jammu, Jammu, India, for financial support.
References
Duax, W. L. & Norton, D. A. (1975). Atlas of Steroid Structures, Vol. 1. New York: Plenum Press. Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Kant, R., Gupta, V. K., Kapoor, K., Deshmukh, M. B. & Shripanavar, C. S. (2012). Acta Cryst. E68, o147. Web of Science CSD CrossRef IUCr Journals Google Scholar
Kapoor, K., Gupta, V. K., Deshmukh, M. B., Shripanavar, C. S. & Kant, R. (2012). Acta Cryst. E68, o469. Web of Science CSD CrossRef IUCr Journals Google Scholar
Kapoor, K., Gupta, V. K., Kant, R., Deshmukh, M. B. & Sripanavar, C. S. (2011). X-ray Struct. Anal. Online, 27, 55–56. CrossRef CAS Google Scholar
Kovganko, N. V. & Kashkan, Zh. N. (2004). Russ. J. Org. Chem. 40, 1709–1726. Web of Science CrossRef CAS Google Scholar
Legocki, J. & Polec, I. (2008). Pestycydy, 1–2, 143–159. Google Scholar
Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Tanner, G. (2010). Masters Thesis "Development of a Method for the Analysis of Neonicotinoid Insecticide Residues in Honey using LCMS/MS and Investigations of Neonicotinoid Insecticides in Matrices of Importance in Apiculture", Austrian Agency for Health and Food Safety, Vienna. Google Scholar
Xu, T., Wei, K.-Y., Wang, J., Ma, H.-X. & Li, J. (2010). XUETAL J. AOAC Int. 93, 12–18. CAS Google Scholar
Zhao, Y., Li, Y., Wang, S. & Li, Z. (2009). ARKIVOC, xi,152–164. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
For the development of nicotinoid insecticides the crucial turning-point could be traced back to the work done by the scientists from Nihon Tokushu Noyaku Seizo K and Nippon Bayer (Legocki & Polec, 2008). Insects become resistant to insecticides due to continuous use and hence it is imperative to introduce new molecules having novel mode of action (Kovganko & Kashkan, 2004). The outstanding development of neonicotinoid insecticides has been achieved for the modern crop protection, consumer products, and animal health markets between 1990 and today reflects the enormous importance of this chemical class (Zhao et al., 2009). Neonicotinoids have low toxicity toward mammals and no teratogenic or mutagenic effects (Xu et al., 2010). The biological activity and agricultural uses of neonicotinoid insecticides are enormous (Zhao et al., 2009). From investigations it is revealed that the neonicotinoids are converted into numerous and variable metabolites in plants as well as in mammals (Tanner et al., 2010).
The asymmetric unit is shown in Fig. 1. The bond lengths and angles observed in (I) show normal values and are comparable to those in related structures (Kapoor et al., 2011; Kant et al., 2012). There are two independent NaI ions, one of which lies on an inversion center and is coordinated in a slightly disotorted octahedral environment. The other NaI ion lies on a twofold rotation axis and is cooordinated in a slightly distorted trigonal bipyramidal coordination environment. In the organic ligand the imidazole ring adopts half-chair conformation (asymmetry parameter: ΔC2(C9—C10) = 2.31). The NaI ions bridge organic ligands and solvent water molecules to form a two-dimensional structure parallel to (100). There are intermolecular O—H···O and weak C—H···O hydrogen bonds within the two-dimensional structure.