metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[μ2-aqua-μ4-(2-{3-[(6-chloro­pyridin-3-yl)meth­yl]-2-oxoimidazolidin-1-yl}acetato)-sodium]

aX-ray Crystallography Laboratory, Post-Graduate Department of Physics & Electronics, University of Jammu, Jammu Tawi 180 006, India, bDepartment of Chemistry, Shivaji University, Kolhapur, 416 004, India, and cNational Research Centre for Grapes, Pune 412 307, India
*Correspondence e-mail: rkvk.paper11@gmail.com

(Received 22 May 2012; accepted 1 June 2012; online 13 June 2012)

In the title compound, [Na(C11H11ClN3O3)(H2O)]n, there are two independent NaI ions, one of which lies on an inversion center and is coordinated in a slightly distorted octa­hedral environment. The other NaI ion lies on a twofold rotation axis and is cooordinated in a slightly distorted trigonal–bipyramidal coordination environment. In the organic ligand, the imidazolidine ring adopts a half-chair conformation. The NaI ions bridge organic ligands and water mol­ecules, forming a two-dimensional structure parallel to (100). There are inter­molecular O—H⋯O and weak C—H⋯O hydrogen bonds within the two-dimensional structure.

Related literature

For background to the insecticidal applications of imidacloprid {systematic name: N-[1-[(6-chloro-3-pyrid­yl)meth­yl]-4,5-dihydro­imidazol-2-yl]nitramide}, see: Legocki & Polec (2008[Legocki, J. & Polec, I. (2008). Pestycydy, 1-2, 143-159.]); Kovganko & Kashkan (2004[Kovganko, N. V. & Kashkan, Zh. N. (2004). Russ. J. Org. Chem. 40, 1709-1726.]); Zhao et al. (2009[Zhao, Y., Li, Y., Wang, S. & Li, Z. (2009). ARKIVOC, xi,152-164.]); Tanner et al. (2010[Tanner, G. (2010). Masters Thesis "Development of a Method for the Analysis of Neonicotinoid Insecticide Residues in Honey using LCMS/MS and Investigations of Neonicotinoid Insecticides in Matrices of Importance in Apiculture", Austrian Agency for Health and Food Safety, Vienna.]); Xu et al. (2010[Xu, T., Wei, K.-Y., Wang, J., Ma, H.-X. & Li, J. (2010). XUETAL J. AOAC Int. 93, 12-18.]). For ring conformations, see: Duax & Norton (1975[Duax, W. L. & Norton, D. A. (1975). Atlas of Steroid Structures, Vol. 1. New York: Plenum Press.]). For related structures, see: Kapoor et al. (2011[Kapoor, K., Gupta, V. K., Kant, R., Deshmukh, M. B. & Sripanavar, C. S. (2011). X-ray Struct. Anal. Online, 27, 55-56.], 2012[Kapoor, K., Gupta, V. K., Deshmukh, M. B., Shripanavar, C. S. & Kant, R. (2012). Acta Cryst. E68, o469.]); Kant et al. (2012[Kant, R., Gupta, V. K., Kapoor, K., Deshmukh, M. B. & Shripanavar, C. S. (2012). Acta Cryst. E68, o147.]).

[Scheme 1]

Experimental

Crystal data
  • [Na(C11H11ClN3O3)(H2O)]

  • Mr = 309.68

  • Monoclinic, C 2/c

  • a = 45.655 (2) Å

  • b = 4.9113 (2) Å

  • c = 12.5205 (7) Å

  • β = 102.184 (5)°

  • V = 2744.2 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.33 mm−1

  • T = 293 K

  • 0.3 × 0.2 × 0.1 mm

Data collection
  • Oxford Diffraction Xcalibur Sapphire3 diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.836, Tmax = 1.000

  • 9498 measured reflections

  • 2678 independent reflections

  • 1909 reflections with I > 2σ(I)

  • Rint = 0.038

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.112

  • S = 1.02

  • 2678 reflections

  • 191 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.46 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1W⋯O12i 0.80 (4) 2.02 (4) 2.826 (3) 179 (3)
O1W—H2W⋯O15ii 0.84 (4) 2.02 (4) 2.822 (2) 158 (3)
C10—H10B⋯O12iii 0.97 2.54 3.279 (3) 133
C13—H13B⋯O16ii 0.97 2.49 3.265 (3) 137
Symmetry codes: (i) [-x+2, y+1, -z+{\script{1\over 2}}]; (ii) x, y+1, z; (iii) [x, -y+1, z-{\script{1\over 2}}].

Data collection: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

For the development of nicotinoid insecticides the crucial turning-point could be traced back to the work done by the scientists from Nihon Tokushu Noyaku Seizo K and Nippon Bayer (Legocki & Polec, 2008). Insects become resistant to insecticides due to continuous use and hence it is imperative to introduce new molecules having novel mode of action (Kovganko & Kashkan, 2004). The outstanding development of neonicotinoid insecticides has been achieved for the modern crop protection, consumer products, and animal health markets between 1990 and today reflects the enormous importance of this chemical class (Zhao et al., 2009). Neonicotinoids have low toxicity toward mammals and no teratogenic or mutagenic effects (Xu et al., 2010). The biological activity and agricultural uses of neonicotinoid insecticides are enormous (Zhao et al., 2009). From investigations it is revealed that the neonicotinoids are converted into numerous and variable metabolites in plants as well as in mammals (Tanner et al., 2010).

The asymmetric unit is shown in Fig. 1. The bond lengths and angles observed in (I) show normal values and are comparable to those in related structures (Kapoor et al., 2011; Kant et al., 2012). There are two independent NaI ions, one of which lies on an inversion center and is coordinated in a slightly disotorted octahedral environment. The other NaI ion lies on a twofold rotation axis and is cooordinated in a slightly distorted trigonal bipyramidal coordination environment. In the organic ligand the imidazole ring adopts half-chair conformation (asymmetry parameter: ΔC2(C9—C10) = 2.31). The NaI ions bridge organic ligands and solvent water molecules to form a two-dimensional structure parallel to (100). There are intermolecular O—H···O and weak C—H···O hydrogen bonds within the two-dimensional structure.

Related literature top

For background to the insecticidal applications of imidacloprid {systematic name: N-[1-[(6-chloro-3-pyridyl)methyl]-4,5-dihydroimidazol-2-yl]nitramide}, see: Legocki & Polec (2008); Kovganko & Kashkan (2004); Zhao et al. (2009); Tanner et al. (2010); Xu et al. (2010). For ring conformations, see: Duax et al. (1975). For related structures, see: Kapoor et al. (2011, 2012); Kant et al. (2012).

Experimental top

Ethyl[3-[(6-chloropyridin-3-yl)methyl]-2-(nitroimino)imidazolidin -1-yl]acetate (0.341 g m, 0.001 mol) was dissolved in 5 ml methanol and 5 ml 1 N NaOH solution was added. The reaction mixture was refluxed on a water bath at 343K for 12 h, and then cooled. The compound was re-precipitated upon neutralization with 1 N HCl. The compound was dissolved in methanol and crystallized in a fume hood at room temperature by the process of slow evaporation.

m.p. 575 K IR (KBr) νmax: 3421, 3300, 2872, 2930, 1668, 1606 cm-1. LC—MS/MS: 270, 252, 224, 149, 126 m/z.

Refinement top

All H atoms except water H atoms were positioned geometrically and were treated as riding on their parent C atoms, with C—H distances of 0.93–0.97 Å and with Uiso(H) = 1.2Ueq(C). Water H atoms were found in a difference map and isotropically refined

Structure description top

For the development of nicotinoid insecticides the crucial turning-point could be traced back to the work done by the scientists from Nihon Tokushu Noyaku Seizo K and Nippon Bayer (Legocki & Polec, 2008). Insects become resistant to insecticides due to continuous use and hence it is imperative to introduce new molecules having novel mode of action (Kovganko & Kashkan, 2004). The outstanding development of neonicotinoid insecticides has been achieved for the modern crop protection, consumer products, and animal health markets between 1990 and today reflects the enormous importance of this chemical class (Zhao et al., 2009). Neonicotinoids have low toxicity toward mammals and no teratogenic or mutagenic effects (Xu et al., 2010). The biological activity and agricultural uses of neonicotinoid insecticides are enormous (Zhao et al., 2009). From investigations it is revealed that the neonicotinoids are converted into numerous and variable metabolites in plants as well as in mammals (Tanner et al., 2010).

The asymmetric unit is shown in Fig. 1. The bond lengths and angles observed in (I) show normal values and are comparable to those in related structures (Kapoor et al., 2011; Kant et al., 2012). There are two independent NaI ions, one of which lies on an inversion center and is coordinated in a slightly disotorted octahedral environment. The other NaI ion lies on a twofold rotation axis and is cooordinated in a slightly distorted trigonal bipyramidal coordination environment. In the organic ligand the imidazole ring adopts half-chair conformation (asymmetry parameter: ΔC2(C9—C10) = 2.31). The NaI ions bridge organic ligands and solvent water molecules to form a two-dimensional structure parallel to (100). There are intermolecular O—H···O and weak C—H···O hydrogen bonds within the two-dimensional structure.

For background to the insecticidal applications of imidacloprid {systematic name: N-[1-[(6-chloro-3-pyridyl)methyl]-4,5-dihydroimidazol-2-yl]nitramide}, see: Legocki & Polec (2008); Kovganko & Kashkan (2004); Zhao et al. (2009); Tanner et al. (2010); Xu et al. (2010). For ring conformations, see: Duax et al. (1975). For related structures, see: Kapoor et al. (2011, 2012); Kant et al. (2012).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit with ellipsoids are drawn at the 40% probability level. H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Part of the crystal structure. The broken lines show the intermolecular C—H···O and O—H···O interactions. Only H atoms involved in hydrogen bonds have been shown.
Poly[µ2-aqua-µ4-(2-{3-[(6-chloropyridin-3-yl)methyl]-2-oxoimidazolidin- 1-yl}acetato)-sodium] top
Crystal data top
[Na(C11H11ClN3O3)(H2O)]F(000) = 1280
Mr = 309.68Dx = 1.499 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 5286 reflections
a = 45.655 (2) Åθ = 3.6–29.0°
b = 4.9113 (2) ŵ = 0.33 mm1
c = 12.5205 (7) ÅT = 293 K
β = 102.184 (5)°Block, white
V = 2744.2 (2) Å30.3 × 0.2 × 0.1 mm
Z = 8
Data collection top
Oxford Diffraction Xcalibur Sapphire3
diffractometer
2678 independent reflections
Radiation source: fine-focus sealed tube1909 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
Detector resolution: 16.1049 pixels mm-1θmax = 26.0°, θmin = 3.6°
ω scanh = 5652
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
k = 65
Tmin = 0.836, Tmax = 1.000l = 1515
9498 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.112H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0459P)2 + 2.523P]
where P = (Fo2 + 2Fc2)/3
2678 reflections(Δ/σ)max = 0.001
191 parametersΔρmax = 0.44 e Å3
0 restraintsΔρmin = 0.46 e Å3
Crystal data top
[Na(C11H11ClN3O3)(H2O)]V = 2744.2 (2) Å3
Mr = 309.68Z = 8
Monoclinic, C2/cMo Kα radiation
a = 45.655 (2) ŵ = 0.33 mm1
b = 4.9113 (2) ÅT = 293 K
c = 12.5205 (7) Å0.3 × 0.2 × 0.1 mm
β = 102.184 (5)°
Data collection top
Oxford Diffraction Xcalibur Sapphire3
diffractometer
2678 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
1909 reflections with I > 2σ(I)
Tmin = 0.836, Tmax = 1.000Rint = 0.038
9498 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.112H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.44 e Å3
2678 reflectionsΔρmin = 0.46 e Å3
191 parameters
Special details top

Experimental. CrysAlis PRO, Oxford Diffraction Ltd., Version 1.171.34.40 (release 27–08-2010 CrysAlis171. NET) (compiled Aug 27 2010,11:50:40) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Na11.00001.00000.00000.0267 (3)
Na21.00001.0028 (2)0.25000.0286 (3)
Cl10.76939 (2)0.7478 (2)0.18991 (10)0.0963 (4)
N10.81725 (5)0.4509 (6)0.2281 (2)0.0652 (7)
C20.81005 (7)0.2440 (7)0.0194 (3)0.0685 (9)
H20.80720.17560.05130.082*
C30.83467 (6)0.1665 (5)0.0972 (2)0.0447 (7)
C40.83683 (7)0.2781 (6)0.1992 (3)0.0570 (8)
H40.85340.22920.25290.068*
C50.78956 (7)0.4245 (8)0.0471 (3)0.0769 (11)
H50.77280.48020.00430.092*
C60.79453 (7)0.5174 (7)0.1510 (3)0.0614 (8)
C70.85914 (6)0.0155 (5)0.0735 (2)0.0491 (7)
H7A0.86760.11890.13870.059*
H7B0.85050.14390.01670.059*
N80.88292 (4)0.1344 (4)0.03879 (16)0.0377 (5)
C90.87821 (7)0.2620 (6)0.0683 (2)0.0549 (8)
H9A0.86020.37230.08250.066*
H9B0.87700.12750.12570.066*
C100.90605 (6)0.4362 (6)0.0581 (2)0.0512 (7)
H10A0.92190.33940.08290.061*
H10B0.90180.60460.09890.061*
N110.91385 (4)0.4864 (4)0.05842 (16)0.0331 (5)
C120.90251 (5)0.2884 (5)0.11303 (19)0.0299 (5)
O120.90778 (4)0.2517 (4)0.21182 (13)0.0437 (5)
C130.94038 (5)0.6403 (5)0.1062 (2)0.0360 (6)
H13A0.93970.68360.18120.043*
H13B0.94010.81080.06680.043*
C140.96972 (5)0.4954 (4)0.10520 (16)0.0228 (5)
O150.99295 (3)0.6404 (3)0.12325 (12)0.0268 (4)
O160.96893 (3)0.2446 (3)0.09003 (13)0.0302 (4)
O1W1.03482 (4)1.2101 (4)0.15005 (15)0.0364 (4)
H1W1.0512 (7)1.220 (6)0.189 (3)0.055 (9)*
H2W1.0263 (8)1.361 (8)0.152 (3)0.082 (12)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Na10.0343 (7)0.0252 (6)0.0226 (6)0.0001 (5)0.0104 (5)0.0014 (5)
Na20.0387 (7)0.0243 (6)0.0236 (6)0.0000.0084 (5)0.000
Cl10.0693 (6)0.1034 (8)0.1248 (9)0.0315 (5)0.0398 (6)0.0245 (6)
N10.0462 (15)0.0806 (19)0.0682 (18)0.0095 (14)0.0111 (13)0.0045 (15)
C20.0438 (18)0.095 (3)0.059 (2)0.0028 (18)0.0058 (15)0.0005 (19)
C30.0307 (13)0.0456 (15)0.0556 (18)0.0117 (12)0.0042 (12)0.0062 (13)
C40.0397 (16)0.073 (2)0.0546 (19)0.0058 (15)0.0004 (13)0.0096 (16)
C50.0401 (18)0.104 (3)0.079 (3)0.0158 (18)0.0045 (17)0.019 (2)
C60.0423 (17)0.067 (2)0.078 (2)0.0010 (15)0.0184 (16)0.0143 (18)
C70.0412 (15)0.0387 (14)0.0650 (19)0.0123 (13)0.0060 (13)0.0015 (14)
N80.0363 (11)0.0375 (11)0.0369 (12)0.0057 (10)0.0024 (9)0.0023 (9)
C90.0507 (17)0.074 (2)0.0349 (16)0.0085 (15)0.0032 (13)0.0032 (14)
C100.0439 (15)0.074 (2)0.0327 (15)0.0043 (14)0.0015 (12)0.0151 (14)
N110.0278 (10)0.0322 (10)0.0386 (11)0.0006 (9)0.0057 (8)0.0036 (9)
C120.0242 (11)0.0327 (12)0.0327 (14)0.0049 (10)0.0057 (10)0.0007 (10)
O120.0328 (9)0.0672 (12)0.0308 (10)0.0053 (8)0.0057 (7)0.0033 (9)
C130.0331 (13)0.0251 (11)0.0517 (16)0.0000 (10)0.0133 (11)0.0013 (11)
C140.0302 (11)0.0213 (10)0.0173 (10)0.0011 (10)0.0063 (9)0.0016 (9)
O150.0288 (8)0.0230 (7)0.0283 (8)0.0029 (7)0.0056 (6)0.0017 (6)
O160.0329 (9)0.0182 (7)0.0410 (9)0.0002 (6)0.0116 (7)0.0023 (6)
O1W0.0315 (10)0.0405 (11)0.0347 (10)0.0025 (9)0.0011 (8)0.0037 (8)
Geometric parameters (Å, º) top
Na1—O16i2.3239 (14)C5—C61.351 (5)
Na1—O16ii2.3239 (14)C5—H50.9300
Na1—O15iii2.4112 (14)C7—N81.452 (3)
Na1—O152.4112 (14)C7—H7A0.9700
Na1—O1Wiii2.4208 (18)C7—H7B0.9700
Na1—O1W2.4208 (18)N8—C121.373 (3)
Na1—Na2iii3.1302 (2)N8—C91.454 (3)
Na1—Na23.1302 (2)C9—C101.515 (4)
Na2—O152.3611 (16)C9—H9A0.9700
Na2—O15iv2.3611 (16)C9—H9B0.9700
Na2—O1W2.4432 (18)C10—N111.448 (3)
Na2—O1Wiv2.4432 (18)C10—H10A0.9700
Na2—O16v2.4969 (16)C10—H10B0.9700
Na2—O16ii2.4968 (16)N11—C121.353 (3)
Na2—Na1iv3.1302 (2)N11—C131.446 (3)
Na2—H2W2.58 (3)C12—O121.223 (3)
Cl1—C61.753 (3)C13—C141.519 (3)
N1—C61.301 (4)C13—H13A0.9700
N1—C41.336 (4)C13—H13B0.9700
C2—C31.377 (4)C14—O161.246 (2)
C2—C51.385 (5)C14—O151.257 (2)
C2—H20.9300O16—Na1vi2.3239 (14)
C3—C41.374 (4)O16—Na2vi2.4968 (16)
C3—C71.509 (4)O1W—H1W0.81 (3)
C4—H40.9300O1W—H2W0.84 (4)
O16i—Na1—O16ii180.00 (5)C6—N1—C4115.7 (3)
O16i—Na1—O15iii83.72 (5)C3—C2—C5119.6 (3)
O16ii—Na1—O15iii96.28 (5)C3—C2—H2120.2
O16i—Na1—O1596.28 (5)C5—C2—H2120.2
O16ii—Na1—O1583.72 (5)C4—C3—C2115.8 (3)
O15iii—Na1—O15180.00 (7)C4—C3—C7120.6 (2)
O16i—Na1—O1Wiii76.78 (6)C2—C3—C7123.5 (3)
O16ii—Na1—O1Wiii103.22 (6)N1—C4—C3125.7 (3)
O15iii—Na1—O1Wiii88.29 (6)N1—C4—H4117.1
O15—Na1—O1Wiii91.71 (6)C3—C4—H4117.1
O16i—Na1—O1W103.22 (6)C6—C5—C2118.2 (3)
O16ii—Na1—O1W76.78 (6)C6—C5—H5120.9
O15iii—Na1—O1W91.71 (6)C2—C5—H5120.9
O15—Na1—O1W88.29 (6)N1—C6—C5125.1 (3)
O1Wiii—Na1—O1W180.00 (8)N1—C6—Cl1115.0 (3)
O16i—Na1—Na2iii51.96 (4)C5—C6—Cl1119.9 (3)
O16ii—Na1—Na2iii128.04 (4)N8—C7—C3112.9 (2)
O15iii—Na1—Na2iii48.32 (4)N8—C7—H7A109.0
O15—Na1—Na2iii131.68 (4)C3—C7—H7A109.0
O1Wiii—Na1—Na2iii50.26 (4)N8—C7—H7B109.0
O1W—Na1—Na2iii129.74 (4)C3—C7—H7B109.0
O16i—Na1—Na2128.04 (4)H7A—C7—H7B107.8
O16ii—Na1—Na251.96 (4)C12—N8—C7119.9 (2)
O15iii—Na1—Na2131.68 (4)C12—N8—C9109.6 (2)
O15—Na1—Na248.32 (4)C7—N8—C9121.3 (2)
O1Wiii—Na1—Na2129.74 (4)N8—C9—C10102.0 (2)
O1W—Na1—Na250.26 (4)N8—C9—H9A111.4
Na2iii—Na1—Na2180.00 (4)C10—C9—H9A111.4
O15—Na2—O15iv82.15 (8)N8—C9—H9B111.4
O15—Na2—O1W88.91 (5)C10—C9—H9B111.4
O15iv—Na2—O1W130.33 (6)H9A—C9—H9B109.2
O15—Na2—O1Wiv130.33 (6)N11—C10—C9101.8 (2)
O15iv—Na2—O1Wiv88.91 (6)N11—C10—H10A111.4
O1W—Na2—O1Wiv130.75 (10)C9—C10—H10A111.4
O15—Na2—O16v150.63 (6)N11—C10—H10B111.4
O15iv—Na2—O16v81.11 (5)C9—C10—H10B111.4
O1W—Na2—O16v83.79 (6)H10A—C10—H10B109.3
O1Wiv—Na2—O16v73.25 (6)C12—N11—C13122.9 (2)
O15—Na2—O16ii81.11 (5)C12—N11—C10110.4 (2)
O15iv—Na2—O16ii150.63 (6)C13—N11—C10120.80 (19)
O1W—Na2—O16ii73.25 (6)O12—C12—N11127.1 (2)
O1Wiv—Na2—O16ii83.79 (6)O12—C12—N8124.4 (2)
O16v—Na2—O16ii123.21 (8)N11—C12—N8108.5 (2)
O15—Na2—Na1iv129.79 (5)N11—C13—C14114.54 (18)
O15iv—Na2—Na1iv49.71 (3)N11—C13—H13A108.6
O1W—Na2—Na1iv130.64 (5)C14—C13—H13A108.6
O1Wiv—Na2—Na1iv49.63 (4)N11—C13—H13B108.6
O16v—Na2—Na1iv47.14 (3)C14—C13—H13B108.6
O16ii—Na2—Na1iv133.19 (4)H13A—C13—H13B107.6
O15—Na2—Na149.71 (3)O16—C14—O15125.69 (19)
O15iv—Na2—Na1129.79 (5)O16—C14—C13117.84 (18)
O1W—Na2—Na149.63 (4)O15—C14—C13116.43 (18)
O1Wiv—Na2—Na1130.65 (5)C14—O15—Na2122.53 (12)
O16v—Na2—Na1133.19 (4)C14—O15—Na1121.41 (12)
O16ii—Na2—Na147.14 (3)Na2—O15—Na181.97 (5)
Na1iv—Na2—Na1179.49 (4)C14—O16—Na1vi125.73 (13)
O15—Na2—H2W101.9 (8)C14—O16—Na2vi110.77 (13)
O15iv—Na2—H2W145.3 (8)Na1vi—O16—Na2vi80.89 (5)
O1W—Na2—H2W19.0 (8)Na1—O1W—Na280.11 (5)
O1Wiv—Na2—H2W112.1 (8)Na1—O1W—H1W151 (2)
O16v—Na2—H2W79.3 (8)Na2—O1W—H1W110 (2)
O16ii—Na2—H2W62.4 (8)Na1—O1W—H2W100 (2)
Na1iv—Na2—H2W125.2 (8)Na2—O1W—H2W90 (2)
Na1—Na2—H2W55.2 (8)H1W—O1W—H2W108 (3)
O16i—Na1—Na2—O1559.31 (6)C13—N11—C12—N8163.81 (19)
O16ii—Na1—Na2—O15120.69 (6)C10—N11—C12—N810.9 (3)
O15iii—Na1—Na2—O15180.000 (3)C7—N8—C12—O1223.0 (3)
O1Wiii—Na1—Na2—O1546.52 (8)C9—N8—C12—O12170.2 (2)
O1W—Na1—Na2—O15133.48 (8)C7—N8—C12—N11155.4 (2)
O16i—Na1—Na2—O15iv39.26 (7)C9—N8—C12—N118.1 (3)
O16ii—Na1—Na2—O15iv140.74 (7)C12—N11—C13—C1480.5 (3)
O15iii—Na1—Na2—O15iv159.94 (9)C10—N11—C13—C1469.7 (3)
O15—Na1—Na2—O15iv20.06 (9)N11—C13—C14—O1617.1 (3)
O1Wiii—Na1—Na2—O15iv66.58 (8)N11—C13—C14—O15164.93 (18)
O1W—Na1—Na2—O15iv113.42 (8)O16—C14—O15—Na2140.66 (17)
O16i—Na1—Na2—O1W74.17 (8)C13—C14—O15—Na237.1 (2)
O16ii—Na1—Na2—O1W105.83 (8)O16—C14—O15—Na1118.07 (19)
O15iii—Na1—Na2—O1W46.52 (8)C13—C14—O15—Na164.2 (2)
O15—Na1—Na2—O1W133.48 (8)O15iv—Na2—O15—C1473.13 (14)
O1Wiii—Na1—Na2—O1W180.000 (2)O1W—Na2—O15—C14155.86 (15)
O16i—Na1—Na2—O1Wiv172.30 (8)O1Wiv—Na2—O15—C148.69 (18)
O16ii—Na1—Na2—O1Wiv7.70 (8)O16v—Na2—O15—C14128.87 (15)
O15iii—Na1—Na2—O1Wiv67.01 (9)O16ii—Na2—O15—C1482.65 (15)
O15—Na1—Na2—O1Wiv112.99 (9)Na1iv—Na2—O15—C1457.82 (16)
O1Wiii—Na1—Na2—O1Wiv66.47 (14)Na1—Na2—O15—C14122.29 (16)
O1W—Na1—Na2—O1Wiv113.53 (14)O15iv—Na2—O15—Na1164.57 (7)
O16i—Na1—Na2—O16v81.15 (10)O1W—Na2—O15—Na133.57 (6)
O16ii—Na1—Na2—O16v98.85 (10)O1Wiv—Na2—O15—Na1113.60 (7)
O15iii—Na1—Na2—O16v39.54 (8)O16v—Na2—O15—Na1108.84 (10)
O15—Na1—Na2—O16v140.46 (8)O16ii—Na2—O15—Na139.65 (4)
O1Wiii—Na1—Na2—O16v173.02 (8)Na1iv—Na2—O15—Na1179.885 (9)
O1W—Na1—Na2—O16v6.98 (8)O16i—Na1—O15—C1499.57 (14)
O16i—Na1—Na2—O16ii180.000 (1)O16ii—Na1—O15—C1480.43 (14)
O15iii—Na1—Na2—O16ii59.31 (6)O1Wiii—Na1—O15—C1422.69 (15)
O15—Na1—Na2—O16ii120.69 (6)O1W—Na1—O15—C14157.31 (15)
O1Wiii—Na1—Na2—O16ii74.17 (8)Na2iii—Na1—O15—C1456.62 (15)
O1W—Na1—Na2—O16ii105.83 (8)Na2—Na1—O15—C14123.38 (15)
C5—C2—C3—C40.2 (4)O16i—Na1—O15—Na2137.04 (5)
C5—C2—C3—C7176.3 (3)O16ii—Na1—O15—Na242.96 (5)
C6—N1—C4—C30.6 (5)O1Wiii—Na1—O15—Na2146.07 (6)
C2—C3—C4—N10.3 (5)O1W—Na1—O15—Na233.93 (6)
C7—C3—C4—N1176.9 (3)Na2iii—Na1—O15—Na2180.000 (2)
C3—C2—C5—C60.4 (5)O15—C14—O16—Na1vi35.2 (3)
C4—N1—C6—C50.4 (5)C13—C14—O16—Na1vi147.11 (16)
C4—N1—C6—Cl1179.1 (2)O15—C14—O16—Na2vi58.5 (2)
C2—C5—C6—N10.1 (6)C13—C14—O16—Na2vi119.20 (17)
C2—C5—C6—Cl1179.6 (3)O16i—Na1—O1W—Na2128.89 (6)
C4—C3—C7—N887.5 (3)O16ii—Na1—O1W—Na251.11 (6)
C2—C3—C7—N888.8 (3)O15iii—Na1—O1W—Na2147.16 (6)
C3—C7—N8—C1271.7 (3)O15—Na1—O1W—Na232.83 (6)
C3—C7—N8—C971.6 (3)Na2iii—Na1—O1W—Na2180.000 (1)
C12—N8—C9—C1022.3 (3)O15—Na2—O1W—Na133.61 (5)
C7—N8—C9—C10169.0 (2)O15iv—Na2—O1W—Na1112.35 (8)
N8—C9—C10—N1126.8 (3)O1Wiv—Na2—O1W—Na1113.33 (6)
C9—C10—N11—C1224.0 (3)O16v—Na2—O1W—Na1174.89 (6)
C9—C10—N11—C13177.6 (2)O16ii—Na2—O1W—Na147.43 (5)
C13—N11—C12—O1217.9 (3)Na1iv—Na2—O1W—Na1179.44 (4)
C10—N11—C12—O12170.9 (2)
Symmetry codes: (i) x+2, y+1, z; (ii) x, y+1, z; (iii) x+2, y+2, z; (iv) x+2, y, z+1/2; (v) x+2, y+1, z+1/2; (vi) x, y1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W···O12v0.80 (4)2.02 (4)2.826 (3)179 (3)
O1W—H2W···O15ii0.84 (4)2.02 (4)2.822 (2)158 (3)
C10—H10B···O12vii0.972.543.279 (3)133
C13—H13B···O16ii0.972.493.265 (3)137
Symmetry codes: (ii) x, y+1, z; (v) x+2, y+1, z+1/2; (vii) x, y+1, z1/2.

Experimental details

Crystal data
Chemical formula[Na(C11H11ClN3O3)(H2O)]
Mr309.68
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)45.655 (2), 4.9113 (2), 12.5205 (7)
β (°) 102.184 (5)
V3)2744.2 (2)
Z8
Radiation typeMo Kα
µ (mm1)0.33
Crystal size (mm)0.3 × 0.2 × 0.1
Data collection
DiffractometerOxford Diffraction Xcalibur Sapphire3
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
Tmin, Tmax0.836, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
9498, 2678, 1909
Rint0.038
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.112, 1.02
No. of reflections2678
No. of parameters191
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.44, 0.46

Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W···O12i0.80 (4)2.02 (4)2.826 (3)179 (3)
O1W—H2W···O15ii0.84 (4)2.02 (4)2.822 (2)158 (3)
C10—H10B···O12iii0.972.543.279 (3)133
C13—H13B···O16ii0.972.493.265 (3)137
Symmetry codes: (i) x+2, y+1, z+1/2; (ii) x, y+1, z; (iii) x, y+1, z1/2.
 

Acknowledgements

RK acknowledges the Department of Science & Technology for the single-crystal X-ray diffractometer sanctioned as a National Facility under project No. SR/S2/CMP-47/2003. He is also thankful to the University of Jammu, Jammu, India, for financial support.

References

First citationDuax, W. L. & Norton, D. A. (1975). Atlas of Steroid Structures, Vol. 1. New York: Plenum Press.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationKant, R., Gupta, V. K., Kapoor, K., Deshmukh, M. B. & Shripanavar, C. S. (2012). Acta Cryst. E68, o147.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKapoor, K., Gupta, V. K., Deshmukh, M. B., Shripanavar, C. S. & Kant, R. (2012). Acta Cryst. E68, o469.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKapoor, K., Gupta, V. K., Kant, R., Deshmukh, M. B. & Sripanavar, C. S. (2011). X-ray Struct. Anal. Online, 27, 55–56.  CrossRef CAS Google Scholar
First citationKovganko, N. V. & Kashkan, Zh. N. (2004). Russ. J. Org. Chem. 40, 1709–1726.  Web of Science CrossRef CAS Google Scholar
First citationLegocki, J. & Polec, I. (2008). Pestycydy, 1–2, 143–159.  Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTanner, G. (2010). Masters Thesis "Development of a Method for the Analysis of Neonicotinoid Insecticide Residues in Honey using LCMS/MS and Investigations of Neonicotinoid Insecticides in Matrices of Importance in Apiculture", Austrian Agency for Health and Food Safety, Vienna.  Google Scholar
First citationXu, T., Wei, K.-Y., Wang, J., Ma, H.-X. & Li, J. (2010). XUETAL J. AOAC Int. 93, 12–18.  CAS Google Scholar
First citationZhao, Y., Li, Y., Wang, S. & Li, Z. (2009). ARKIVOC, xi,152–164.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds